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After reviewing the field of graphical bioinformatics, we

have selected two dozen of the most significant publications

that represent milestones of graphical bioinformatics. These

publications can be viewed as forming the backbone of

graphical bioinformatics, the branch of bioinformatics that

initiates analysis of DNA, RNA, and proteins by considering

various graphical representations of these sequences. Graphi-

cal bioinformatics, a division of bioinformatics that analyzes

sequences of DNA, RNA, proteins, and proteomics maps by

developing and using tools of discrete mathematics and

graph theory in particular, has expanded since the year

2000, although pioneering contributions date back to

Hamory (1983) and Jeffrey (1990). We chronologically follow

the development of graphical bioinformatics, without assum-

ing that readers are familiar with discrete mathematics or

graph theory. Readers unfamiliar with graph theory may

even have some advantage over those who have been only

superficially exposed to graph theory, in

view of wide misconceptions and misinformation about

chemical graph theory among quantum chemists, physical

chemists, and medicinal chemists in past decades. VC 2013

Wiley Periodicals, Inc.

DOI: 10.1002/qua.24479

Introduction

We introduce the term “graphical bioinformatics” to emphasize

the distinction between the part of bioinformatics concerned

with comparative studies of biosequences based on direct

computer-driven comparisons of primary DNA and protein

sequences, and the part of bioinformatics dealing with graphi-

cal representations of DNA and proteins and their numerical

characterization based on mathematical invariants extracted

from graphical representations. As an important distinction

between the two branches of bioinformatics, the former

always simultaneously considers at least two sequences, while

in graphical bioinformatics one can focus attention and char-

acterize a single DNA, RNA, protein, or proteome.

Because a comprehensive review on graphical bioinformatics

was recently published in the journal Chemical Reviews,[1] we

will not dwell on details described therein. We will focus on

our selection of the most significant results of graphical bioin-

formatics, to which we refer as the “milestones” of graphical

bioinformatics. They are listed in Table 1. We will elaborate on

a few recent results in graphical bioinformatics, reported dur-

ing the last two years, and appearing after the publication of

the above-mentioned review on the graphical representation

of proteins.

We use the word “milestone” to signify “an important event

in the advancement of knowledge in a field.” The word

“bioinformatics” does not have a uniform definition, and may

be put in parallel with the widely used chemical concept

“aromaticity,” which most people know about, yet at the same

time have difficulty in defining. The same can be said of bioin-

formatics; most people know what it is, yet at the same time

have difficulty in formally defining it—but here the parallelism

ends. In the case of aromaticity, chemists try to capture

diverse aspects of aromatic molecules under an evasive unified

theoretical model, yet have difficulty in accomplishing such a

problematic task. Numerous developments in bioinformatics

have introduced often unexpected novel directions that

broaden previously established frontiers of this discipline. One

such novel direction is graphical bioinformatics, a term

recently coined. The origin of this discipline can be traced to

the 1983 paper by Hamory and Ruskin,[2,27,28] who depicted

DNA as a path in three-dimensional (3D) space, making it pos-

sible to visually compare different DNAs. Another outstanding

early contribution of graphical bioinformatics was by Jef-

frey,[29,30] who in 1990 modified the chaos game, (a mathemat-

ical construction for graphical representations of lengthy

sequences of digits) for the graphical representation of DNA.

The mathematician M. F. Barnsley, who developed an algo-

rithm for graphical representations of lengthy mathematical

sequences (often including random sequences of digits),

named his algorithm “chaos game.”[3,31,32] The chaos game

graphical representations of DNA and other bio-sequences

have been subsequently used for qualitative and visual inspec-

tions and comparisons of different DNAs. The introductory sec-

tion of the above-mentioned review[1] illustrates these early

graphical representations of DNA.

A. Nandy,[4,5,33,34] one of the early contributors to graphi-

cal bioinformatics, advocated a two-dimensional (2D) graphi-

cal representation of DNA, which has good visual qualities,

despite a loss of information caused by the overlap of
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opposite steps in plotting DNA as paths in 2D over the Car-

tesian grid.

One of the first important breakthroughs of graphical bio-

informatics is the visual recognition of relative abundances

and the distribution of bases in DNA, which can be used to

determine potential protein coding regions, demonstrating the

use of a 2D graphical representation of DNA sequences for

intron-exon discrimination in intron-rich sequences.[6,7,35,36] For

early developments of graphical bioinformatics, see the review

article by A. Roy, C. Raychaudhury, and A. Nandy.[8]

In the year 2000, graphical bioinformatics saw an important

novelty that resulted in the expansion from this so-far essen-

tially qualitative graphical bioinformatics, a visual discipline,

into a quantitative discipline of graphical bioinformatics,

defined by the numerical characterization of DNA.[9,37,38] Soon

followed extensions of this numerical characterization to RNA

and the introduction of the first graphical representations of

proteins accompanied by the numerical characterization of

proteins. In 2001, the numerical characterization was extended

to analyses of experimental data on proteomics maps, thus

extending graphical bioinformatics to the quantitative (numeri-

cal) analysis of proteomics maps.[10,11] For early developments

of the quantitative study of proteomics maps, readers may

consult a review article on numerical characterization of pro-

teomics maps by matrix invariants,[12] which appeared a year

or two after the publication of the first article in this area, indi-

cating the significance of the emergence of the quantitative

study of proteomics maps.

This review cites the most significant publications in graphi-

cal bioinformatics, and readers can conclude which publications

deserve recognition as milestones of graphical bioinformatics,

and which elaborate on already introduced results.

Milestones in Graphical Bioinformatics

Table 1 lists our view of the milestones of graphical bioinfor-

matics by year, informative titles, and references. Table 1 covers

30 years of the initially very slow growth of graphical informatics,

which was reborn in the year 2000 with a publication dealing

with the numerical characterization of the graphical representa-

tion of the first exon of the human b-globin gene, as proposed

by Nandy[33] and illustrated in Figure 1.

Nandy, from Calcutta, India, was visiting S. C. Basak at the

Natural Resources Research Institute in Duluth, MN (associated

with the University of Minnesota in Duluth) and presented a

seminar on the graphical representation of DNA. At that time

one of the authors (MR) too was visiting Basak and attending

the seminar where Nandy also presented the DNA plot of the

complete human b-globin gene, part of which is illustrated in

Figure 1. The distance/distance (D/D) matrices[44,45], which

were introduced into chemical graph theory half a dozen years

ago to characterize the degree of bending of chain-like mole-

cules, can be used for the numerical characterization of graph-

ical representations of DNA, even though the DNA graphical

representation is not a path graph, but a path over the Carte-

sian coordinate system. By numerical characterization, the

construction of a set of invariants of graphical objects is

understood, not a single number or a pair of numbers. This

can be used for indexing DNA sequences instead of allowing

numerical comparative studies of such diagrams.

Soon after the seminar with Nandy, we constructed the

92 3 92 size D/D for the first exon of the human b-globin

gene. The DNA is shown in Figure 1, and a small portion is

shown in Table 2. The location of the initial 12 nucleotides is

shown in Figure 2. The significance of this work, which is out-

lined in Ref. [37], was that this step upgraded graphical bioin-

formatics into a quantitative theoretical discipline. Until that

time graphical bioinformatics was a qualitative discipline, in

which comparisons between graphical representations of dif-

ferent DNA were performed visually. As seen from Refs. [1]

and [37] , the construction of the D/D matrices allows one to

recover the lost information of the 2D graphical representation

of DNA, making such graphical representations more useful

than previously. The nature of the D/D matrix and some of its

invariants, which can serve as DNA descriptors, are outlined

here.

Table 1. Milestones in graphical bioinformatics.

Year Ref.

1 1983 3-D graphical representation of DNA [27]

2 1990 Chaos Game representation of DNA [3]

3 1995 Simplified graphical 2-D representation of DNA [5]

4 1996 Recognition of potential coding regions in DNA [6,7]

5 1999 Indexing macromolecular sequences [8]

6 2000 Numerical characterization of 2-D DNA plots [37]

7 2001 Numerical characterization of proteomics maps [9,38]

8 2003 Spectral representation of DNA [13]

9 2004 Graphical representation of DNA as a map [14]

10 2004 Virtual genetic code [39]

11 2005 Sequential neighbor labels for vertices of maps [15]

12 2005 Hormesis at the proteome level [16]

13 2005 Viral targeted applications [17]

14 2006 Graphical alignment of DNA [18]

15 2006 Alignment-free approach to phylogenetic analysis [19,20]

16 2007 Graphical representation of proteins by graphs [21,22]

17 2008 Graphical alignment of proteins [109]

18 2008 Amino acid adjacency matrix [23]

19 2008 Representation of RNA without loss of information [25]

20 2009 Prediction of protein functional regions [49]

21 2012 Novel 2D Representation of proteomics maps [41]

22 2012 Exact solution to protein alignments [42]

23 2013 Exact solution to nucleotide alignments [43]

24 2013 Canonical labels for maps

Figure 1. Graphical representation of the first exon of human b-globin

gene according to the approach of A. Nandy. Reproduced with permission

from Ref. [1].
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D/D Matrix

The D/D matrix, or DD matrix, was initially constructed for the

characterization of chain-like structures of fixed geometry with

bonds of the same length but embedded in space with edges

oriented in different directions. For example, the D/D matrix

has been used for the characterization of graphs of Figure 3,

which illustrates short paths that can be obtained by walking

over the graphite network. The matrix elements (i, j) of the D/

D matrix are given by the quotient of the Euclidean distance

between vertices (i, j) and the length of the distance between

vertices (i, j) along the path connecting them. From this defini-

tion, it is clear that if two structures have the same overall

length (the same number of vertices), then the one that is

more bent will have smaller D/D matrix elements, and conse-

quently, smaller matrix row sums. Following Perron’s theo-

rem,[46–48] which states that (in the symmetrical matrices) the

largest and the smallest row sums give the upper and the

lower bounds on the leading eigenvalue, one expects that

more bent structures will also have smaller leading eigenval-

ues. Hence, the leading eigenvalue is a good index measuring

the degree of bending or folding of such structures.

The D/D matrix was later generalized to embedded paths

in 2D or 3D having links of different lengths, which is useful

for the characterization of proteomics maps.[12] Recently, the

use of D/D matrices has been extended to acyclic graphs,

that is, graphs having branching vertices and branches (Ran-

dić and Plav�sić, in preparation). The leading eigenvalue also

continues to be a useful structure descriptor for acyclic

graphs. Beside the leading eigenvalue, the set of all eigenval-

ues of D/D matrices is of interest, as is the set of row sums,

which must be first-ordered to qualify as a set of invariants.

Recently, the coefficients of the leading eigenvector were

found to parallel the abundances (the relative magnitudes of

spots) in proteomics maps,[49] and thus are useful structure

descriptors.

Lattice Representations of DNA without Loss
of Information

The graphical representation of DNA by Hamory and by Nandy

can be considered as 3D and 2D lattice representations of

DNA such that all nucleotides have integer coordinates, (xi, yi,

Figure 2. Graphical representations of the initial 12 nucleotides of the first

exon of human b-globin gene of Figure 1. Reproduced with permission

from Ref. [1].

Table 2. A small portion of the D/D matrix of the first exon of human b-

globin gene. ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT

ACT GCC CTG TGG GGC AAG GTG AAC GTG GAT GAA GTT GGT GGT GAG

GCC CTG GGC AG.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1/1 �2/2 �5/3 2�2/4 �13/5 �10/6 �5/7 2/8 �5/9 2/10 �3/11

2 0 1/1 2/2 �5/3 �10/4 3/5 �2/6 �2/7 �8/8 �2/9 �10/10

3 0 1/1 �2/2 �5/3 2/4 1/5 �2/6 �5/7 �2/8 �5/9

4 0 1/1 �2/2 1/3 0 1/5 2/6 1/7 �2/8

5 0 1/1 �2/2 1/3 2/4 3/5 2/6 �5/7

6 0 1/1 �2/2 �5/3 �10/4 �5/5 2/6

7 0 1/1 �2/2 �5/3 �2/4 1/5

8 0 1/1 2/2 1/3 �2/4

9 0 1/1 0 1/3

10 0 1/1 �2/2

11 0 1/1

12 0

Figure 3. Graphs representing path of length 7 over graphite lattice.
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zi) and (xi, yi), respectively. The 2D graphical representations of

DNA by Nandy, by Gates,[50,51] and by Leong and Mor-

genthaler[52] are accompanied by loss of information, because

walking in opposite directions over the Cartesian coordinate

grid introduces cancellations of random walk steps. Thus in

the graphical representations of DNA by Nandy, each adenine

(A) followed by guanine (G) and vice versa, and each thymine

(T) followed by cytosine (C) and vice versa, retraces a previous

step in the DNA sequence, and thus introduces loss of infor-

mation in graphical representation. The resulting graphical

representation is not unique and may stand for several differ-

ent DNA sequences.

This serious limitation of 2D lattice representations of DNA

can be lifted when such graphical representations are ana-

lyzed numerically by using D/D matrices, because in con-

structing the D/D matrix one follows the path and knows

the exact coordinates of each nucleotide as construction pro-

ceeds. As shown first by Gou et al.[53] and later by others,[54–

63] it is also possible to modify the graphical representation

of DNA by Nandy,[33] and arrive at somewhat modified 2D

graphical representations of DNA that are not accompanied

by loss of information. The same applies to graphical repre-

sentations of DNA by Gates,[50,51] and Leong and Mor-

genthaler.[52] Finally, one can design alternative 2D graphical

representations of DNA that from the start are not accompa-

nied by loss of information on DNA in the input information.

Such graphical representations allow the reconstruction of

the DNA sequence, as was the case with Hamory’s 3D repre-

sentations of DNA and Jeffrey’s 2D chaos game representa-

tions of DNA. The next section outlines the four-line DNA

representation, which depicts DNA by plotting successive

nucleotides over four horizontal lines, each associated with a

single nucleotide. Such 2D representations of DNA are

referred to as “spectral representations of DNA” because they

visually resemble molecular spectra.

Spectral Representation of DNA

Spectral representations of DNA, proteins, and RNA have an

advantage over many other 2D graphical representations of bi-

ological sequences in that the horizontal lines (4 lines in the

case of DNA, 8 or 12 lines in the case of RNA, and 20 lines in

the case of proteins) can be associated with numerical magni-

tudes and can be manipulated arithmetically. This allows can-

cellations of values when the differences in graphical

representations are considered, if two different graphical repre-

sentations are superimposed. Every cancellation identifies the

same nucleotides or amino acids in different sequences, which

facilitates the arrival at DNA, RNA, or protein alignments

graphically.

The top of Figure 4 illustrates the spectral representation of

the first exon of the human b-globin gene, and immediately

below shows the spectral representation of the first exon of

the opossum b-globin gene. The spots on the first horizontal

line are assigned the numerical value of 11 and indicate nu-

cleotide adenine; the spots on the second horizontal line are

assigned numerical value of 12 and indicate cytosine; the

spots on the third horizontal line are assigned numerical value

of 13 and indicate guanine; while the spots on the fourth hor-

izontal line are assigned numerical value of 14 and indicate

thymine. Visual comparison of the two spectra shows that the

degree of variations in the b-glo-

bin gene of humans and opos-

sums are considerable. In contrast,

Figure 5 shows spectral represen-

tations of the first exon of the

goat and bovine b-globin genes,

which are fairly similar. Figure 5

shows that graphical representa-

tions based on four horizontal lines

allow one to identify that some

spectra are more different than

others, and also exactly where they

are different. For example, Figure 5

shows that goat and bovine first

exons of the b-globin gene differ

around the site 39 and in the

region 58–61. The detection of

these minor differences is not as

easy in many other 2D DNA graphi-

cal representations, as has been the

case with four-line spectral repre-

sentations of DNA.

