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Coherent and incoherent motion in a one-dimensional lattice
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We discuss a generalization of the Haken-Strobl-Reineker model for the diffusion coefficient of a particle~or
an excitation! in a one-dimensional lattice. In the original treatment, the characteristic correlation time of the
lattice vibrations is assumed to be the smallest time scale in the physical problem. We weaken this requirement
and allow for longer correlation times. We discuss previous results in the context of our theory and present
numerical examples.
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I. INTRODUCTION

The charge transport and energy transfer in organic c
tals can be described either as a coherent or an incohe
process, depending on the strength of the interaction of
migrating particle~or excitation! with lattice vibrations. If
the interaction is weak, the phases of the wave function
the particle are conserved and the motion is coherent
some time, eventually damping due to interaction with latt
vibrations, finally leading to bandlike motion. In the case
strong interaction, the wave function dephases quickly, le
ing to an incoherent, hoppinglike motion.

Starting in 1967, Haken and Strobl and later Reine
suggested and worked out a unified theory1–3 that contains
both the coherent and the incoherent limits. In the last
years, this concept has been successfully applied to the
scription of experimentally observed electronic and excito
properties.4–12

A key assumption in the treatment by Haken, Strobl, a
Reineker is the fast decay of the correlation of the latt
vibrations. In this paper, we treat and discuss the weake
of this assumption by omitting one of the two constraints
the time scales of the problem.

The paper is organized as follows. In Sec. II we disc
our assumptions, derive the equation of motion for the d
sity matrix of the particle~or the excitation!, and discuss its
range of validity. In the next section, an expression for
diffusion coefficient is derived. In Sec. IV we compare o
result to the result of Haken, Strobl, and Reineker1–3,12 and
to the correlation time expansion of Kitahara and Hau13

The next section is devoted to explicit numerical results a
we conclude the paper with a summary.

II. EQUATION OF MOTION

We consider a particle moving along a chain of identi
molecules with equal equilibrium distances. The thermal m
tion of the molecules in the chain is taken into account
allowing the site energies«n(t) and and the hopping matri
elementsJn(t) to fluctuate in time. Assuming next neighbo
interaction, this leads to the Hamiltonian
PRB 620163-1829/2000/62~6!/3744~7!/$15.00
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H~ t !5(
n

«n~ t !cn
†cn1(

n
Jn~ t !~cn

†cn111cn11
† cn!. ~1!

We decompose the site energy and the hopping matrix
ment into a constant part that describes the coherent par
motion in a completely rigid chain and into a fluctuating pa
with zero mean:

«n~ t !5«1d«n~ t !, ~2!

Jn~ t !5J1dJn~ t ! ~3!

with «5^«n(t)& and J5^Jn(t)&. The bracketŝ & represent
the thermal average over all molecular vibrations.

Following the approach by Haken, Strobl, an
Reineker,1–3,12 we describe the diagonal fluctuation
@d«n(t)# and the nondiagonal fluctuations@dJn(t)# as sto-
chastic processes. For the second moments we assum
form suggested by Kitahara and Haus:13

^d«n~ t !d«n8~ t1t!&5g0

1

tc
e2utu/tcdn,n8 , ~4!

^dJn~ t !dJn8~ t1t!&5g1

1

tc
e2utu/tcdn,n8 . ~5!

This means that energy fluctuations on different sites
fluctuations of the hopping matrix element between differ
pairs of molecules are not correlated. We have made
additional assumption thatJn(t) is real.

The Hamiltonian~1! leads to a stochastic density-matr
equation. Using the statistical properties ofd«n(t) and
dJn(t), a statistically reduced equation for the migrating p
ticle can be obtained either by a projection opera
formalism14 or by generalized cumulant methods.14,15 Going
to second order in the totally time ordered generalized cum
lant expansion,14 the resulting equation of motion in the in
teraction picture reads

r8 ~ t !52E
0

t

dt^dL̃~ t !dL̃~ t2t!&r̃~ t2t!, ~6!
3744 ©2000 The American Physical Society
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wherer̃(t) is the density matrix of the migrating particle i
the interaction picture. The Liouville operatordL(t) is de-
fined in Appendix A. If we assume that the Liouville oper
tor dL(t) is proportional to some quantitya, then Eq.~6! is
a second-order equation in the sense that it has the stru

r85Ar̃, ~7!

whereA is an operator that is known up to ordera2. Some
contributions toA of higher order ina have been neglected

Equation~6! can be written more explicitly as

r8 ~ t !52
1

tc
(

k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4
d̃k1 ,k2

~ t !d̃k3 ,k4
~ t !

3E
0

`

dt e2t/tce2 i ~Hk3
2Hk4

)tr̃~ t2t!. ~8!

