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FIG. 1: Schematic of the EET mechanism from pigment 1 to pig-
ment 2 in Förster theory. In Förster theory, the de-excitation (down-
pointing arrow) and excitation (up-pointing arrow) occur from the
equilibrium phonons of the initial state j1i D j'1eij'2g i to the
nonequilibrium phonons of the final state j2i D j'1g ij'2ei in ac-
cordance to the vertical Franck-Condon transition.

I. FÖRSTER THEORY: PRELUDE TO NON-MARKOVIAN
DYNAMICS

Förster theory [1] still has a significant impact on wide ar-
eas of physics, chemistry, and biology. The theory is em-
ployed to describe incoherent diffusive motion of electronic
excitation localized on individual pigments and is not capa-
ble of describing quantum coherent EET. [2] Nevertheless,
the theory is thought-provoking regarding the interplay be-
tween electronic excitation and its associated phonons. In this
section, we give a brief review of Förster theory with a spe-
cific account of its intrinsic non-Markovian features, i.e. site-
dependent reorganization and the nature of optical lineshapes
involved in the theory, which play a crucial role in exploring
rigorous theories of quantum coherent EET in photosynthetic
PPCs. [3–5]

Förster derived the EET rate expression with the use of the
Fermi golden rule approach with a second-order perturbative
treatment of the excitonic coupling between the pigments. [1]
The resultant rate constant is expressed as the overlap integral
between the fluorescence spectrum of a donor and the absorp-
tion spectrum of an acceptor as follows:

kF
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mn
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�1
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Here, AmŒ!� and FmŒ!� are the absorption and fluorescence
lineshapes of the mth pigment expressed as
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respectively, where gm.t/ is the line-broadening function [6,
7] defined by
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It should be noticed that the derivations of eqns (1.2)-(1.4) are
based on the Gaussian property given in eqn (??).

The expression of Förster rate implies the following: First,
the reorganization of the initial state, jni D j'nei

Q
k¤nj'kgi,

takes place instantaneously. Subsequently, the electronic de-
excitation of the nth pigment and the excitation of the mth
pigment occur from the equilibrium phonons of the initial
state to the nonequilibrium phonons or hot phonons of the
final state, jmi D j'mei

Q
k¤mj'kgi, in accordance to the

Franck-Condon principle, as depicted in Fig. 1. This se-
quential process involving the site-dependent reorganization
is the key assumption of Förster theory. This transfer process
through hot phonons associated with the acceptor state is the
physics of the so-called multiphonon transition process. [8]
Extensions of Förster theory also have been explored to treat
finite timescales of the reorganization, i.e. hot transfer mech-
anism or nonequilibrium effects. [9–13]

For later discussion of quantum coherent dynamics influ-
enced by the surrounding environment, it is advisable to con-
sider the mathematical structure of the lineshapes in eqns
(1.2)-(1.4) since the lineshapes provide important insights into
the dynamic interactions of a system of interest and its envi-
ronment. For the sake of simplicity, we employ the so-called
Kubo-Anderson stochastic model, [14, 15]

Sm.t/ D ¯
2�2

me�mt and �m.t/ D 0; (1.5)

where ¯�m is the root-mean-squared amplitude of the energy
gap fluctuations. It should be noticed that eqn (1.5) neglects
the inherent dissipative effects described by the response func-
tion �m.t/; thus, the Stokes shift does not exist and the ab-
sorption and fluorescence lineshapes coincide. For this model,
the lineshape can be represented by a continued fraction, [16]
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where Q! � ! �˝m. Takagahara, Hanamura and Kubo gave a
comprehensible proof of this expression by introducing auxil-
iary functions, [17]
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dt
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for n D 0; 1; 2; : : : , and A
.0/
m Œ!� D AmŒ!�. Integrating

eqn (1.7) by parts, we obtain a set of hierarchically coupled
equations of A

.n/
m Œ!�, which constructs the continued fraction.

By creating a fusion of this treatment and Caldeira-Leggett
theory concerning quantum Brownian motion, [18] Tanimura
and Kubo derived a nonperturbative quantum master equa-
tion. [19] However, these theories invoked a high-temperature
approximation, and hence cannot be applied to low tempera-
ture systems where quantum effects play a role. Thus, low-
temperature corrections [20] were explored and summarized
as a rigorous but convenient form for practical calculations
by Ishizaki and Tanimura. [21] Extensions of the theories to
various spectral densities were also studied. [22–25]

The continued fraction representation in eqn (1.6) is con-
venient not only for numerical computations but also for un-
derstanding properties of the lineshape. In the fast modulation



2

limit characterized by �m=m � 1 (a Markovian regime), the
continued fraction converges at first order and thus the line-
shape becomes Lorentzian as

AmŒ!� '
1

�i.! � ˝m/ C
�2

m

m

: (1.8)

This phenomenon is the well-known motional narrowing. [26]
In the slow modulation limit of �m=m � 1 (a strong non-
Markovian regime), on the other hand, the fraction in eqn
(1.6) continues to infinity. However, a continued fraction
representation of the complementary error function,[19, 27]
erfc ´ D .2=

p
�/

R1
´ dt e�t2

, allows us to approximate eqn
(1.6) by a Gaussian function as follows:
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This case is known as the limit of inhomogeneous broadening,
where the timescale for nuclear motion is such that the nuclei
can be considered to be frozen. In the intermediate regime of
�m=m � 1 (a typical situation in photosynthetic EET), the
continuous fraction converges at a finite depth, and thus the
lineshape presents a mixed profile of Lorentzian and Gaus-
sian forms. In this manner, the ratio of �m=m, lineshape,
and depth of the continued fraction provide information con-
cerning the extent of the non-Markovian character of the dy-
namic interaction of a system of interest and its environment.
Note that the depth of the continued fraction is essentially un-
related to the order of perturbative expansion with respect to
electron-phonon coupling.
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