A criticism has been raised that

spectral representations have lim-

ited visual qualities, which we dis-

pute. After plotting the completeFigure 4. Spectral representation of the first exon of human (top) opossum (bottom) b-globin gene.
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b-globin genes (all three exons) of human and opossum,

which have over 1400 nucleotides, Z.-J. Zhang[62] commented,

“It is difficult to identify that the sequences [of human and

opossum] are different. Because the visualization of this

method become difficult when the DNA sequence is >300

bp” (sic).[62] This statement is subjective because, even

though the two spectra in reference [63] have been reduced

to 30 cm2, they are different upon close examination. It is

difficult to see quantitatively how different the spectra are,

which is also true for other graphical representations,

including the dual-vector curves

of Z.-J. Zhang. Nandy’s representa-

tions, which are already 2D, allow-

ing the visual identification of

different and similar DNA sequen-

ces despite loss of information.

The same is true of graphical rep-

resentations of DNA or proteins,

which use lattice coordinates. The

difference between spectral and

lattice representations of DNA is

that in spectral representations

one assigns a single coordinate

(value) to each nucleotide, but in

lattice representations one assigns

a pair of coordinates to each nu-

cleotide. Figure 6 shows lattice

representations for the first exons

of the b-globin genes of human

and opossum, and Figure 7 shows

lattice representations the first

exons of the b-globin genes of

goat and bovine.

The lattice representation of

DNAs in Figures 6 and 7 are based

on grouping pairs of nucleotides,

to which the following coordinates are assigned:

AAð8;26Þ CAð7; 8Þ GAð8; 2Þ TAð8;28Þ

ACð8;24Þ CCð5; 8Þ GCð8; 4Þ TCð6;28Þ

AGð8;22Þ CGð3; 8Þ GGð8; 6Þ TGð4;28Þ

ATð8; 0Þ CTð1; 8Þ GTð8; 8Þ TTð2;28Þ

Other choices of coordinates are possible and will show sim-

ilar results. Because Nandy’s 2D representation of DNA

Figure 5. The first exon of goat (top) and bovine (bottom) b-globin gene.

Figure 6. Lattice representation of the first exon of human (top) and opos-

sum (bottom) b-globin gene.

Figure 7. Lattice representation of the first exon of goat (top) and bovine

(bottom) b-globin gene.
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nucleotides A and G move along the x-coordinate in opposite

directions, the coordinates for pairs starting with A and G are

chosen to move forward along the x-coordinate, while nucleo-

tides C and T, which move along the y-coordinate in opposite

directions in Nandy’s 2D representation of DNA, are chosen to

move in opposite directions along the y-coordinate. We have

selected the coordinates of C and T in opposite (but nonover-

lapping) directions so that the length of the overall spectra is

somewhat reduced. DNA can be plotted as a lattice graph by

assigning vectors to single nucleotides A, C, G, and T directed

to the set of coordinates

Að1;22Þ; Cð2;21Þ; Gð2; 1Þ; and Tð1; 2Þ:

Figure 8 illustrates the lattice graph for the human b-globin

gene based on the above coordinates. This graph is similar to

one obtained using the set of coordinates considered by Yau

et al.:[54]

Að1=2;2
ffiffiffi
3
p

=2Þ;Cð
ffiffiffi
3
p

=2;21=2Þ;Gð
ffiffiffi
3
p

=2;1=2Þ; andTð1=2;
ffiffiffi
3
p

=2Þ;

except that now the (x, y) coordinates are not lattice points

(integers).

To avoid information loss by accidental cancellations of op-

posite movements, the directions for up and down move-

ments are shifted by changing the respective x-coordinates by

one unit. The lattice representation in Figure 6 shows that the

first exon in the human and opossum b-globin gene are fairly

different, while Figure 7 shows that the first exon in goat and

bovine are fairly similar.

The 2D ladder-like graphical representation of DNA by Li

and Hu,[63] which follows a binary code for a 3-component

vector, is an illustration of lattice representation of DNA. This

originates from the pairwise partitions of A, C, G, and T as pu-

rine and pyrimidine, as amino and keto groups, and as weak

and strong hydrogen bonds. For example, when the first exon

of human b-globin gene is coded based on purine and pyrimi-

dine classification of nucleotides, according to Li and Hu the

following binary sequence is obtained:

1011010100011000000111111111000100100100100001011110

11110111010111011110011011011110000111011

If one starts at the origin (0, 0) and moves along the x coor-

dinate for each nucleotide shown as “one” and along y-coordi-

nates for each nucleotide shown as “zero,” one obtains one

component of the 2D ladder-like graphical representation of

DNA shown in Figure 9.

In our view, whether graphical representations of biose-

quences appear pleasing to the eye is less important than the

numerical characterizations that they carry, which allow quanti-

tative estimates of the degree of similarity or dissimilarity

between different DNA, RNA, or proteins. To find how quanti-

tatively different two or more DNAs, RNAs, or proteins are,

constructed graphical curves should be analyzed numerically.

Figures 10 and 11 show spectral representations of the first

exons of human and opossum, and goat and bovine, but

instead of plotting the sites of nucleotides individually, we

have grouped nucleotides into codons and assigned them to

triplets of nucleotides, making a codon the average value of

the numerical values of the three nucleotides forming the

codon. For example, for the first codon of the human b-globin

gene ATG, we assigned the value 2.6667: the average of 1, 4,

and 3, which correspond to A, T, and G, respectively. The spec-

tral representations of the first exon of the human, opossum,

goat, and bovine b-globin gene based on codons show even

more clearly that the first exons of human and opossum are

very different, but that of goat and bovine differ little.

Graphical Approach to the Alignment of DNA

To Find alignments of two DNA sequences, one can take

advantage of numerical values associated with the four hori-

zontal lines that represent A, C, G, and T and subtract the

spectra of two DNAs to be aligned. This identifies sites where

nucleotides in two sequences are equal. Then, with shifting,

the two DNA sequences relative to one another are followed

by one or more steps, and again their spectra are subtracted.

Each time a coincidence in nucleotides is present, it will show

as zero in the difference spectra. This is illustrated in Figure 12

Figure 8. Novel lattice representation of DNA with no loss of information:

The first exon of human b-globin gene using vectors: A !(1 1, – 2,); T

!(1 2, –1); G !(12, 1 1); C !(11, 12). Reproduced with permission

from Ref. [1].
Figure 9. The 2-D ladder-like graphical representation of one of the com-

ponent of the first exon of the human b-globin gene.
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in the search for the alignment of the first exons of the b-glo-

bin genes of goat and bovine.

Figure 12 shows four different spectra more closely. The top

shows the difference in the spectra of the first exons of the b-

globin genes of goat and bovine. There is a full cancellation of

spectral amplitudes only at the leftmost part of the spectra, sig-

nifying that the initial seven nucleotide doublets of the two

DNA are identical. Figure 4 shows that the initial eight nucleo-

tides are the same, but upon consideration of pairs of adjacent

nucleotides, this gives seven doublets. The second picture of Fig-

ure 12 shows the spectral difference when the two DNA sequen-

ces have been shifted by a single place. Suddenly, a long

segment of zeros signifies identical fragments of about 40 nucle-

otides in both sequences (with the exception of a few nucleo-

tides in the middle of this fragment). When the two DNA

sequences have been shifted by two steps, as shown in the third

picture, the tail part of the two DNAs is practically identical

(with a single nucleotide pair exception). This almost accounts

for all differences between the two DNA, except for a short sec-

tion involving a half dozen pairs of the last nucleotide in the

central part of the two DNA. Continuing from the last spectral

difference obtained by shifting the two sequences for an addi-

tional step, an additional half dozen nucleotides are fully aligned.

Figure 12 demonstrates the graphical approach to search

for the alignment of DNA based on spectral representations of

DNA, which was first demonstrated in 2006.[18] A graphical

approach to searching for align-

ment of proteins based on

spectral representations of pro-

teins was developed the follow-

ing year.[22] Both these

publications introduced the use

of this novel tool of graphical

alignment to solve problems in

biology. Based on the limited

number of citations that these

publications received, it appears

that interest is low, even though

both papers on the graphical

alignment (of DNA and pro-

teins) were published in re-

spectable journals. The initial

paper on DNA alignment was

based on graphical representa-

tions of individual nucleotides

A, C, G, T,[22] while here (Figures

4–9 and 12) the spectral repre-

sentations are based on pairs of

adjacent nucleotides.

Graphical Approach to
the Alignment of
Proteins

In order to obtain a one-dimen-

sional (1D) spectral graphical

representation of proteins anal-

ogous to the four-line DNA representation, each of the 20

amino acids can be assigned a numerical value, such as entries

from 1 to 20. Another possibility is the use of angular polar

coordinates of amino acids, which are uniformly arranged on

the circumference of the unit circle. Similarly, the 64 codons

can be arranged uniformly on the periphery of the unit circle

and assigned polar angles (multiples of 2p/64 radians), leading

to a 1D “spectrum-like” representation of DNA based on co-

dons. In these 1D representations of DNA (based on the four

nucleotides or codons), or of protein sequences, alphabetic

sequences of nucleotides or amino acids are transformed into

numerical sequences. Numerical sequences allow simple nu-

merical operations to be performed on the elements of the

sequence, such as subtracting the corresponding members of

two sequences, or subtracting sequences that have been

shifted one relative to one another. The next section shows

that this is the essential step for graphical solutions to the

problem of DNA and protein alignment.

Until now there was no rigorous solution to the problem of

protein–protein alignments. The existing algorithms for protein

alignments[64–69] involve dynamic programming, probabilistic

approaches, genetic algorithms, graph-theoretical approaches,

and empirical parameters. Some computer-based approaches

consider penalties for the deletion, substitution, and permuta-

tion of sequence labels (i.e., amino acids), which are associated

Figure 10. Graphical representation of codons of the first exon of human and opossum b-globin gene.
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with the metrics of Levenshtein,[70] also known as “edit dis-

tance.” In contrast to these computer-based programs for pro-

tein alignment, which search for an optimal alignment of

proteins when various penalties for deletions, substitutions,

and gaps are assumed, graphical approaches consider direct

comparisons of two protein sequences after numerical values

have been assigned to different amino acids. The recently out-

lined graphical approach to protein alignment identifies the

same amino acids in two protein sequences by locating the

zeros on the plot of the difference between two numerical

representations of two proteins. To arrive at a complete analy-

sis, however, the differences between sequences of proteins

when shifted by one or more positions relative to the other,

both to the left and to the right, must be considered.

The graphical alignments of the two proteins of Table 3,

which have almost 170 amino acids,[71] are illustrated. The first

protein pertains to carboxypeptidase Y from Saccharomyces

cerevisiae (baker’s yeast), and the second belongs to the

mature putative serine carboxypeptidase in ESR1-IRA1 inter-

genic region, also from Saccharomyces cerevisiae. Figure 13

illustrates 1D graphical representation of the two proteins.

Figure 13 reveals 20 different spectral amplitudes. The val-

ues having the same “height” in the spectrum correspond to

the same amino acid. Thus, the spots at the top line in Figure

13 and the bottom line of the spectra corresponding to valine

and alanine immediately indi-

cate that protein 1 has 12 valine

(y 5 6) and seven alanine AAs (y

5 0), whereas protein 2 has five

valine and nine alanine AAs. The

count of the number of spots on

the same horizontal line gives

the abundance count for amino

acids in proteins. In the case of

protein 1 and protein 2 of Figure

13, for the 20 amino acids, or-

dered (A, R, N, D, C, Q, E, G, H, I,

L, K, M, F, P, S, T, W, Y, V), which

is alphabetical according to their

three-letter codes, one obtains

ð7; 2; 13; 11; 1; 4; 7; 18; 10;

4; 15; 2; 0; 15; 11; 16; 8; 3;

8; 12Þ for protein 1; and

ð9; 3; 11; 9; 1; 3; 9; 17; 13;

6; 13; 9; 4; 14; 11; 15; 7; 4;

8; 5Þ for protein 2:

To identify repeating adja-

cent occurrences of the same

amino acid in a sequence, the

spectra are searched for loca-

tions of adjacent “spots” on the

same horizontal line. In protein

1 there are AA, GG, FFF, FF

twice, and SS thrice; while in

protein 2 there are NNN, GG, HH, LL, FF thrice, and SS twice.

The 20-component “abundance” vectors allow a fast pre-

liminary screening of proteins for their similarity or lack

thereof. The similarity of the 20-component vectors is a neces-

sary, but not sufficient, condition for similarity among proteins.

Abundance vectors tell nothing about distributions of amino

acids, but a glance at such vectors for two proteins gives

insight on their degree of similarity of two proteins. A compar-

ison of the above two 20-component abundance vectors sug-

gests that protein 1 and protein 2 have an appreciable degree

of similarity. A plot of the two 20-component vectors repre-

senting the abundance of the two proteins against one

another is shown in Figure 14, which shows a fair correlation

with three outliers: alanine (A), methionine (M), and leucine (L).

The plot of the difference of the spectral representations of

protein 1 and protein 2 oscillates above and below the x-axis

(Fig. 15). This is because there are no significant segments of

amino acids in two proteins that overlap, which would result

in differences equal to zero, except for a few accidental cases.

But when the two sequences are shifted by one or two steps,

the diagrams in Figure 16 show alignments for amino acids in

a significant portion of two proteins. The shift of two sequen-

ces by one step gives alignments of amino acid in the region

22–99; the shift of the two protein sequences by two steps

Figure 11. Graphical representation of codons of the first exon of goat and bovine b-globin gene.
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shows alignment between the two proteins in the region 108–

120. When the shift of the two sequences continues farther,

by three and four steps, additional local alignments of amino

acids are in the regions 159–169 and 130–145, respectively.

Figure 16 represents the essence of

the novel graphical approach to the pro-

tein alignment problem. By combining

the information obtained by considering

the difference in spectra for the four

shifts of protein 1 and protein 2, the

alignment pattern for the two proteins

can be constructed. The search for addi-

tional local alignments can be continued,

but this is not essential for the outline of

the novel graphical approach for protein

alignment. The four shifts of the spec-

trum-like (20 lines) representations of

proteins achieved an overall matching in

117 sites out of 169.

The resulting graphical alignment was

obtained without considering penalties

for various gaps. The graphical alignment

approach represents an alternative search-

ing route for protein alignments, which is

conceptually and computationally simple.

But even at this early stage of its develop-

ment, it is possible to conceive further

improvements. All graphical displays and

all computations discussed in this review

can be easily performed in Excel, which is

particularly suitable for such work.

Some readers may view this route to

protein alignment as having limited

potential, not competitive with currently

available computer packages such as

FASTA[66,67] and BLAST.[68] This may be

true now and in the immediate future,

but the graphical approach to protein

alignment has just emerged, while many

computer-graphic packages have been

available for longer (25 and 15 years,

respectively). Novel aspects of the graphi-

cal alignment of proteins may be seen in

the future. In the case of a DNA align-

ment, which is described in reference[31]

and follows the route outlined here for

graphical alignments of proteins[22] (even

though the publication on DNA appeared

earlier), graphical alignment can success-

fully reproduce the computer-based

result, and has also shown that there are

better solutions not detected by the par-

ticular computer program.