The detailed derivation of this equation and the definition
the quantities therein is made in Appendix A. For the pres
discussion it is sufficient to mention thatDk1 ,k2 ,k3 ,k4

is pro-

portional tog0 and/org1 or is zero.
Equation~8! is the starting point for our further conside

ations. Since Eq.~8! is a convolution-type equation, a gen
eral solution is difficult. Kitahara and Haus13 have calculated
the first orders intc of the diffusion coefficient that result
from Eq.~8! by means of a Laplace transform. We will com
pare their results to the findings of this paper at the end of
next section.

Other approximative solutions depend on the relat
magnitude of three different time scales. The kernel of
~8! decays as a function oft during the timetc while oscil-
lating as a function oft on a time scaletcoh51/J. The latter
time scale is due to the oscillatory exponential in Eq.~8! and
can be understood using Eq.~A4! in Appendix A. The third
time scale,tr , defines the time on which the value of th
density matrix changes appreciably and will be derived la

Haken, Strobl, and Reineker1–3,12 have considered the
case thattc is the smallest of the three time scales, i.e.,tc
!tcoh andtc!tr . In this case, the exponential exp@2i(Hk3

2Hk4
)t# as well as the density matrixr̃(t2t) in the integral

in Eq. ~8! can be replaced by their value att50, since they
do not change appreciably during the integration over
time intervalt50¯tc . Later times do not contribute to th
integral, since by then the kernel has decayed. The s
result is obtained by the original approach by Haken, Stro
and Reineker that consists in replacing the exponential de
in Eqs.~4! and ~5! by a d function.

In this paper, we will generalize this approach. We w
allow the correlation timetc to have any value relative to
tcoh as long as the change of the density matrix is slow w
respect to the correlation time, i.e.,tc!tr . To clarify this
further, we perform a Taylor expansion ofr̃(t2t) in Eq. ~8!
about t50 and keep only the first term. This leads to t
considerably simplified equation of motion:

r8 ~ t !52 (
k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4

11 i ~Hk3
2Hk4

!tc

3d̃k1 ,k2
~ t !d̃k3 ,k4

~ t !r̃~ t !. ~9!
ure
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This approximation is good if the first term in the Taylo
expansion ofr̃(t2t) is dominant. This condition can b
expressed astc!tr , with the definition

tr5

11S 2tc

tcoh
D 2

max~g0 ,g1!
. ~10!

We refer to Appendix B for the derivation.
The time-local equation of motion@Eq. ~9!# can also be

derived by directly starting from the time-local second-ord
equation of motion that results from a truncated generali
cumulant expansion with a partial chronological tim
ordering.15 However, using this approach the range of app
cability explained above is inherent in the construction of
equation and has to be considered carefully.16,17

Equation~9! contains, in fact, all the relevant informatio
of a second-order equation because of the following reas
All contributions that have been neglected in the derivat
of Eq. ~9! represent fourth and higher-order terms ina, using
the terminology introduced after Eq.~7!. It is not clear
whether the partial inclusion of higher-order terms as in E
~8! is better or worse than their rigorous omission as in E
~9!. We will return to this point in Sec. IV B of this paper.

III. DIFFUSION COEFFICIENT

In this section we calculate the diffusion coefficient fro
the equation of motion derived previously. Transforming E
~9! to the Schro¨dinger picture we obtain for the density ma
trix in the wave-vector basis

ṙk1q,k52 i ~Hk1q2Hk!rk1q,k2(
K

Wk1q,k→K1q,K
o rk1q,k

1(
K

WK1q,K→k1q,k
i rK1q,K ~11!

with the generalized rates

Wk1q,k→K1q,K
i 5

gk501gk1K1q2
g0

N

11 i tc~HK2Hk1q!
1

gk501gk1K2
g0

N

11 i tc~Hk2HK!
,

WK1q,K→k1q,k
o 5

gq1gk1K1q2
g0

N

11 i tc~HK2Hk!

1

gq1gk1K1q2
g0

N

11 i tc~Hk1q2HK1q!
. ~12!

The diffusion coefficient is given by

D52
1

2
lim
t→`

lim
q→0

]q
2(

k
ṙk1q,k , ~13!

which follows directly from the definition of the diffu-
sion coefficient in the site representation 2D
5 limt→`(1/t)(nn2rn,n . Inserting Eq.~11! into definition
~13!, we obtain
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D52g1F1
4J2

g1

1

N (
k

sin2 k~12G1!uk . ~14!

The functionuk is determined by the equation

ukGkk511G22
4

N (
K

sin2 K

11e2~cosK2cosk!2 uK , ~15!

with e52Jtc . The quantitiesF, G1 , andG2 are functions of
Jtc , g0tc , andg1tc and are given in Appendix C.Gkk is
given by

Gkk5
2

N (
K

g0 /g11212 cosk cosK

11e2~cosK2cosk!2 ~16!

5
2 ReAz

uzu $g0 /g11212 cos2 k%2
4 ImAz

euzu
cosk

~17!

with

z5e21~11 i e cosk!2, e52Jtc . ~18!

Expression~14! for the diffusion coefficient is the centra
result of this paper. It represents the generalization of
result of Haken, Strobl, and Reineker to larger correlat
timestc , provided that the density matrix is slowly varyin
As in the original Haken-Strobl-Reineker model, the diff
sion coefficient~14! is the sum of an incoherent and a cohe
ent part, where the names are chosen according to the
that the first~incoherent! part does not vanish when the ho
ping matrix elementJ goes to zero while the second~coher-
ent! part does. The incoherent part increases withg1 and
reflects the motion of a particle that is generated by the n
diagonal dynamical fluctuations. The coherent part rep
sents the band motion of a particle that is hindered by d
onal as well as nondiagonal fluctuations. Here the fluctua
site energies and hopping matrix elements act as diso
that tends to stop the free band motion.

In Appendix C we show that in the present approximat
of a slowly varying density matrix, the functionsG1 andG2
are both small compared to unity and can therefore be
glected, simplifying the expression~14! for D further.

In the special case of diagonal fluctuations (g1→0), Eq.
~15! is analytically solvable and, neglecting the small con
butions ofG1 andG2 , we obtain for the diffusion coefficien
of a system with only diagonal fluctuations

D ~g150!5
2J2

g0
(

k

sin2 k

(
K

1

11e2~cosK2cosk!2

~19!

5
2J2

g0

1

p E
0

p

dk
uzusin2 k

ReAz
, ~20!

with z defined in Eq.~18!.
If both g0 and g1 differ from zero, Eq.~15! can be ap-

proximated by iteration as long as the local fluctuations
dominant (g1!g0). If g1 is of the same order of magnitud
as g0 , the iterative method does not converge. Fortunat
e
n
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-
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in the general case of diagonal and nondiagonal fluctuatio
a Fourier analysis ofuk in Eq. ~15! leads to good results. We
therefore write

uk5(
n

Cn cos~kn! ~21!

and upon insertion into Eq.~14! for the diffusion coefficient,
we remark that only the coefficientsC0 andC2 contribute to
D, since

1

N (
k

sin2 kuk5
1

N (
k

sin2 k(
n

Cn cos~kn!5
C0

2
2

C2

4
.

~22!

For the coefficientsCn , we obtain a system of coupled equ
tions

Cn5An1(
m

BnmCm ~23!

with

A05
1

p E
0

p

dk
1

Gkk
, ~24!

An.05
2

p E
0

p

dk
cos~kn!

Gkk
~25!

and

B0,m52
4

p E
0

p

dk
I m~k!

Gkk
, ~26!

Bn.0,m52
8

p E
0

p

dk
I m~k!cos~kn!

Gkk
~27!

with Gkk as given in Eq.~17!. The integralsI m(k) are given
by

I m~k!5
1

p E
0

p

dK
sin2 K cos~Km!

11e2~cosK2cosk!2 ~28!

and can easily be solved to give

I 0~k!5
ReAz21

e2 , ~29!

I 1~k!5
ReAz22

e2 cosk1
ImAz

e3 , ~30!

I 2~k!5
ReAz~2 cos2 k21!26 cos2 k12

e2 14
ImAz

e3

22
ReAz21

e4 ~31!

•••
with z as defined in Eq.~18!. The system of Eq.~23! is
simplified by the fact thatBn,m50 for all odd sumsn1m.
This leads to decoupling for even and odd indices and si
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we are only interested in the coefficientsC0 and C2 the
coefficients with odd indices do not need to be conside
further.

In this formalism, the diffusion coefficient can be writte
as

D52g1F1
J2

g1
~2C02C2!, ~32!

where the coefficientsC0 andC2 are determined by the sys
tem of equations in Eq.~23!. The coefficientC2 is generally
much smaller thanC0 and can sometimes be neglected. Fo
practical calculation, the system of equations is solved fo
finite cutoff nmax>n,m. For a qualitative estimate, it suffice
to take into account the trivial solution fornmax50, while the
cutoff nmax52 approximates the exact result very well. F
example, takinge51, the relative error made by the cuto
nmax50 is smaller than 6% for all values ofg0 andg1 , while
the cutoffnmax52 yields results with relative errors smalle
than 0.05%. The relative errors made with either cutoff
roughly linear ine.

IV. COMPARISON TO PREVIOUS RESULTS

A. Haken, Strobl, and Reineker model

In the original treatment of the problem of mixed cohere
and incoherent particle motion, Haken, Strobl, and Reine
assumed the correlation timetc to be smaller than all othe
time scales in the problem. We retrieve their result by sett
tc50 in Eqs.~14! and~15!. In this limit, the equation foruk
reads

uk2~g0 /g112!512
4

N (
K

sin2 KuK ~33!

which can readily be solved for the quantity 1/N(k sin2 kuk
needed in Eq.~14! for the diffusion coefficient. With
1/N(k sin2 kuk5g1 /(4g0112g1) we obtain the result of
Haken, Strobl, and Reineker,

D52g11
J2

g013g1
. ~34!