Hormesis at the Proteome Level

This section briefly outlines the route used for the numerical

characterization of proteomics maps, which has an outstand-

ing result: The recognition of the presence of hormesis at the

Figure 12. The difference between goat and bovine specteral representations of b-globin gene

(top) and difference when the two sequences are shifted by one step (next), two steps (next), and

three steps (bottom).

J_ID: QUA Customer A_ID: QUA24479 Cadmus Art: QUA24479 Ed. Ref. No.: 2012-0655.R2 Date: 4-June-13 Stage: Page: 9

ID: sadasivans Time: 16:51 I Path: N:/3b2/QUAN/Vol00000/130089/APPFile/JW-QUAN130089

REVIEWWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2013, DOI: 10.1002/qua.24479 9

http://q-chem.org/
http://onlinelibrary.wiley.com/


proteome level. Up to that time hormesis, which advocated

a J-shaped response curve rather than a simple linear dose-

response, had been recognized for many years by a number

of research circles as a possible dose-response of the whole

organism. An early illustration, for example, is the effect of

a lethal dose of radiation on rats never exposed to radiation

and rats previously exposed to small doses of radiation.[72]

Despite available evidence for the J-shaped response curve

for some time, hormesis has not been accepted or acknowl-

edged by several leading authorities.[73,74] By reinvestigating

the available proteomics data of Andersen et al.,[75] it was

demonstrated for the first time in 2005 that a J-shaped

dose-response is also characteristic of the proteome varia-

tions in individual cells of an organism, even though the

variation of individual protein abundance appears chaotic.[12]

When this article was reviewed, an anonymous referee sent

the single sentence report, “This paper will be highly cited.”

About seven years have

passed since the publication of

this work, but as of September

2012, the total number of cita-

tions is only 35. This is about

five citations per year (which

includes self-citations), allowing

three conclusions:

1. One of the most difficult

jobs is to predict the

future

2. There are too few

researchers who can rec-

ognize and appreciate the

significance of novelty in

research and the signifi-

cance of results that are

outside their narrow field

of interest.

3. There is at least a single

authority (the anonymous

referee) in the field who

recognized an important

discovery at its early

stage.

It could have happened,

although it did not in this case,

that not a single supporting sci-

entist would appreciate the

novelty of this work. This is not

unknown in science when true

Table 3. Two proteins of Saccharomyces cerevisiae selected for outline of

the VESPA algorithm. Amino acids are listed in groups of ten for easier

reading.

Protein 1

KILGIDPNVT QYTGYLDVED EDKHFFFWTF ESRNDPAKDP VILWLNGGPG

CSSLTGLFFE LGPSSIGPDL KPIGNPYSWN SNATVIFLDQ PVNVGFSYSG

SSGVSNTVAA GKDVYNFLEL FFDQFPEYVN KGQDFHIAGE SYAGHYIPVF

ASEILSHKDR NFNLTSVLIG NGLT

Protein 2

PSKLGIDTVK QWSGYMDYKD SKHFFYWFFE SRNDPANDPI ILWLNGGPGC

SSFTGLLFEL GPSSIGADMK PIHNPYSWNN NASMIFLEQP LGVGFSYGDE

KVSSTKLAGK DAYIFLELEF EAFPHLRSND FHIAGESYAG HYIPQIAHEI

VVKNPERTFN LTSVMIGNGI T

Figure 13. The radian coordinates of the corresponding amino acids of the two proteins of Table 3. Repro-

duced with permission from Ref. [22].

Figure 14. The relative abundances of the 20 amino acids in the two

proteins.
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novelty has been discovered. This continual overlook by

authorities of the novelty of some scientific contributions is

discouraging and inspired the quote, “It is more important to

have a view of a single scientist who understands what one is

doing than worry about 100 that do not understand what one

is doing.”[76,77]

For example, in theoretical chemistry this was the case with

the emergence of the density functional theory (DFT), when

very few quantum chemists recognized the significance of the

work of Kohn and were hostile to DFT (exceptions were R. G.

Parr and J. A. Pople, the two leading theoretical chemists in

the world). This is how Walter Kohn describes reception of his

work:[78]

In those early years of DFT, the community of theoretical

chemists felt, almost without exception, that this approach

had nothing useful to offer to

them. Occasionally, I was invited

to give a paper on their meet-

ings, but I had the feeling that

most of the audience expected

to confirm their conviction that

it was full of irremediable

defects, in particular, insufficient

accuracy and the absence of

guaranteed, systematic proce-

dure to improve it. The most

notable exception was Bob Parr.

The situation changed dra-

matically in 1998 when Walter

Kohn received the Nobel Prize

in Chemistry for his work! He shared the Nobel Prize with

John A. Pople, another nonhostile exception among quantum

chemists toward DFT.

Sooner or later graphical bioinformatics will gain recogni-

tion, due to an undeniable continuation of growth that will

eventually make its presence obvious. Perhaps the disappoint-

ing citation results should have been expected, because most

chemists, including theoretical chemists and particularly quan-

tum chemists, are unfamiliar with discrete mathematics and

graph theory (which can be viewed as a part of discrete math-

ematics), as were their professors and will be their students.

However, this is not the case with computer scientists, the

“tool” makers in chemistry and bioinformatics, although it may

continue for a while with tool-users until some spectacular

new result emerges. We believe

that the situation with graphical

bioinformatics will soon change,

possibly dramatically and at

least in bioinformatics circles,

when most users learn of the

latest results in graphical bioin-

formatics that cannot be over-

looked: the exact solution to

protein and DNA sequence

alignments, to be outlined in

the final sections of this review.

Proteomics Map and
Their Numerical
Characterization

The proteomics maps data of

Anderson et al.,[75] a leading

authority of this experimentally

difficult area of reporting high-

quality, reproducible data, is

considered here. Table 4 lists

scaled abundance values for the

control group (based on the 20

most abundant proteins of liver

cells of mice) and four addi-

tional cases of mice after the

Figure 15. The difference in the radian coordinates of the corresponding amino acids of the two proteins of

Figure 13. Reproduced with permission from Ref. [35].

Figure 16. The difference in spectral coordinates of the corresponding amino acids of carboxypeptidase Y from

Saccharomyces cerevisiae (top) and amino acids of mature putative serine carboxypeptidase in ESR1-IRA1 inter-

genic region also from saccharomyces cerevisi shifted to the left for one to four places and to the opposite

direction by one step. Reproduced with permission from Ref. [22].
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ingestion of four different peroxisome proliferators. The scaling

is based on experimental data taken from the work of Ander-

son et al.[75] Figure 17 shows the positions of the 20 most

abundant protein spots labeled 1–20 in this proteomics map.

Only 20 protein spots are chosen for analysis because neither

the number of selected points nor the criteria of selection is

essential for the development of a mathematical approach.

The variability of experimental data in proteomics could be

significant, so it is best to focus on the most abundant pro-

teins, the experimental errors for which are expected to be

the least. The number of protein spots sufficient to represent

a map or cellular proteome as a whole was considered[79,80]

and appears to be one order of magnitude larger, not two or

three orders of magnitude.

It is obvious that many invariants are needed to capture sa-

lient features of information-rich proteomics maps. The use of

partial ordering is one of several routes to the numerical char-

acterization of proteomics maps, and represents a continua-

tion of our efforts[81–87] to develop the mathematical

characterization of DNA, proteins, and proteome. The partial

ordering diagram shown in Figure 18 is based on protein

spots ordered with respect to their charge and mass, and con-

necting lines are embedded over the proteomics map. An im-

portant feature of the embedded graph of Figure 18 is that all

lines connecting spots in the graph have positive slope. This is

a consequence of partial ordering and the underlying domi-

nance relation, and it is the property that can be used for a

direct construction of the partial ordering diagram for a given

map without the need to search for components of partial

ordering. Partial ordering means ordering items (here, points

having two coordinates) so that if one follows the diagram

along the connecting lines from top to bottom, both compo-

nents (x, y coordinates) always dominate (are bigger than)

those that follow.

To obtain Figure 18 directly from Figure 17, one can start

with the top vertex (spot 1 in Figure 17) and connect it to the

most left lower spot of 1, which is spot 7. Continue the same

with vertex 7 and connect it to the next lower vertex below it

and to the left, which is spot 3. Continue to connect 3 to 19,

and finally 19 to 14. By exhausting this particular trail, return

to vertex 1 and repeat the process: connect 1 to the next

most left lower spot still unconnected, spot 9, and then 9 to 3.

In the next step connect 1 again to the next most left lower

point still unconnected, which is spot 6, and finally connect 6

to 14. By backtracking, connect 6 to 11. Finally, connect 1 to

16 and 1 to 13, which are connected to 6 and 11, respectively.

Table 4. Scaled abundance values.

Spot Control PFOA PFDA Clofibrate DEHP

1 5.200 3.916 3.423 5.299 5.976

2 5.174 5.604 6.794 5.760 5.586

3 4.923 4.102 5.413 5.895 0.292

4 4.582 3.572 2.632 2.761 4.038

5 4.272 4.063 1.793 3.958 5.000

6 4.140 6.933 7.982 5.983 6.506

7 4.044 2.114 1.402 2.636 2.777

8 3.923 0.940 1.828 1.654 4.209

9 3.539 3.284 2.989 3.033 3.348

10 3.372 2.996 2.267 2.877 3.940

11 3.242 4.659 4.048 4.058 4.301

12 3.124 2.549 2.835 3.810 4.189

13 3.056 2.659 1.638 2.590 3.510

14 2.972 2.665 2.683 3.051 3.190

15 2.953 0.581 0.594 2.164 5.367

16 2.883 2.785 2.885 2.739 3.633

17 2.876 0.749 0.472 1.398 1.939

18 2.622 2.751 1.900 2.003 2.789

19 2.600 2.809 2.175 1.686 2.814

20 2.502 1.363 0.581 2.059 2.568

Sum 72 61.095 56.334 65.417 75.974

Figure 17. Location of 20 most abundant proteins for proteomics maps of

the control group. Reproduced with permission from Ref. [1].

Figure 18. Partial ordering diagram for 20 protein spots of Figure 17.

Reproduced with permission from Ref. [1].
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This exhausts all the fragmentary orders starting with protein

spot 1. The process continues with spot 15, then 8 and 12,

which completes the construction of the embedded graph of

partial order for the map considered.

The adjacency matrix of the partial ordering diagram can

now be constructed, the matrix elements of which are defined

as

Aij51 if vertices i and j are adjacent; and

Aij50 otherwise:

For the graph of partial ordering of the proteomics map

illustrated in Figure 18, the adjacency matrix is shown in Table

5. The numerical characterization of the five proteomics maps

of Table 4 is based on the augmented adjacency matrix, which

is obtained by replacing zeros on the main diagonal of the

matrix by the relative abundances of individual protein spots

in the corresponding proteomics maps.

When experimental quantities are measured in different

units, such entries must be suitably normalized so that neither

of the properties (x, y) numerically dominates the other. In

such situations, Kowalski and Bender[88] recommended that

one rescale the units used to the same numerical interval,

such as (21, 11). There are three quantities that are combined

into our analysis: protein charge (coordinate x), protein mass

(coordinate y), and protein abundance (coordinate z). The x, y

coordinates do not enter directly into analysis, but determine

the adjacency of the spots, while the abundance of the 20

proteins are incorporated by augmenting the adjacency matrix

by the introduction of 20 nonzero diagonal elements.

Our problem has an additional complication because we

use matrices (mathematical objects), not just a list of tabular

data. In such situations, it is important that scaling is size-con-

sistent, so that if the matrix is enlarged with new data, its ele-

ments are renormalized. Reference [89] suggests that a way to

arrive at a matrix in which both the off-diagonal entries and

the diagonal entries have balanced roles is by scaling both

such that their sum is equal. The normalized abundances for

the five proteomics maps have been listed in Table 4. The last

row in Table 4 gives the abundance sums for the five maps,

which immediately show the overall decrease of protein total

for the most abundant 20 proteins for three peroxisome prolif-

erators—perfluorooctanic acid (PFOA), perfluorodecanic acid

(PFDA), and clofibrate—and an increase for the peroxisome

proliferator di(2-ethylhexyl)phthalate (DEHP). The five matrices

for the five proteomics maps differ in diagonal entries, which

reflect on the role of drugs inducing changes in the proteo-

mics maps. The constructed augmented matrices are analo-

gous to similar matrices that differentiate heteroatoms in

molecules in the construction of the variable connectivity

indices.[90–103] A similar approach of differentiation among pro-

teomics maps associated with different drugs and other xeno-

biotic agents was used earlier in the literature on the

mathematical characterization of proteomics maps using zig-

zag lines.[10,104] However, the normalizations used there were

not adjusted to incorporate the dependence of matrix ele-

ments on the matrix size.

Table 4 compares variations in abundances of individual

proteins, when different drugs have been tested. In many

cases, there are considerable changes in abundances in com-

parison with that of the control group. Protein 15, in the case

of PFOA and PFDA, has considerably decreased its abundance,

but in the case of DEHP it has increased its abundance.

Assuming that the changes are statistically significant, abun-

dances of proteins increased slightly after exposure to the four

peroxisome proliferators (like proteins 2 and 11). Similarly,

some proteins diminished their abundance, although often not

evenly (like proteins 7, 9, and 17). Protein 14 appears to be

among the least affected by any of the four agents consid-

ered. Quantitative characterizations of such changes in the rel-

ative abundance of proteins in cells exposed to different

agents may facilitate a better understanding of the possible

Table 5. Adjacency matrix for the partial ordering graph of Figure 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0

3 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0

4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0

5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0

6 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0

7 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

9 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

11 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

13 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

17 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0

18 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

19 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

20 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0
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existence of “stationary” states of cell proteomes and their

diversity.

Table 6 shows pair-wise similarity/dissimilarity comparisons

of the five proteomics maps based on the degree of similarity/

dissimilarity for the corresponding leading eigenvectors, which

are listed in Table 7. The values in the table were computed

by viewing each column in Table 4 as a 20-component vector.

The Euclidean distance (in 20-dimensional vector space) gives

the distance between the corresponding endpoints of vectors.

The smaller are the distance, and the more similar are the vec-

tors (or alternatively the more similar are the corresponding

proteomics maps). The first row in Table 6 gives the similarity

of the four perturbed maps, with the map of the control

group based on the 20 most abundant spots. As shown

between the four peroxisome proliferators, clofibrate and

DEHP cause the least perturbation of liver cell proteome, while

the most similar proteomics maps are those of PFOA and

PFDA. However, such comparisons may obscure details of how

each agent affects individual protein types, and overall similar-

ity does not imply that the two chemicals have necessarily

similar effects on all proteins. PFOA makes little change on the

abundance of protein 5, while PFDA drastically reduces the

abundance of protein 5 in liver cells.

For the dose-response curves for LY1711883 peroxisome

proliferator, Anderson et al.[75] reported proteomics maps for

six different concentrations. Using their data, Randić and

Estrada[16] selected 99 protein spots for which they measured

the difference of the abundance of individual proteins from

the abundance in the control group. Figure 19 shows calcu-

lated differences for the six concentrations reported, which

include the values

c 5 0:003; c 5 0:01; c 5 0:03; c 5 0:1; c 5 0:3;

and c 5 0:6:

In this analysis no information on x, y coordinates were

used, and thus the analysis pertains to cell proteome, and not

to proteomics maps. Figure 19 shows that variations of protein

abundance for the 99 protein spots vary chaotically, but going

from the smallest concentration (c 5 0.003) toward higher

concentrations, initially the perturbations decrease, and only at

higher concentrations (c 5 0.3 and c 5 0.6) do they start to

increase significantly. This qualitative observation can easily be

characterized numerically by calculating the total degree of

dispersion with respect to the unperturbed proteome of the

control group, which gives six concentrations, respectively:

s 5 51:997; s 5 40:481; s 5 28:952; s 5 41:152;

s 5 75:408; and s 5 94:177:

When s is plotted against the concentration (c), a J-shape

curve is obtained, typical of hormesis, illustrated in Figure 20.

We would appreciate feedback from readers on the signifi-

cance of observing hormesis at the cellular level.

Canonical Labels for Maps

Ending this section on proteome and proteomics maps is a

brief outline of the most recent work in this area, which con-

siders the search for canonical labels for proteomics maps, and

in general any “spot-like” 2D maps. In the case of graphs, ca-

nonical labels are important for at least two reasons:

1. They can solve the problem of graph isomorphism, that

is, facilitate the recognition of identical graphs that may

be presented in different geometrical forms or with mat-

rices with different labels for vertices; and

2. They can facilitate finding the automorphism of a graph

(that is, finding the symmetry property of a graph).

By analogy, canonical labels of proteomics maps (and maps

in general) will similarly help in checking if two maps are iden-

tical, which may then facilitate the construction of catalogues

of maps.

For a number of maps, there may be a “natural” way to

assign unique labels to spots in a map. For example, with the

chaos game representation of DNA, spots can simply assume

their sequential position in the DNA sequence as their label,

like the map shown in Figure 21, which shows the chaos game

representation of the first exon of the human b-globin gene,

according to the algorithm proposed by Jeffrey.[29] Table 8

Table 6. Similarity/dissimilarity among perturbations of abundances of

proteome rat liver cells for the control and the four peroxisome prolifera-

tors based on 20-components leading eigenvectors shown in Table 7.

Control PFOA PFDA Clofibrate DEHP

Control 0 2.279 2.758 1.182 1.264

PFOA 0 0.651 1.097 1.102

PFDA 0 1.600 1.540

Clofibrate 0 0.493

DEHP 0

Table 7. Leading eigenvector for the 20 most intensive protein spots of

rat liver cells of the normal cells and cells exposed to four chemicals.

Protein Control PFOA PFDA Clofibrate DEHP

1 0.5314 0.3195 0.2374 0.5065 0.5287

2 0.3059 0.1973 0.1853 0.2823 0.2471

3 0.2157 0.0608 0.0447 0.1918 0.0417

4 0.2134 0.1052 0.0573 0.1073 0.1358

5 0.1629 0.0431 0.0138 0.0800 0.1067

6 0.3039 0.7737 0.8699 0.5646 0.5716

7 0.2404 0.0675 0.0396 0.1429 0.1119

8 0.0231 0.0041 0.0033 0.0080 0.0109

9 0.2501 0.0919 0.0524 0.1701 0.1443

10 0.0919 0.0207 0.0081 0.0404 0.0507

11 0.1284 0.2663 0.2012 0.1987 0.1904

12 0.0192 0.0053 0.0039 0.0121 0.0108

13 0.2802 0.1915 0.1162 0.2326 0.2490

14 0.1478 0.1887 0.1679 0.1796 0.1681

15 0.1287 0.0359 0.0258 0.0746 0.1344

16 0.3021 0.2711 0.2335 0.2935 0.3162

17 0.0896 0.0302 0.0237 0.0514 0.0479

18 0.1026 0.0333 0.0124 0.0438 0.0558

19 0.1282 0.0951 0.0659 0.1042 0.0907

20 0.5314 0.0360 0.0165 0.0785 0.0823
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shows the coordinates of the first dozen nucleotides, which are

cumulative coordinates based on:

A5ð21;21Þ; C5ð21; 1Þ; G5ð1; 1Þ; and T5ð1;21Þ:

The same algorithm does not apply to maps that have spots

in general positions, like the map shown in Figure 22, which is

based on 20 points that

have random coordinates.

However, the “spirit” of

this algorithm can be

applied to assign labels to

random points by search-

ing for spots closest to

the position where the

random game assigns

locations for spots.

Modified Labeling
Algorithm for
General Maps

A modified approach of

chaos game labeling DNA

maps for general maps is

illustrated on an arbitrary

one of 20 vertices in Fig-

ure 22. The map of Figure

22 is obtained by select-

ing coordinates (x, y) at

random (using a random

number generator) in the

domain (1, 100) and

excluding repetitive num-

bers. Excluding the repeti-

tion of random numbers

is not essential unless

they produce (x, y) coordi-

nates that have already

been selected. Equally, it is not essential that coordinates be

integers, but using integers between 1 and 100 makes the

illustration simpler. Table 9 shows the selected random (x, y)

coordinates for the 20 unlabeled spots of Figure 2. Let us label

the four corners of the 100 3 100 units square by labels A, B,

C, and D (which have the coordinates: (0, 0); (0, 100); (100,

100); and (0, 100), respectively). The following canonical rule is

adopted for labeling map spots:

Label 1 is assigned to the vertex nearest to the center of

one of the four rays from the center of the square to the four

corners A, C, G, and T. Let us assume that there is only one

such point, which is given label 1. The next point, given label

2, is the point nearest to the center of one of the four rays

from the point 1 to the four corners A, B, C, and D. Let us

again assume that there is only one such point. The process

continues. The next point, given label 3, is the point nearest

to the center of one of the four rays from the point 2 to the

four corners A, B, C, and D, and so on.

In the illustration that introduces the canonical labels, it is

assumed that there is no case of two spots at the same dis-

tance from the centers of one of the rays in any step of this

process. Should more than one point occur at the same dis-

tance from the centers of one of rays, the point having the

smaller x coordinate is selected. If two (or more) points have
Figure 20. The J-shaped dose response showing hormesis at the cellular

level. Reproduced with permission from Ref. [1].

Figure 19. Variations in abundance of 99 protein spots with variations in dose concentration of LY171883. Reproduced

with permission from Ref. [1].

J_ID: QUA Customer A_ID: QUA24479 Cadmus Art: QUA24479 Ed. Ref. No.: 2012-0655.R2 Date: 4-June-13 Stage: Page: 15

ID: sadasivans Time: 16:52 I Path: N:/3b2/QUAN/Vol00000/130089/APPFile/JW-QUAN130089

REVIEWWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2013, DOI: 10.1002/qua.24479 15

http://q-chem.org/
http://onlinelibrary.wiley.com/


the same x coordinate, the point having the smaller y coordi-

nate is selected.

Table 10 illustrates the search for the spot of Figure 2 to be

given the canonical label 1. The entries in Table 10 are the distan-

ces of all 20 spots of Figure 2 from the centers of the four rays

from the origin to the four corners A, B, C, and D, respectively.

The first point in Table 10 with coordinates (3, 26) is at distance

22.02 from the point (25, 25), which is the center of the ray from

the center of the square to the corner A. The next entry in the

first row of Table 10 is 72.01, which is the distance of the point (3,

26) from the point (75, 25), which is the center of the ray from the

center of the square to the corner B; the next entry in the first

row of Table 10 is 87.09, which is the distance of the point (3, 26)

from the point (75, 75), which is the center of the ray from the

center of the square to the corner C; and the last entry in the first

row of Table 10 is 53.71, which is the distance of the point (3, 26)

from the point (25, 75), which is the center of the ray from the

center of the square to the corner D. The point (3, 26) in the first

quadrant (A) is clearly closer to the center of ray A than any other

point from the centers of the remaining three rays. However, we

are interested in all 20 points and want to find the point nearest

to any four centers of available rays. The smallest entry in Table

10, shown in bold, is in row 14 and column C, signifying that the

spot having coordinates (79, 72) and currently having (an arbi-

trary) label 14 should have the canonical label 1.

In the next step, distances of the remaining 19 points are

calculated from the mid points of the four rays from the point

having coordinates (79, 72) and the four corners A, B, C, or D.

Table 11 shows the critical distances to the four corners of the

Figure 21. The chaos game representation of the first exon of human b-

globgin gene (92 nucloeotides). This rerpesentation allows one to recover

the DNA sequence A T G G T G C A C C T … by reversing the constructioin

and thus assigns labels 1-92 to all nucleotides of the Figure 4 (top). Repro-

duced with permission from Ref. [1].

Table 8. Chaos Game soordinates of the first dozen nucleotides of the

first exon of the human b-globine gene.

0 0
A 20.5 20.5

T 0.25 20.75

G 0.625 0.125

G 0.8125 0.5625

T 0.90625 20.21875

G 0.953125 0.390625

C 20.02344 0.695313

A 20.51172 20.15234

C 20.75586 0.423828

C 20.87793 0.711914

T 0.061035 20.14404

G 0.530518 0.427979

… … …

Figure 22. Map having 20 unlabelled vertices at random positions.

Table 9. The random (x, y) coordinates for 20 points of Figure 18.

x y

1 3 26

2 19 94

3 23 66

4 86 30

5 13 24

6 100 59

7 95 71

8 65 43

9 89 68

10 46 4

11 50 17

12 35 15

13 56 91

14 79 72

15 82 18

16 41 1

17 11 53

18 99 2

19 32 10

20 87 88
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square at each step in the search; the shortest distance always

determines the spot to which the next canonical label is

assigned. Table 11 also lists the canonical labels, the quad-

rants, the (x, y) coordinates for spots of the map, and initial

labels. The new, canonical labels for the map of Figure 22 are

also illustrated in Figure 23, which gives the solution to the

problem of unique canonical labeling of unlabeled quadratic

maps.

Characterization of Maps Based on Canonical
Labels

Once the canonical labels for vertices of a map are found,

the characterization of the map can be considered by

invariants of sparse matrices to be associated with the map.

A way to arrive at a sparse matrix for a map is to consider

geometrical objects that overlap the map. We illustrate (1)

the construction of the partial ordering graph of the map

vertices[105,106]; and (2) the construction of the graph of se-

quential nearest neighbors for the vertices of the map.[107]

In both cases, maps can be represented by a sparse binary

matrix.

Graph of partial ordering of vertices of a map

Figure 24 shows the diagram of partial ordering of the 20 ver-

tices of Figure 23, based on domination of coordinates (x, y)

for all pairs of vertices. Let vertex i have coordinates (xi, yi) and

vertex j have coordinates (xj, yj). If xi � xj and yi � yj then ver-

tex i is said to dominate vertex j. If the two vertices are con-

nected by a line, then the line has a positive slope, because

both xi 5 xj and yi 5 yj cannot occur simultaneously. If vertex

j dominates vertex k, then vertices j and k are similarly con-

nected with a line, but vertex i is not connected to vertex k

because dominance is implied by i ! j ! k dominance. If the

inequalities xi � xj and yi � yj are not satisfied, the correspond-

ing vertices are referred to as noncomparable and are left

unconnected. Once the partial ordering diagram is con-

structed, its adjacency matrix can be constructed and used to

generate a set of graph invariants.

Graph of sequential nearest neighbors for the vertices of the

map

Figure 25 graphs sequential nearest neighbors for the 20 verti-

ces of the map of Figure 23. This graph is constructed by first

connecting vertices 1 and 2. Vertex 3 is then connected to ei-

ther 1 or 2, depending on which of the two already connected

Table 10. Distances of the 20 spots of Figure 18 from the centers of the

rays between the center of the square and the four corners.

A B C D

1 22.02 72.01 87.09 53.71

2 69.26 88.87 59.14 19.92

3 41.05 66.22 52.77 9.22

4 61.20 12.08 46.32 75.80

5 12.04 62.01 80.28 52.39

6 82.35 42.20 29.68 76.69

7 83.76 50.16 20.40 70.11

8 43.86 20.59 33.52 51.22

9 77.10 45.22 15.65 64.38

10 29.70 35.81 76.69 74.04

11 26.25 26.25 63.16 63.16

12 14.14 41.23 72.11 60.83

13 72.92 68.68 24.84 34.89

14 71.59 47.17 5.00 54.08

15 57.43 9.90 57.43 80.61

16 28.84 41.62 81.44 75.71

17 31.30 69.86 67.68 26.08

18 77.49 33.24 76.84 103.95

19 16.55 45.54 77.94 65.38

20 88.39 64.13 17.69 63.35

Table 11. The canonical labels, the quadrants, the minimal distances, the

(x, y) coordinates, the old labels and for spots of the map.

Canonical labels Quadrant Critical distance Coordinates Old label

1 C 5.00 (79, 72) 14

2 C 3.20 (87, 88) 20

3 D 12.85 (56, 91) 13

4 D 9.12 (19, 94) 2

5 A 6.18 (11, 53) 17

6 A 2.55 (3, 26) 1

7 B 4.27 (50, 17) 11

8 A 7.16 (32, 10) 19

9 C 11.70 (100, 59) 6

10 C 9.86 (95, 71) 7

11 B 12.75 (86, 30) 4

12 C 5.00 (89, 68) 9

13 B 20.30 (82, 18) 15

14 A 7.07 (46, 4) 10

15 C 12.04 (65, 43) 8

16 A 6.98 (35, 15) 12

17 D 10.12 (23, 66) 3

18 A 9.12 (13, 24) 5

19 B 19.01 (41, 10) 16

20 C 21.27 (99, 2) 18

Figure 23. Canonical labels for vertices of the map of Figure 22.
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vertices are closer to vertex 3. If both vertices are at the same

distance, then vertex 3 is connected, by convention, to the

vertex having the smaller label. Connection of vertices is con-

tinued by connecting vertex 4 to the nearest vertex of those

already considered. When all vertices are connected, the pro-

cess ends and the result is an acyclic graph superimposed

over the map of Figure 23, as illustrated in Figure 25. For the

map of Figure 23, only vertex 19 is at the same distance from

the vertices 14 and 16. By following our convention, we con-

nected vertex 19 to vertex 14. Again, the adjacency matrix of

this graph can be constructed, and from it sets of invariants

can be constructed to serve as map descriptors.

Having an acyclic graph superimposed over a map allows

an elementary binary code for a map to be constructed. Such

code need not be unique to a map, because two maps may

produce the same acyclic graph; but it is unique to the graph

and appears to have high discriminatory power. The code to

be presented is based on a significant modification the »walk

around« code for graphs introduced in graph theory by R. C.

Read.[107] To arrive at the »walk around« binary code for trees,

each edge of a graph is assigned labels 0 or 1 as follows: One

draws a graph on a paper, starts a »walk around« the graph (a

tree) at any vertex, and moves clockwise (or counter-clockwise)

around the graph assigning label 0 to any edge that is passed

for the first time. When the same edge is viewed again from

the other side, that is, passed for the second time, it is

assigned label 1. Because one can start at an arbitrary edge

and circle in either direction around the graph, the resulting

code is not unique.

In this case, graph vertices already have labels, which allow

one to start at vertex 1. We will not »walk around« the graph,

but »walk above« the graph. As we arrive at any branching

vertex, by convention we select to move in the direction that

leads to the next vertex having the smallest available label.

The resulting binary code is unique. Now the binary code for

the graph of Figure 5 can be constructed. We start with ver-

tex 1; move toward vertices 2, 3, and 4; and arrive at vertex

5, which is a branching vertex. To the four edges (1, 2); (2, 3);

(3, 4); and (4, 5) are assigned labels 0; thus the code starts

with 0 0 0 0. At the branching vertex 5, according to our

rule, we move toward the vertex having the smaller label,

which is vertex 6, which is also a branching vertex. Following

our rule, we continue to vertex 7, and follow to vertex 8.

Here again is branching, and we move to vertex 14 (having

the smaller label) and end with vertex 19. In this way, we

passed above the additional five edges: (5, 6); (6, 7); (7, 8);

(8, 14); and (14, 19), adding five more zeros to our code, the

beginning of which is now 0 0 0 0 0 0 0 0 0. The vertex 19

is the end of travel so far, and we have to go back toward

vertex 14 and 8. We assign to edges (19, 14) and (14, 8)

labels 1, because we passed these edges before. This contin-

ues the code: 0 0 0 0 0 0 0 0 0 1 1. Returning to vertex 8,

we first go to vertex 16, because the edge (8, 16) has not yet

been visited, rather than returning to vertex 7, because edge

(8, 7) has already been visited. Edges that have not yet

obtained label 0 have precedent over edges that already have

binary assignment 0. Our code thus continues with 0 for

edge (8, 16), then 1 for edge (16, 8) and 1 for edge (8, 7),

giving this point: 0 0 0 0 0 0 0 0 0 1 1 0 1 1. With this intro-

ductory information, one can complete the code which in its

entirety, which is:

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0

0 1 1 0 1 1 1 0 1

The code has 38 binary characters, twice the number of

edges of the graph. To an edge (i, j) is assigned the label 0 if i

< j and the label 1 if i > j.

Figure 24. The graph of partial ordering of vertices of the map of Figure

22. Observe that slopes of all connecting lines are positive (as they should

be).

Figure 25. The graph of sequential nearest neighbors for the map of Fig-

ure 22.
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Dual of the Map

The »walk above the graph« code (just as the »walk around

the graph« code of R. C. Read) allows a dual of the graph em-

bedded on the map to be constructed, referred to as the dual

of the map. To obtain this dual, one follows the algorithm out-

lined in the book of Rouse Ball,[108] starting by replacing the

binary entries 0 and 1 of the code by the left and the right

brackets. For the above »walk above the graph« code, this

gives:

ð ð ð ð ð ð ð ð ð Þ Þ ð Þ Þ Þ ð Þ Þ ð Þ Þ Þ
Þ Þ ð ð Þ ð ð ð Þ Þ ð Þ Þ Þ ð Þ

In the following step, the adjacent left and right brackets

are connected, forming circles:

ð ð ð ð ð ð ð ð � Þ � Þ Þ � Þ � Þ Þ Þ Þ
ð � ð ð � Þ � Þ Þ �

There are eight such instances, which correspond to the eight

terminal vertices of the graph (19, 16, 18, 17, 10, 20, 15, and

12). In continuation, the constructed circles are ignored (it is

pretended that they have been erased), and newly formed adja-

cent left and right brackets are connected. The process contin-

ues till all left brackets are connected to corresponding right

brackets, which results in the map dual shown in Figure 26.

From the dual of Figure 26, the acyclic graph on which it

has been based and the labels of the vertices can be recon-

structed. To obtain the graph, a vertex is inserted inside each

of the circles or ellipses of the dual graph, adding a vertex to

the outside area. By connecting vertices in adjacent areas, the

original acyclic graph is obtained. The map dual in Figure 26

consists of three disjointed segments, which correspond to

three branches of the starting vertex 1 of the map. Map duals

offer a qualitative representation of a map, which may have

visual advantages in comparative studies of maps and map

classifications.

Route to the Exact Solution to the Alignment
of DNA and Proteins

This discussion of DNA ends with an outline of very recent,

probably the most outstanding, accomplishment of graphical

bioinformatics, and of bioinformatics: Finding the exact solu-

tion to the alignment of DNA. The problem of finding the

exact solution to the alignment of proteins was solved first,[41]

before finding the exact solution to the alignment of DNA.

This solution for proteins was immediately, by suitable modifi-

cations, extended to DNA.[42] The two approaches have been

named Very Efficient Search for Protein Alignment (VESPA) and

Very Efficient Search for Nucleotides Alignment (VESNA),

respectively. VESPA is the Italian word for wasp and the name

of popular and elegant scooter, suggesting elegance in the

searching algorithm for protein alignment; VESNA is a com-

mon name for ladies and girls in several countries, and it is

the Russian word for spring, suggesting the coming of good

weather after a long winter (time without having an exact

algorithm for DNA alignments).

It is common in science for an unsolved problem to be

solved by attempting to solve something else. The problem

that led to the exact solution of sequence alignment was the

search for the construction of an alternative matrix representa-

tion of proteins by sparse matrices, without loss of information.

This unique and compact representation can be accomplished

by the modification of the amino acid adjacency matrix (AAA

matrix), such that instead of using numbers as matrix elements,

sets (collections of numbers) are used as matrix entries. After

the construction of such a matrix, such matrices also offer an

exact solution to the problem of protein alignment.

The exact solution to the problem of alignment of proteins,

its development, and its unexpected result are described by

exact methods. The perception that this was an unsolvable

problem may have been a reason that an exact solution to

this problem was not sought, which includes the present

author who reported the exact solution of protein alignment

and was seeking sparse matrices that can represent proteins.

Sparse matrices have many off-diagonal zeros, making compu-

tations with them less intensive, which is an important advant-

age when dealing with a large number of proteins and large

proteins. However, the exact alignment of the proteins could

have been solved about 5 years earlier because the basic tool,

the AAA matrix, was available in 2008.[109]

AAA Matrix

The AAA matrix is a 20 3 20 matrix with rows and columns

belonging to 20 natural amino acids. It has been introduced in

search for a uniform representation of proteins. The matrix ele-

ments of the AAA matrix count the frequency of occurrence of

pairs of amino acids in a protein primary sequence. This is

illustrated by the sequence of amino acids of two proteins of

Saccharomyces cerevisiae selected for outline by the VESPA

algorithm: Protein 1 and protein 2 of Table 3, which start with

amino acids K I L G I D P N V T Q Y…and P S K L G I D T V K

Q W…, respectively. Tables 12 and 13 show the AAA matrices

for the two proteins. For better visibility of the nonzero entries

in the matrix, the zero entries are not shown, except on the

main diagonal. Matrix elements (i, j) have entries 0, 1, 2, 3, or 4

(in the cases considered), which indicate that the amino acid

Ai is followed by amino acid A zero, one, two, three, or four
Figure 26. Dual of the map based on the sequential nearest neighbor

graph of Figure 25.
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times, respectively. In the case of protein 1, the first entry (1,

1) in the first row means that in the protein 1 sequence there

is a succession of two alanine. The entry 3 in the same row

and column G means that adjacent AG (alanine, guanine)

occur three times. Clearly, the matrix is nonsymmetrical, while

both the row sums and the column sums of the correspond-

ing amino acids are the same (giving the abundance of indi-

vidual amino acids), except for the first and last amino acids,

which are counted only once.

Obviously, there is loss of information in using the AAA ma-

trix when representing proteins, because locations of individ-

ual amino acids in sequences are not known. Nevertheless,

AAA matrices have been found useful in the comparative

study of proteins and in a study of individual proteins, as has

been demonstrated by Roy Choudhury and coworkers,[25,26]

who used artificial neural networks and properties of AAA

matrices to identify fragments of membrane proteins that are

inside a membrane, which we consider as one of the mile-

stones of graphical bioinformatics. Membrane proteins are vital

to the survival of organisms because they are involved in a va-

riety of biochemical processes and functions. The active trans-

port of molecules or signals through the biological

membranes is one of the most important functions of mem-

brane proteins. An estimated up to 30% of all genes in most

genomes encode membrane proteins.

Information about a 3D structure of a membrane trans-

porter is required in the study of the protein and small mole-

cule transport mechanisms, which is important for drug design

because membrane proteins are targets of over 50% of mod-

ern medicinal drugs. Due to difficulties encountered in

Table 12. Amino acid adjacency matrix for Protein 1.

A R N D C Q E G H I L K M F P S T W Y V

A 1 3 1 1 1

R 2

N 1 1 2 1 1 2 1 1 1 2

D 1 2 1 1 1 1 3 2

C 1

Q 1 1 1 1

E 2 1 2 2 1

G 2 1 1 1 1 1 1 2 1 1 3 1 1 1

H 1 1 1 1

I 1 1 3 3 1 1

L 1 2 1 2 1 1 2 1 3 1

K 3 1 1 1 1

M

F 1 1 1 2 1 2 4 1 1 1

P 1 1 1 1 1 1 1 1 3

S 1 2 1 2 1 1 1 3 1 2 1

T 1 2 1 1 1 2

W 1 1 1

Y 1 1 1 1 2 1 1

V 1 2 1 1 2 1 1 1 1 1

Table 13. Amino acid adjacency matrix for Protein 2.

A R N D C Q E G H I L K M F P S T W Y V

A 1 1 3 1 1 1 1

R 1 1 1

N 1 2 3 2 1 2

D 1 1 1 1 2 1 1 1

C 1

Q 1 1 1

E 1 1 1 1 2 1 1 2

G 1 1 1 1 1 1 1 2 1 1 1 2 1 1

H 1 1 1 1 1 1

I 2 1 2 1 1 1 2 1 1 1

L 1 1 1 3 3 1 1 1 1

K 1 2 1 1 2 1 1

M 1 2 1

F 1 3 1 2 2 1 1 1 1

P 1 1 1 1 1 2 1 2 1

S 1 1 1 1 2 1 1 3 1 1 2 1

T 1 1 1 1 1

W 1 1 1

Y 1 1 2 1 1 1 1

V 1 2 1 1 1
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biomembrane research, only a limited number of membrane

transport proteins have been solved experimentally for their

3D structure. The tertiary structures of a large number of

membrane proteins are still unresolved; however, in silico

methods may fill the information gap and offer a possibility to

hypothesize the transport mechanisms. The topology of an in-

tegral membrane protein, which describes the number of

transmembrane segments and the orientation in the mem-

brane, may be predicted using computation methods based

solely on the AA sequence information, as demonstrated in

[25] using AAA matrices.

Sequential AAA Matrix

Although AAA matrices are accompanied by a loss of informa-

tion on the location of individual pairs of amino acid within the

primary sequence, they carry significant information on individ-

ual protein sequences. For example, Table 12, which is AAA of

protein 1, shows the occurrence of repeated entries. Thus AA,

GG, and TT appear once, while SS appears three times, and FF

appears four times. Without further inspection of the primary

sequence, it is uncertain if SS appears twice or SSS appears

once, but it is easy to see that the former is the case. In the

case of four FF occurrences, there could be four FF, two FF and

a single FFF, two FFF, or a single FFFFF, and it is easy to see

that there are two FF and a single FFF. If row sums and column

sums are computed, an abundance of individual amino acids

are obtained, which in the case of protein 1 give the following:

Row sum : ð7; 2; 13; 12; 1; 4; 8; 18; 4; 10;

15; 7; 0; 15; 11; 16; 8; 3; 8; 12Þ

Column sum : ð7; 2; 13; 12; 1; 4; 8; 18; 4; 10;

15; 6; 0; 15; 11; 16; 9; 3; 8; 12Þ

A comparison of the row sum and the column sum shows

that this protein starts with K and ends with T. The row sums

are 7 and 8 for K and T, and column sums are 6 and 9 for K

and T, respectively.

An overlay of Tables 12 and 13 shows about 50 pairs of ad-

jacent amino acids, which appear in protein 1 and do not

appear in protein 2, and vice versa. This observation signifi-

cantly increases efficiency in the search for protein alignment,

because such pairs of amino acids can be ignored in a search.

For example, the pairs AA, AK, and AT appear in protein 1 but

do not occur in protein 2, and pairs AN, AD, AH, AF, and AY

appear in protein 2 but do not appear in protein 1. This leaves

only three pairs of AG and a single occurrence of AS as possible

pair components in an aligned fragment of the two proteins.

Table 14 shows the AAA matrix obtained by superposition of

AAA matrices of protein 1 and protein 2 after eliminating the

pairs, which are unique for either protein. The symbol x indi-

cates that those matrix elements in two matrices do not match

in number. For example, the x for the RN element in the AAA

superposition matrix arises because in protein 1 there are two

adjacent RN pairs, but in protein 2 there is only one, and with-

out further examination it is unknown which pair is matched, if

any. Similarly, the x for the ND element in the AAA superposi-

tion matrix arises because in protein 1 there is one RN pair, but

in protein 2 there are three, and again without further examina-

tion it is unknown which of the three pairs or RN in protein 2 is

matched RN of protein 1, if any.

Finding the exact solution to the problem of protein align-

ment is just one step away, which consists of inserting the se-

quential numbers of amino acids as matrix elements instead of

just recording their frequency of occurrence. All that needs to

be done is to construct the sequential AA matrices for proteins

and combine them to extract common neighborhoods. In the

sequential AA adjacency matrix, the matrix elements do not

Table 14. Superposition of amino acid adjacency matrices after unique pairs of adjacent amino acids have been eliminated. Symbol x indicates that those

matrix elements in two matrices do not match in number.

A R N D C Q E G H I L K M F P S T W Y V

A 3 1

R x

N 1 x 2 1 x

D 1 1 x

C 1

Q 1

E 1 2 2

G x 1 1 1 1 x x 1 1 x 1 1

H 1 1 1

I x 1 x x x 1

L 1 x x x x 1

K x 1 1

M

F x 1 2 x 1 1

P 1 1 1 x x 1

S 1 x x 1 3 1 2 1

T x 1 1 x

W 1 l

Y 1 x x

V 1 1
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count the occurrence of individual pairs of amino acids, but

indicate their locations in the primary sequence. Table 15

shows the initial 20 steps in construction of the sequential AA

matrix for protein 1. Proceeding to the next entry, the 21st

pair of adjacent amino acids, which is again ED, just as was

the 19th pair, is added to the present entry of 19. Clearly, the

entries of the sequential amino acid matrix besides numbers

(individual amino acid sequential labels) can also be sets of

numbers. For clarity, instead of writing in the standard matrix

form, it may be better to simply list nonzero matrix elements,

as shown in Table 16.

Exact Solution to the Protein Alignment
Problem

The exact solution of the protein alignment problems for a

pair of proteins has no approximation of any kind. The two

proteins of Table 3 are selected for illustration, and their se-

quential AAA matrices are shown in Tables 16 and 17, respec-

tively. To combine these two sequential AA adjacency

matrices, only their common elements are listed. The first col-

umn of Tables 16 and 17 shows that, of adjacent pairs starting

with A (alanine), only AG and AS are common to both pro-

teins; hence AG and AS are starting amino acid pairs in our list

of common AA pairs for two proteins. Table 18 reproduces in

its first two entries, one above the other (using the color blue

for protein 1 and the color red for protein 2), the sequential

labels of alanine–glycine pairs, followed by sequential labels

for adjacent alanine–serine amino acids. A continuation with

the rest of amino acid pairs present in both proteins results in

Table 18.

Table 18 contains an exact solution for alignment of the

two proteins to be extracted out, which is shown in Table 19.

Table 18 compares sequential labels for the two proteins. If

the labels are in the same vicinity/neighborhood, the differ-

ence of the corresponding labels can be 0, or 6 a few steps.

Table 19 shows the differences 12, 11, 0, 21, 22, 23, and

24, which are the actual differences found in Table 18. The

first entry of Table 18 for AG shows the difference of 22 [for

(110, 108)], and the difference 24 [for (138, 134) and (143,

139)]. The sequential neighbors for AS are not in the

Table 15. The initial 20 entries of the Sequential AA adjacency matrix of protein 1.

A R N D C Q E G H I L K M F P S T W Y V

A

R

N 8

D 20 6 17

C

Q 11

E 19

G 4 14

H

I 5 2

L 16 3

K 1

M

F

P 7

S

T 10 13

W

Y 15 12

V 18 9

Table 16. The non-zero matrix elements of the sequential AA matrix for

protein 1.

AA 109 ES 31, 140 LF 57, 120 SH 156

AG 110, 138, 143 EY 127 LS 155 SI 65

AK 37 GN 74, 170 LT 54, 164, 173 SL 53

AS 151 GC 50 LW 43 SS 52, 64, 101

AT 83 GQ 132 KD 38, 112, 158 SW 78

RN 33, 160 GE 139 KG 131 SY 97, 141

NA 82 GG 47 KH 23 SV 166

ND 34 GH 144 KI 1 TQ 10

NG 46, 171 GI 4 KP 71 TG 13, 55

NL 163 GL 56, 172 FA 150 TF 29

NK 130 GK 111, 132 FN 162 TS 165

NF 116, 161 GF 95 FD 122 TV 84, 107

NP 75 GP 48, 62, 67 FE 30, 59 WN 79

NS 80 GS 100 FH 135 WL 44

NT 106 GY 14 FL 87, 117 WT 28

NV 8, 93 GV 103 FF 25, 26, 58, 121 YA 142

DR 159 HI 136 FP 125 YN 115

DQ 89, 123 HK 157 FS 96 YI 146

DE 20 HF 24 FW 27 YL 15

DL 69 HY 145 PA 36 YS 77, 98

DK 22 IA 137 PN 7 YT 12

DF 134 ID 5 PD 68 YV 128

DP 6, 35, 39 IG 66, 73, 169 PE 126 VA 108

DV 17, 113 IL 2, 42, 154 PG 49 VN 92, 129

CS 51 IF 86 PI 72 VE 18

QD 124, 133 IP 147 PS 63 VG 94

QF LN 45 PY 76 VI 41, 85

QP 90 LD 16, 88 PV 40, 81, 148 VL 167

QY 11 LE 118 SR 32 VF 149

ED 19, 21 LG 3, 61 SN 81, 105 VS 104

EI 153 LI 168 SE 152 VT 9

EL 60, 119 LK 70 SG 99, 102 VY 114

J_ID: QUA Customer A_ID: QUA24479 Cadmus Art: QUA24479 Ed. Ref. No.: 2012-0655.R2 Date: 4-June-13 Stage: Page: 22

ID: sadasivans Time: 16:54 I Path: N:/3b2/QUAN/Vol00000/130089/APPFile/JW-QUAN130089

REVIEW WWW.Q-CHEM.ORG

22 International Journal of Quantum Chemistry 2013, DOI: 10.1002/qua.24479 WWW.CHEMISTRYVIEWS.ORG

http://q-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/


neighborhood (151 and 82) and are ignored. The next cell is

(33, 32) for RN with the difference of 21, while RN at position

160 in protein 1 is ignored with nothing to match. Continuing

this process ends with Table 19, which leads to the solution of

the alignment of protein 1 and protein 2.

Table 19 suggests that amino acid pairs having differences

of 12 and 0 can be ignored, as they represent individual

(chance) alignments at great separations. Thus there are a

short segment with the difference of 21, a sizable segment

Table 17. The non-zero matrix elements of the sequential AA matrix for

protein 2.

AN 36 ES 30, 136 LG 4, 60, 91 SN 128

AD 67 GA 66 LL 56 SG 13

AG 108, 134, 139 GN 167 LF 57 SI 64

AH 147 GD 98 LT 161 SK 2, 21

AF 122 GC 49 LW 42 SM 83

AS 82 GE 135 KN 153 SF 52

AY 112 GG 46 KD 19 SP

RN 32 GH 140 KQ 10 SS 51, 63, 103

RS 127 GI 5, 169 KG 110 ST 104

RT 157 GL 55 KH 22 SW 77

NA 81 GK 109 KL 106 SY 96, 137

NN 79, 80 GF 94 KP 3, 70 SV 163

ND 33, 37, 129 GP 47, 61 KV 101 TG 54

NG 45, 168 GY 14 MD 16 TK 105

NL 160 GV 92 MI 84, 165 TF 158

NP 74, 154 HN 73 MK 69 TS 162

DA 111 HE 148 FN 160 TV 8

DE 99 HI 132 FE 29, 58, 120 WN 78

DM 68 HL 125 FH 131 WL 43

DF 130 HF 23 FL 86, 115 WF 27

DP 34, 38 HY 141 FF 24, 28 WS 12

DS 20 IA 133, 146 FP 123 YA 138

DT 7 ID 6 FS 95 YG 97

DY 17 IG 65, 166 FT 53 YI 113, 142

CS 50 IH 72 FY 25 YK 18

QI 145 II 40 PA 35 YM 15

QP 89 IL 41 PQ 144 YS 76

QW 11 IF 85, 114 PE 155 YW 26

EA 121 IP 143 PG 48 VG 93

ER 156 IT 160 PH 124 VK 9, 152

EQ 88 IV 150 PI 39, 71 VM 164

EI 149 LA 107 PL 90 VS 102

EL 59, 117 LR 126 PS 1, 62 VV 151

EK 100 LN 44 PY 75

EF 119 LE 87, 116, 118 SR 31

Table 18. Common pairs of AA in protein 1 (top) and protein 2 (bottom).

AG 110, 138, 143 GN 74, 170 ID 5 FF 25, 26, 58, 121

AG 108, 134, 139 GN 167 ID 6 FF 24, 28

AS 151 GC 50 IG 66, 73, 169 FP 125

AS 82 GC 49 IG 65, 166 FP 123

RN 33, 160 GE 139 IL 2, 42, 154 FS 96

RN 32 GE 135 IL 41 FS 95

NA 82 GG 47 IF 86 PA 36

NA 81 GG 46 IF 85, 114 PA 35

ND 34 GH 144 IP 147 PE 126

ND 33, 37, 129 GH 140 IP 143 PE 155

NG 46, 171 GI 4 LN 45 PG 49

NG 45, 168 GI 5, 169 LN 44 PG 48

NL 163 GL 56, 172 LE 118 PI 72

NL 160 GL 55 LE 86, 116, 118 PI 39, 71

NP 75 GK 111, 132 LG 3, 61 PS 63

NP 74, 154 GK 109 LG 4, 60, 91 PS 1, 62

DE 20 GF 95 LF 57, 120 SR 32

DE 99 GF 94 LF 57 SR 31

DF 134 GP 48, 62, 67 LT 54, 164, 173 SN 81, 105

DF 130 GP 47, 61 LT 161 SN 128

DP 6, 35, 39 GY 14 KD 38, 112, 158 SG 99, 102

DP 34, 38 GY 14 KD 19 SG 13

CS 51 GV 103 KH 23 SI 65

CS 50 GV 92 KH 22 SI 64

QP 90 HI 136 KP 71 SS 52, 64, 101

QP 89 HI 132 KP 3, 70 SS 51, 63, 103

EI 153 HF 24 FE 30, 59 SW 78

EI 149 HF 23 FE 29, 58, 120 SW 77

EL 60, 119 HY 145 FH 135 SY 97, 141

EL 59, 117 HY 141 FH 131 SY 96, 137

ES 31, 140 IA 137 FL 87, 117 SV 166

ES 30, 136 IA 133, 146 FL 86, 115 SV 163

TG 13, 55 TV 84, 107 YA 142 VG 94

TG 54 TV 8 YA 138 VG 93

TF 29 WN 79 YI 146 VS 104

TF 158 WN 78 YI 113, 142 VS 102

TS 165 WL 44 YS 77, 98

TS 162 WL 43 YS 76

Table 19. Aligned segments of protein 1 and protein 2.

Difference 12

(26, 28), (101, 103)

Difference 11

(3, 4), (4, 5), (5, 6)

Difference 0

(14, 14), (57, 57)

Difference 21

(23, 22), (24, 23), (25, 24), (30, 29), (31, 30), (32, 31), (33, 32), (34, 33), (35, 34), (36, 35), (39, 38), (42, 41), (44, 43), (45, 44), (46, 45), (47, 46), (48, 47), (49,

48), (50, 49), (51, 50), (52, 51), (55, 54), (56, 55), (59, 58), (60, 59), (61, 60), (62, 61), (63, 62), (64, 63), (65, 64), (66, 65), (71, 70), (72, 71), (75, 74), (77,

76), (78, 77), (79, 78), (82, 81), (86, 85), (87, 86), (90, 89), (94, 93), (95, 94), (96, 95), (97, 96)

Difference 22

(104, 102), (110, 108), (111, 109), (117, 115), (118, 116), (119, 117), (125, 123)

Difference 23

(163, 160), (164, 161), (165, 162), (166, 163), (169, 166), (170, 167), (171, 168)

Difference 24

(134, 130), (135, 131), (136, 132), (137, 133), (138, 134), (139, 135), (140, 136), (141, 137), (142, 138), (143, 139), (144, 140), (145, 141), (146, 142), (147,

143), (153, 149)
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around (23, 96), two shorter segments with differences 22

and 23 around (110, 125) and (163, 171), respectively, and an

additional intermediate length segment with a difference of

24 around (134, 153).

Comment on the Exact Solution of the Protein
Alignment Problem

There are a number of famous problems in mathematics,

described informally as problems that everyone (even nonpro-

fessional mathematicians) can understand but apparently

nobody can solve. Many of these problems remain unsolved

for a long time. They include the problems listed in Table 20,

but the complete list is longer. The history of solving some of

these problems can be followed in the literature (e.g., Ref.

[110]). The problem of the exact solution to the protein align-

ment problem is not as famous, but it shares some common

features with famous problems in mathematics. For example,

it has not been known whether a rigorous solution exists at all

for the problem. The problem can be understood by all, or at

least by undergraduate students of chemistry and biology. The

problem has also existed for more than 40 years. Similarly,

there may be additional famous problems in chemistry that

remain unsolved for a long time, even though they do not

receive as much publicity in chemistry as do famous problems

of mathematics among mathematicians and the general pub-

lic. For example, the problem of the four center molecular

integrals over Slater-type functions may be one such famous

problem of chemistry, because it has existed for well over 50

years, it is well defined, and there is no proof that it cannot be

solved. The current mathematical tool for solving such prob-

lems may not be adequate. In situations when the current tool

shows limitations, development of new tool, if possible, could

help solve the problem.

This is precisely what happened with finding the “Exact So-

lution to the Protein Alignment Problem,” which was found

not because of a search for the rigorous solution to the prob-

lem of protein alignment, but because of a search for a novel

tool for the characterization of proteins. The answer was the

use of AA adjacency matrices, but instead of counting the fre-

quency of adjacent pairs of amino acids, such information is

replaced with sequential labels of corresponding adjacent

amino acids. The solution can be obtained by overlapping two

such matrices for the two proteins of interest and simply

extracting pairs of AA that are in the same neighborhood, as

illustrated in analyzing Table 18 and constructing Table 19.

Table 19, ignoring entries for differences of 12 and 0, gives

the exact solution to the problem.

The following two comments qualify the use of the terms

“rigorous” and “exact,” and the nature and simplicity of the so-

lution. The manuscript on the rigorous solution of the protein

alignment problem was sent to the Journal of Computational

Chemistry, where it was immediately accepted. However, one

of the reviewers failed to recognize that the article reports on

an exact solution of the problem. This may be in part because

the words “exact solution” were not used in the title, and the

title of the article may not have been the best choice for the

message. A better title would be “Rigorous Solution to the

Protein Alignment Problem” or, even better, “Exact Solution to

the Protein Alignment Problem.” This became clear when the

same referee requested more details on the approximations

used; but exact solutions have no approximations. The referee

also objected that the word “rigorous” was used for this

approach, as if the available computer programs are not rigor-

ous; but computer programs for protein alignment are not rig-

orous in a strict mathematical sense.

In summary, whatever is known and understood today in

bioinformatics and related biology—and that is an amazing

amount of novelty and insight with a plethora of highly signifi-

cant results—is due to the existing available computer-based

programs and packages. But technically, particularly with

mathematical terms as used by mathematicians and not as

used by laypersons, “rigorous” implies a solution that does not

use approximations, empirical parameters, statistical methods,

and so on. On such grounds, the current existing available

computer-based programs and packages do not qualify as rig-

orous, though they are mathematically well-defined. According

to Wikipedia, such programs have been described as

“rigorous.”

The simplicity of the solution, which can informally be quali-

fied as a solution that everyone (at least undergraduate stu-

dents) can understand, is interesting. The problem of protein

alignment differs visibly from famous problems of mathematics,

which are generally easy to understand while the details of

their solutions are difficult to understand. In contrast, the solu-

tion to the problem of protein alignment is as easy to under-

stand as the problem. However, this does not reflect on those

who tried to solve this problem and did not find a solution,

but it reflects on the novelty of the tool used (starting with the

AA adjacency matrix), which has not been available in the past.

Some may refer to the exact solution of the protein alignment

problem as so simple that anyone could have found it. That

may be true, but it has not been done before! If such

Table 20. A selection of famous mathematical problems.

Problem Informative description

Four Color Conjecture Any map drawn in a plane can be colored with at most four colors

Traveling Salesman Problem Find the shortest route for a person to travel over given network visiting each place just once

Fermat’ Last Theorem Show that equation: An 1 Bn 5 Cn has no solution in integer A, B and n, except for n 5 2

Graph Reconstruction Prove that set of subgraphs in which each vertex is removed separately allows reconstruction of the initial graph

Goldbach’s Conjecture Prove that any integer bigger/equal 4 can be expressed as the sum of two prime numbers

Trisection of an angle Design geometrical construction that allows any given angle to be divided in three equal sections
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comments appear, they will be a reminder of the story of an

egg of Columbus, which “refers to a brilliant idea or discovery

that seems simple or easy after the fact” (It is difficult to find

original reference to the well-known story of Columbus Break-

ing the Egg, but in 1752 an engraving is already made by the

English artist William Hogarth entitled and depicting Columbus

Breaking the Egg). Current titles of papers on a rigorous

approach to the alignment of proteins and DNA are “Very effi-

cient search for protein alignment” and “Very efficient search

for nucleotide alignment.” If the word “search” were replaced

with “solution,” the title would be less confusing for readers

who may not recognize the exact solution as the solution of a

problem that was unsolved for about half a century.

Very Efficient Search for Nucleotide Alignment
(VESNA)

The novel approach to DNA alignment, VESNA, parallels the

approach to the exact solution to protein alignment, VESPA,

after an important modification at the start. It is based on the

following steps:

1. The construction of 4 3 4 nucleotide adjacency table (Ta-

ble 21), in which sequential positions of all adjacent pairs

of nucleotides in DNA sequential labels for adjacent nu-

cleotides are listed in the corresponding matrix elements.

2. For very long DNA sequences, instead of considering a 4

3 4 matrix (which has only 16 distinct matrix elements),

a 16 3 16 matrix can be considered, the matrix elements

of which are the 16 pairs of nucleotides of the 4 3 4 ma-

trix (Table 21). This leads to 256 distinct matrix elements,

which is comparable to 400 distinct matrix elements of

the AAA matrix used in the search for protein alignment.

3. The resulting matrices have set of numbers as elements.

Instead of constructing the nucleotide adjacency matri-

ces, the cardinality of the sets forming their elements

that may be large, it is often more convenient to just

construct the list of matrix elements, even for shorter

DNA sequences.

4. Superposition of such matrices, or a list of matrix ele-

ments, for two DNA sequences allows the immediate

identification of nucleotides in two sequences that differ

in sequence locations by the same amount.

5. Grouping of matrix elements that have the same differ-

ence in their sequential labels resolves the problem of

DNA alignment.

The last step immediately reveals all segments in two pro-

teins that have the same relative shift, and the differences indi-

cate the number of steps that such segments are shifted. In

general, the 4 3 4 nucleotide adjacency tables (or 16 3 16

tables) are nonsymmetrical, except in the special case of palin-

dromic DNA sequences.

The exact solution to the alignment of DNA is illustrated on

the a-globin genes (GenBank sequence CHPHBA and RABHBA

belonging to the chimpanzee and rabbit, respectively, having

just over 110 nucleotides). Their initial 20 nucleotides are

shown below.

CHPHBA : GACTCAGAAACCCACCATG . . .

RABHBA : GACTCAGAACCCACCATGG . . .

These are the two proteins considered by Pearson and Lip-

man in their article on the construction of improved tools for

biological sequence comparison.[67] Table 22 alphabetically lists

the 16 matrix elements of the 4 3 4 nucleotide adjacency ma-

trix for both proteins, one above the other (blue for protein 1

and red for protein 2). For better visibility of pairs of nucleo-

tides that are aligned, blank spaces are added in-between.

Table 22 shows that the first nucleotide pair GA appears at

position 1 and at sites 7, 11, 38, 43, 89, 101, 110, and 112 in

protein 1, and at the locations 1, 5, 7, 11, 37, 42, 54, 64, 69,

88, 100, 109, and 113 in the second DNA. The two GA sets of

(ordered) labels show that GA appears at the same locations

Table 21. The 434 non-symmetrical nucleotide adjacency matrix.

A C G T

A AA AC AG AT

C CA CC CG CT

G GA GC GG GT

T TA TC TG TT

Table 22. The nucleotide sequential adjacency matrices for the two DNA

sequences CHPHBA (upper in blue) and RABHBA (lower in red).

AA 8, 9, 12, 41, 47, 53, 68, 90, 102, 111, 113

8, 12, 40, 46, 52, 65, 66, 67

AC 2, 13, 17, 39, 44, 48, 81

2, 13, 16, 38, 43, 47, 55, 80

AG 6, 10, 42, 54, 69

6, 9, 41, 53, 68, 76, 89, 101, 110, 112

AT 20, 93

19, 49, 70, 92

CA 5, 16, 19, 40, 46, 52, 80

15, 18, 39, 45, 48, 51, 75, 79,

CC 14, 15, 18, 32, 36, 45, 57, 60, 105, 106

14, 17, 31, 32, 44, 59, 78, 98, 104

CG 37, 49, 58, 73, 76, 78, 82, 88, 99

33, 72, 81, 87, 96, 99, 105

CT 3, 26, 30, 33, 61, 84, 107

3, 25, 29, 35, 56, 60

GA 1, 7, 11, 38, 43, 89, 101, 110, 112

1, 5, 7, 11, 37, 42, 54, 64, 69, 88, 100, 109, 111

GC 25, 35, 56, 59, 75, 77, 79, 83, 87, 98, 104

24, 34, 58, 74, 77, 86, 95, 97, 103

GG 22, 55, 63, 64, 65, 70, 74, 86, 95, 100, 103, 109, 114

10, 21, 62, 63, 73, 82, 85, 94, 102, 108, 113

GT 23, 28, 50, 66, 71, 91, 96

22, 27, 83, 90, 106

TA 11, 25, 34, 67, 92

91

TC 4, 29, 31, 51, 72

28, 30, 50, 71

TG 21, 24, 27, 34, 62, 85, 94, 97, 108

20, 23, 26, 36, 57, 61, 84, 93, 107

TT 33, 37, 38,
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in both sequences only at sites 1, 7, and 11, while the same

pair of nucleotides is moved by one position at the locations

38, 43, 89, 101, 110, and 112. The nucleotide pairs GA that

appear in RABHBA at locations 5, 54, 64, and 69 have no corre-

sponding nucleotides in CHPHBA and can be ignored in fur-

ther analysis.

Table 22 contains information on the alignment of all 16

pairs of nucleotides. Table 22 shows nucleotides that are at

the same sequential sites in both sequences, and nucleotides

that are shifted by the same amount, to the left or right. In

the case of the two DNA sequences selected for illustration of

this search for DNA alignment, nucleotide pairs are either at

the same site, or shifted by one place. Table 23 shows,

extracted from Table 22, nucleotide pairs that are nonshifted

or shifted by one place, which ends the search for DNA align-

ments of the sequences considered.

A convenient way to view Table 23 is to construct a spectral

representation of the CHPHBA and RABHBA DNA sequences,

shown in Figure 27, and to consider the difference of the

spectral representation of the CHPHBA and RABHBA DNA

sequences, which are illustrated in Figure 28. In contrast to the

use of spectral representations of DNA and various differences

of these spectral representations in search for the graphical

alignment of DNA (as described in Ref. [18] when DNA

sequences have been systematically shifted, both to the left

and to the right relative to one another, here it is known

exactly how much, and to which side, two sequences need to

be shifted to visually illustrate the DNA alignment, as shown in

Figure 27 for the shifts of zero or one sites. Figure 27 shows

segments of DNA that are fully aligned, where adjacent nucleo-

tides are at the x-axis, and illustrates occasional sites, such as

(32, 33); (63, 64); and (77, 78) as aligned. These sites are of no

consequence, as they illustrate “accidental” alignments of iso-

lated pairs of nucleotides. Locally aligned segments of DNA are

characterized by additional matching nucleotides that follow.

The graphical display of the aligned spectral differences of

DNA sequences shows the Crick–Watson pairing of C–G and

A–T when nucleotides are not the same. Because A, C, G, and

T are assigned the numerical values of 1, 2, 3, and 4, respec-

tively, the difference in pairing of C–G is 61, and the differ-

ence for pairing of A–T is 63. Hence, spots in Figure 27 that

are on the horizontal lines 61

and 63 show the sites of

Crick–Watson pairing. Similarly,

the spots in Figure 27 that are

on the horizontal lines 62 cor-

respond to the non-Crick–Wat-

son pairing of A–G and C–T.

This, of course, holds only

when attention is restricted to

the aligned segments (segment

1–15 for the spectral difference

of 0 and the segment 9–114 for

the spectral difference of 1).

The small overlap of the above

two intervals points to the pos-

sibility of locally alternative

assignments for nucleotides in

the overlapping regions.

Milestones and Beyond

A closer look at the collections

of seminal contributions to

graphical bioinformatics listed

in Table 1, selected as the mile-

stones of graphical bioinfor-

matics, shows that most of the

selected articles have intro-

duced novel methodologies or

novel routes to the comparativeFigure 27. Spectral representation of the DNA sequences CHPHBA (top) and RABHBA (bottom).

Table 23. List of matching of nucleotides in DNA sequence 1 and 2.

Difference 5 0

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10, 10) (12,12) (13, 13) (77,

77) (99, 99)

Difference 5 21

(10, 9) (16, 15) (17, 16) (18, 17) (19, 18) (20, 19) (21, 20) (22, 21) (23, 22)

(24, 23) (25, 24) (26, 25) (27, 26) (28, 27) (29, 28) (30, 29) (31, 30) (33, 31)

(35, 34) (38, 37) (39, 38) (40, 39) (42, 41) (43, 42) (44, 43) (45, 44) (46, 45)

(48, 47) (52, 51) (53, 52) (54, 53) (59, 58) (60, 59) (61, 60) (62, 61) (63, 62)

(64, 63) (68, 67) (69, 68) (72, 71) (73, 72) (74, 73) (75, 74) (80, 79) (81, 80)

(82, 81) (84, 84) (86, 85) (87, 86) (88, 87) (89, 88) (91, 90) (92, 91) (93, 92)

(94, 93) (95, 94) (98, 97) (101, 100) (103, 102) (104, 103) (105, 104) (108,

107) (109, 108) (110, 109) (112, 111) (114, 113)
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study of the proteins, DNA and RNA. Their major contributions

were not in solving problems of interest to biology; instead

they were concerned with developing novel tools for solving

important problems of biology. It may take some time to test

the new tool, modify it if necessary to improve its performance,

find the optimal one for specific tasks, and select it among

competing variations. While attempts to perfect the existing

approaches may be seen, the general conclusion is that novel

tools have novel potential applications and may be important

for solving both new problems and old unsolved problems.

Unsolved problems, not only in biology but also in chemis-

try, physics, and even mathematics, raise the question of why

many of them have been so elusive. In some cases, including

the central problem of protein alignment in bioinformatics, it

appears that the reason for the delay was not due to the lack

of imagination of scientists, but the lack of an adequate tool.

The new tool for solving exactly the problem of protein align-

ment in bioinformatics is the modification of the AAA matrix,

so that its elements are sets (collections of numbers), instead

of numbers. The article describing VESPA may have been the

first article to consider sets as matrix elements, not only in

mathematical chemistry, but also in mathematics. In mathe-

matics and mathematical chemistry, besides standard numeri-

cal matrices, more general matrices with subgraphs as matrix

elements have also been used,[111,112] and alphanumeric matri-

ces have been used in chemical documentation for some

time.[113,114] Sets as matrix elements appear to be a novelty,

which lead to solving the protein alignment problem. Matrices

with sets as matrix elements

were introduced not in an

attempt to solve the protein

alignment problem but in an

attempt to recover the lost in-

formation that accompanies the

construction of the AAA matri-

ces. When this problem was

solved, it immediately became

clear that the use of the novel

matrices solves one of the cen-

tral problems of bioinformatics,

the protein alignment problem.

Beside significant novel devel-

opments in methodologies to

analyze proteins, in more recent

years DNA and RNA biosequen-

ces have been seen, several of

which are included in Table 1,

as well as significant novel

developments in applications of

graphical methodologies to ana-

lyze proteins DNA and RNA bio-

sequences. For example, simple

numerical descriptors for quanti-

fying effects of toxic substances

on DNA[115] have been used to

index single-nucleotide polymor-

phism (SNP) related gene

sequences,[116] and to analyze

the spread of avian flu and the numerical characterization of

the H5N1 avian flu neuraminidase gene sequence,[117] including

the study of dispersion and the extent of mutated and dupli-

cated sequences of H5N1 influenza neuraminidase over twelve

years (1997–2008).[118,119] More recently, the work on the viral-

targeted applications of graphical bioinformatics was continued

by A. Nandy and colleagues to identify targets for developing

vaccines for flu and rotavirus varieties that should be immune

to several cycles of mutations.[120,121] The same methodology

was extended the numerical characterization of proteins.

Some of this work qualifies as milestones of graphical bioin-

formatics, but as the number of applications of graphical bioin-

formatics grows, the border between bioinformatics and

biology is becoming less clear in the sense that some contribu-

tions involving elements of graphical bioinformatics also involve

elements of biology and relate to problems of biology. The sit-

uation is similar to that of mathematical chemistry, and mathe-

matics and chemistry, which sometimes have overlapping

borders. It has been said semiseriously that mathematicians

know how to solve problems of chemistry, but do not know

what problems to consider; while chemists know which prob-

lems to consider, but do not know how to solve them. Together,

mathematicians and chemists will form strong teams that may

solve important problems. If scientists in bioinformatics and math-

ematical chemistry develop the tools, and scientists in chemistry

offer problems, then their combined talents may lead to solutions

to important problems of biology.

Figure 28. The difference of spectral representations of the DNA sequence.
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Graphical bioinformatics may build novel bridges between

mathematics and computer science on one side; and chemis-

try, biochemistry, and biology on the other side, which are sci-

entific disciplines that have their own languages, sometimes

hampering communications. It is therefore important to en-

courage scientists on both sides of the gap to prepare general

reviews of their research that may facilitate and strengthen

further collaboration between the two sides. A few reviews on

graphical bioinformatics are the previously mentioned

“Graphical Representation of Proteins”[1] and “Novel Techni-

ques of Graphical Representation and Analysis of DNA

Sequences.”[8]

We highly recommend the following recent reviews:

“Proteomics, Networks, and Connectivity Indices,”[122]

“Mathematical Descriptor of DNA Sequences: Development

and Application,”[123] and “New Approaches to Drug–DNA

Interactions Based on Graphical Representation and Numerical

Characterization of DNA Sequences.”[124]

Other Voices

Even though the number of researchers in graphical bioinfor-

matics is not large, except for China, there have been contribu-

tions from other research centers of graphical bioinformatics.

Table 24 collects research groups worldwide in Europe, Asia,

Africa, and the America; and Table 25 lists a fraction of contribu-

tions coming from China.

Table 24 shows that the chaos game representation of DNA

and proteins has received attention. The research group of S.

C. Basak at the Natural Resources Research Institute of the Uni-

versity of Minnesota at Duluth is the most active in graphical

bioinformatics in the U. S. The same research group has also

been very active in structure–activity relationship and quanti-

tative structure–activity relationship, with particular interest in

toxicity, including toxicoproteomics. Another visible group in

graphical bioinformatics is led by one of early pioneers of

graphical representations of DNA, Nandy in Calcutta, India. Ta-

ble 1 includes several contributions by this group as important

steps in the evolution of graphical bioinformatics since its be-

ginning in 1983.

Finally, another visible and active group is the research

group of Humberto Gonz�ales-D�ıaz in Santiago de Compostela,

Galicia, Spain. Their interest is in describing the connectivity of

chemical and biological systems using networks, including

very large networks, and developing tools for the study and

characterization of proteomics maps, and also for describing

protein interaction networks, which tend to be very complex.

Those interested in complex networks, including protein inter-

action networks, and their analysis should consult several

papers of Estrada and colleagues as a good introduction in

this topic.[125,153–167]

Table 25 shows that research in China in graphical bioinfor-

matics has deep roots, and it appears that China will soon, if

not already, be the leading country in the development of

graphical bioinformatics. In China, the dominant groups of

researchers come from mathematical institutions, and they are

interested in discrete mathematics and graph theory.

Other Directions

Graphical bioinformatics as reviewed here was mostly confined

to the application of discrete mathematics (in particular graph

theory and partial ordering) and other methods of

Table 24. Selection of publications on discrete mathematics and graphical bioinformatics from different research centers worldwide.

Authors Topic Country Ref.

H. Gonzales-D�ıaz Y. Gonzales-D�ıaz

L. Santana F. M. Ubeira E. Uriarte

Proteomics, networks and connectivity Santiago de Compostela, Spain [122]

E. Estrada Protein interaction networks Strachlide, Scotland (U. K.) [125]

R. Todeschini V. Consonni A. Mauri

D. Ballabio

Use of partial ordering for characterization of DNA Milano, Italy [126]

C. Lee C. Grasso M. F. Sharlow Use of partial order graph for multiple sequence

alignment

Los Angeles, California [127]

N. Goldman Chaos game representation of DNA and proteins London, England (U. K.) [128]

P. J. Deschavanne A. Giron J. Vilain G.

Fagot B. Fertu

Characterization and Classification of spicies by

chaos game

representation of DNA sequences

Paris, France [129]

A. Fiser G. E. Tusnady I. Simon Chaos game representation of protein structures Budapest, Hungary [130]

S. Basu, A. Pan, C. Dutta J. Das. Chaos game representation of protein structures Calcutta, India [131]

P. D. Cristea DNA genomic signals Bucharest, Rumania [132,133]

A.Verma R. K. Singh Ladder like structure for DNA [134]

A. Nandy P. Nandy On uniqueness of DNA descriptors Calcutta, India [135]

D. Bielisnska-Waz T. Clark P. Waz W. Nowak

A. Nandy

2D dynamic representation DNA Warszawa, Poland [136]

S. Larionov A. Loskutov E.Ryadcheno Palindromic context of life [137]

A. Perdih, A. Roy Choudhury �S. �ZuperlE.

Sikorska I. Zhukov T. �Solmajer M. Novič

Sructural analysis of peptide fragment of transmem-

brane

transporter protein bilitranslocase

National Institute of Chemistry, Ljubljana,

Slovenia

[138]

A. T. Balaban M. Randić 838 tabular representation of the genetic code Texas A&M University, atGalveston TX [139]

M. Randić A. T. Balaban T. Pisanski M.

Novič

Novel graphical representation of proteins National Institute of Chemistry, Ljubljana,

Slovenia

[140]
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mathematical chemistry to problems considered in bioinfor-

matics, and the use of such approaches to transform qualita-

tive results into quantitative results. However, this is not the

only possible route to transforming qualitative results into

quantitative results, and to considering the visual representa-

tion of quantitative results once they are obtained. One such

approach is based on lattice models, which have been used in

polymer physics[168] and in biopolymers in chemistry.[169–173]

Another approach to the study of DNA and proteins is the re-

currence quantification analysis (RQA), a nonlinear technique ini-

tially developed as a purely graphical method[174] and soon

upgraded to a quantitative method.[175,176] These “computational

biochemistry” approaches focus on the relationship between

sequence embedded information and protein folding, the

sequence–structure puzzle,[177,178] which is one of the central

concerns in theoretical and applied biochemical research.

Lattice model

The lattice model starts by embedding biosequences (proteins,

DNA) on a square grid, limiting interactions to residues with

“topological” neighbors. Interactions are based on potential

functions constructed on selected physicochemical properties,

such as hydrophobicity. A brief discussion of lattice models

can be found in the introduction of the review article

“Nonlinear signal analysis methods in the elucidation of pro-

tein sequence–structure relationship” by A. Giuliani et al.[179]

Figure 29 illustrates a small 3 3 3 lattice and one conforma-

tion of a polymer having nine monomer units embedded in

this lattice, taken from the paper by Chan and Dill.[170] Table

26 shows a 9 3 9 matrix of the 3 3 3 lattice “contact map”,

which has nonzero entries for the topological contacts (1, 4);

(3, 6); (3, 8); and (2, 9). The order k of a contact is the chain

length between the two monomers in contact.

Figure 30 shows the 27 amino acids protein embedded in a

3 3 3 3 3 lattice by �Sali et al.,[173] which has 28 topological

contacts. The corresponding 28 3 28 adjacency matrix corre-

sponds to the graph illustrated in Figure 31. All topological

contacts of the conformation illustrated on the 3 3 3 3 3 lat-

tice are identified on the graph in Figure 31, by assuming con-

secutive numbering of vertices along the protein. Figure 30

identifies the first and the last vertex of the embedded

protein.

For lattice proteins, as outlined by �Sali et al., one can calcu-

late the total energy of the conformation (E), which is given as

the sum of the contact energies Bij between nonbonded adja-

cent amino acids on the lattice:

E5
X

i<j
Dðri; rjÞBij

The D(ri, rj) equals 1 if amino acids are in contact (non-

bonded but adjacent), and 0 otherwise. In this model, two

amino acids are in contact if they are not adjacent in the pro-

tein sequence and are at the unit distance from each other in

Figure 29. A conformation of a nine monomer polymer embedded on a 3

3 3 lattice with topological contacts (1,4) (2, 9) (3, 6) (3, 8).

Table 25. Small fraction of publications in graphical bioinformatics from different research centers in China.

Authors Topic City/University Ref.

F. Bai T. Wang 2D graphical representation of proteins based on

codons

Dalian Univ. Techn., Dalian [141]

J. Song Similarity of DNA based on 3-DGraphical

representation

Shaoguan Univ., Shaoguan [142]

P-A. He Y-P. Zhang Y-H. Yao Y-F. Tang

X-Y. Nan

Graphical representation of proteins based on their

physic-chemical

properties

Zhejiang Univ., Hangzhou and Chinese Academy

of Sciences, Beijing

[143]

W. Wang B. Liao T. Wang W. Zhu Graphical method for construction of phylogenetic

tree

Dalian Univ., Dalian and Hunan Univ. Changsha [144]

R. Wu R. Li H. Yan M. Yang DNA sequence visualization Hunan Univ., Changsha and Hunan Jaixing Univ.,

Jaixing Zhejiang

[145]

Y. Guo T.-m. Wang Graphical method to analyze similarity of DNA Dalian Univ. of Technology, Dalian [146]

Y-H. Yao X-Y. Nan T.-m. Wang Classification and similarity/dissimilarity of DNA Zhejiang Univ., Hangzhou and Hainan Normal

Univ., Haikou

[147]

C. Yu Q. Liang C. Yin R. L. He S. S.-T.

Yau

Novel construction of genome space Chinese Univ. of Hong Kong, Hong Kong [148]

B. Liao Y. Zhang K. Ding T. Wang Similarity/dissimilarity of DNA Dalian Univ., Dalian and Hunan Univ. Changsha [149]

F. Bai D. Li T. Wang Mapping of RNA secondary structure [150]

B. Liao X. Shan W. Zhu R. Li Phylogenetic tree construction based on 2D graphi-

cal representation

Dalian Univ., Dalian and Hunan Univ. Changsha [151]

B. Liao 2D graphical representation of DNA Dalian Univ., Dalian and Hunan Univ. Changsha [152]

See also Ref.: [17,19,20,53–63]
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the lattice. Assuming that all Bij 5 1, the evaluation of the

total energy of conformation is reduced to the “hard ball”

potential model of Bloch[180] used for the calculation of elec-

tron mobility in metals, which Erich H€uckel adopted for his

molecular orbital calculations of benzene and other p-electron

systems.[181–183] The secular equation for both is represented

by a binary matrix.

Signal analysis methods

Signal analysis methods, developed in physics and engineer-

ing, typically apply to very long signal inputs. In biology appli-

cations, amino acids of protein sequences are viewed as a

string of signals, which are relatively short (most are fewer

than several hundred amino acids, and as few as a dozen or

two dozen), limiting the use of some techniques of signal anal-

ysis. Proteins are reduced to 1D numerical sequences, which

resemble “spectra” when represented graphically. One impor-

tant advantage of such representations of proteins is that they

allow the analysis of individual (single) proteins, rather than

considering pairwise alignment, which is typical of computer-

based bioinformatics analyses.

Figure 32 shows the hydrophobic profile of the protein 1 of

Saccharomyces cerevisiae, the amino acids of which are listed

in Table 3. The hydrophobicity scale by Schneider and

Wrede[184,185] is used:

A R N D C Q E G H I L K M F P S T

W Y V

1:6 212:3 24:8 29:2 2 24:1 28:2 1 23 3:1

2:8 28:8 3:4 3:7 20:2 0:6 1:2 1:9 20:7 2:6

High values (positive values) correspond to hydrophobic

amino acids (A, C, G, I, L, M, F, S, T, W, and V), while negative

values correspond to hydrophilic amino acids (R, N, D, Q, E, H,

K, P, and Y). According to A. Giuliani (personal communica-

tion), Palliser and Parry[184] are quoted in Giuliani’s review[179]-

because their article is a great general summary of

hydrophobic scales. Schenider and Wrede used the Engelmann

scale,[185] but this scale is normally referred to as “Schneider

and Wrede.”

While Figure 32 is similar to Figure 13, which shows the

spectral representation of the same protein, Figure 32 has an

advantage in that amplitudes of spectral peaks have physico-

chemical interpretation, that of hydrophobicity, while spectral

amplitudes in Figure 13 are arbitrary.

RQA

RQA was originally developed by Eckmann in 1987,[174] about

25 years ago, as a purely qualitative approach. Several years

later, Webber and Zbilut[175] ungraded the RQA by developing

quantitative methods for the analysis of qualitative recurrence

plots, which are essentially an adjacency matrix. The concept

of recurrence is simple: recurrence in a protein (or DNA)

sequence is the element that repeats itself. The concept of

Figure 30. A conformation of a 27 monomer polymer embedded on a 3 3

3 3 3 lattice with 28 topological contacts. Reproduced with permission

from Ref. [1].

Figure 31. Graph corresponding to the topological contacts of the confor-

mation of polymer of Figure 30 embedded in a 3 3 3 3 3 lattice.

Table 26. The contact map matrix for 333 contact map of Figure 28.

1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 1 0 1 0

4 1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0

9 0 1 0 0 0 0 0 0 0
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recurrence in 3D is formally expressed as follows: given an ele-

ment X0 and a sphere of radius R, a point X is said to recur

with respect to X0 if

BRðX0Þ5fX : k X2X0 k� Rg

In the case of protein sequences, the recurrence corre-

sponds to segments of amino acids of considered length, asso-

ciated with their hydrophobicity profile, shared with other

segments along the sequence having the same hydrophobicity

profiles. The recurrence plots represent a graphical record of

the recurrences in the form of the symmetrical N 3 N matrix,

in which an element (i, j) is represented as a spot if the dis-

tance between Xi and Xj is smaller than the radius R. When

spots are replaced by 1, and all blanks are assigned 0 values,

the adjacency matrix is obtained for the recurrence plot. This

matrix allows the construction of several matrix invariants to

be used as recurrence plot descriptors. Webber and Zbilut[175]

considered the following:

1. The percentage of plot filled with recurrent points;

2. The percentage of recurrent points forming line seg-

ments parallel to the main diagonal, with a minimum of

line segments having two points;

3. The Shannon information entropy of the line length

distribution;

4. The length of the longest line segment; and

5. The measure of the boundary of recurrent points away

from the central diagonal.

These five statistical data allow the construction of five

component vectors or a five-dimensional representation of

autocorrelation structures of protein sequences, which parallels

the visual impression of the plots by unbiased observers.[186]

The above five (statistical) matrix invariants can be rephrased

by replacing “spots” with 1s and “blanks” with 0s to make the

adjacency matrix more apparent. The five descriptors of RQA

recurrence plots are unknown in chemical graph theory and

its extension to bioinformatics, in both of which the adjacency

matrix plays a dominant role. The adjacency matrix of the RQA

is an ordered adjacency matrix, but several of the above

descriptors are matrix invariants (an ordered or not-ordered

matrix is considered). In chemical

graph theory and its extension

to bioinformatics, commonly

used matrix invariants are the

leading eigenvalues of the ma-

trix, the determinant of the ma-

trix, the set of eigenvalues, the

leading eigenvector, the coeffi-

cients of the characteristic poly-

nomial, and the ordered row

sums. Here is an opportunity for

both groups to benefit by con-

sidering alternative sets of adja-

cency matrix invariants. On this

helpful and hopeful note, we

end this review article on graphi-

cal bioinformatics.

Concluding Remarks

This review tries to outline major accomplishments of graphi-

cal bioinformatics, with which many in bioinformatics may not

have been familiar. Because graphical bioinformatics may not

have received sufficient attention in some circles interested in

bioinformatics, the main purpose of this article is to draw

attention of researchers in bioinformatics to graphical bioinfor-

matics, which deserves attention for at least two reasons:

1. In graphical bioinformatics, in contrast to standard bioin-

formatics, a single DNA, a single RNA, and a single pro-

tein can be characterized numerically. This allows results

to be compiled on a single DNA, a single RNA, and a sin-

gle protein to eventually build up an atlas or a catalogue

of DNA, RNA, and proteins, analogous to such catalogues

or atlases of chemicals, fullerenes, and so on.

2. Graphical bioinformatics has led to significant novel

insights and results in bioinformatics, which are listed in Ta-

ble 1, and should not be overlooked. We encourage other

researchers in graphical bioinformatics and in bioinfor-

matics to supplement the material here with reports on

work that we have not discussed. In particular, we invite

leading authorities in bioinformatics to come forward with

their own tables of “Milestones in Bioinformatics” and

share the most significant results and directions of research

in bioinformatics. It would be interesting to see how many

of the topics listed in Table 1 would be included in more

general tables on milestones in bioinformatics.

The selection of milestones in Table 1 is subjective. They are

listed more-or-less chronologically, and only on few of them

are elaborated upon. This was the case with VESPA and

VESNA. We have also discussed the construction of sparse

matrices, as they have computational advantages. Similarly, we

have discussed partial ordering, as this concept is not well-

known in chemistry. We have said nothing about the virtual

genetic code or the representation of RNA without loss of in-

formation, and at best we have said very little about the

Figure 32. Hydrphobicity profile of the protein 1 of Saccharomyces cerevisiae (amino acids of which have

been listed in Table 3).
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graphical representation of proteins by graphs. However, all

these topics have been covered in the very recent review on

graphical representation of proteins,[1] where interested read-

ers can find more information. We could have said more about

the graphical alignment of DNA and the graphical alignment of

proteins, because both publications outlined a novel approach

to the alignment of biosequences, which differ from the stand-

ard computer-based programs in that they do not involve em-

pirical parameters, such as penalties for gaps and mismatches.

We also have not elaborated on the pioneering work of Hamory,

Jeffrey, and Nandy, but end by stating that we continue in the

spirit of Hamori and Nandy by introducing additional graphical

representations of DNA. We believe that their spectral represen-

tations are the most profound, because they lead to the graphi-

cal alignment approach for DNA and proteins. We have also

adopted the chaos game representation of DNA introduced by

Jeffrey, though with one significant distinction, in that we con-

sidered such representations only for relatively small n (the num-

ber of nucleotides), including as the extreme the chaos game

representations of codons (three nucleotide sequences), which

present a new way to the graphical representation of proteins.

In contrast, Jeffrey and those who followed considered very

lengthy DNA sequences having 10,000 and more nucleotides.

In our opinion, the three most significant recent results of

graphical bioinformatics are

1. The exact solution to protein and DNA alignment

problems;

2. The numerical representation of proteomics maps and

finding hormesis on cellular level; and

3. The spectral representation of DNA and proteins and

their graphical alignment.

Of course, these significant results were not independent of

most of the other topics discussed in this review.
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[27] E. Hamori, J. Ruskin, J. Biol. Chem. 1983, 258, 1318.

[28] E. Hamori, In Frontiers of Computing Science, Vol. 3: Scientific Visual-

ization; C. Pickover, S. K. Tewksbury, Eds.; Plenum Press: New York,

1994; pp. 90–101.

[29] H. J. Jeffrey, Nucleic Acids Res. 1990, 18, 2163.

[30] H. J. Jeffrey, Comput. Graphics 1992, 16, 25.

[31] M. F. Barnsley, H. Rising, Fractals Everywhere, 2nd ed.; Academic Press:

Boston, MA, 1993.

[32] H.-O. Peitgen, H. J€urgens, D. Saupe, Chaos and Fractals: New Frontiers

of Science; Springer-Verlag: Berlin, Germany, 1992.

[33] A. Nandy, Curr. Sci. 1994, 66, 309.

[34] A. Nandy, Curr. Sci. 1994, 66, 821.

[35] A. Nandy, Curr. Sci. 1996, 70, 661.

[36] C. Raychaudhury, A. Nandy, J. Chem. Inf. Comput. Sci. 1999, 39, 243.
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[44] M. Randić, A. F. Kleiner, L. M. DeAlba, J. Chem. Inf. Comput. Sci. 1994,

34, 277.
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[85] M. Randić, M. Vračko, M. Novič, S. C. Basak, MATCH Commun. Math.

Comput. Chem. 2000, 42, 181.
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