B. Kitahara’s and Haus’ result

Starting from the second-order Eq.~8!, Kitahara and Haus
have calculated the first terms in an expansion of the di
sion coefficient in powers of the correlation timetc .13 The
zeroth-order term in this expansion is given by the resul
Haken, Strobl, and Reineker@Eq. ~34!#.

We will show how their result for a correction linear i
the correlationtc can be reproduced within the present fo
malism and then make some general remarks about the
pansion in powers oftc .

From Eqs.~14! and~15!, the first order ofD in a correla-
tion time expansion can easily be calculated and yields

D @1#5eJ
g01g1

g013g1
. ~35!

This result differs from Kitahara’s and Haus’ result, which
our notation is
d

a
a

e

t
er

g

-

f

x-

DKH
@1# 52eJ

2g1

g013g1
. ~36!

The discrepancy can be explained by the fact that Kitah
and Haus include a fourth-order contribution in the equat
of motion that is neglected in our treatment. To understa
this better, we explicitly write down the correspondin
density-matrix equations. Expanding the density matrix
powers of the correlation timetc ,

r̃~ t !5 r̃ @0#~ t !1 r̃ @1#~ t !1 r̃ @2#~ t !1¯ ~37!

with r̃(t) @n#;tc
n , the second-order Eq.~8! for the contribu-

tion linear intc reads

r8 @1#~ t !52 (
k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4
d̃k1 ,k2

~ t !d̃k3 ,k4
~ t !r̃@1#~ t !

1 i tc (
k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4
~Hk3

2Hk4
!

3d̃k1 ,k2
~ t !d̃k3 ,k4

~ t !r̃@0#~ t !

2tc (
k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k4
d̃k1 ,k2

~ t !d̃k3 ,k4
~ t !

3 (
k18 ,k28 ,k38k48

Dk
18 ,k

28 ,k
38 ,k

48
d̃k

18 ,k
28
~ t !d̃k

38 ,k
48
~ t !r̃@0#~ t !.

~38!

If this equation is used for the calculation ofD @1#, Kitahara’s
and Haus’ result@Eq. ~36!# is found. On the other hand, ou
simplified Eq.~9! leads to an equation forr̃ @1# that is given
by Eq. ~38! without the last term of the right side. This term
generates a contribution to the diffusion coefficient equa
2eJ and is responsible for the difference between ours
Kitahara’s and Haus’ results.

At this point, a clarification is necessary. Both th
convolution-type Eq.~8! and the time-local Eq.~9! are
equivalent second-order equations in the sense that the
eratorA connectingr8 with r̃ @Eq. ~7!# is identical in both
equations up to second order in a small parametera which
here is essentially given bya5AD whereD is the magnitude
of Dk1 ,k2 ,k3 ,k4

and proportional to eitherg0 or g1 . The third
term of the right side in Eq.~38! that is responsible for the
difference of Kitahara’s and Haus’ and our result is clearl
fourth-order term, since it carries the facto
Dk1 ,k2 ,k3 ,k4

Dk
18 ,k

28 ,k
38 ,k

48
;D2;a4. This term, although being

of fourth order, nevertheless contributes toDKH
@1# @Eq. ~36!#

with similar magnitude as the part in Eq.~35! that does not
include the additional term. This might seem surprising
first sight, but can be explained by the fact that the long ti
limit of the density matrix, and hence also the diffusion c
efficient, cannot be expanded in a power series in power
a ~or D!, since such an expansion would diverge for lar
times.18 Therefore nonanalytic contributions~e.g., of order
1/D! may occur in the course of solving the equation
motion and lower the order of the final result. This is exac
what happens in the calculation ofD @1#.
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The expansion of the diffusion coefficient in powers
the correlation time should therefore be considered with c
since the result depends on higher-order terms in the e
tion of motion. Comparing the second-order Eqs.~8! and~9!
it is hard to tell which expression forD @1# is physically more
reasonable. While the time-local Eq.~9! takes no higher-
order contributions into account, the convolution-type E
~8! does take them into account partly, which can be bette
worse.

A rigorous calculation of the contributionD @1# to the dif-
fusion coefficient should have a fourth-order equation a
starting point, that will lead to the same result forD @1#, no
matter what kind of fourth-order equation is chosen a
starting point. In this case, the problem discussed abov
encountered on the next higher level: the quadratic contr
tion D @2#;tc

2 again depends on the higher-order contrib
tions (a6 and higher! in the equation of motion.

V. NUMERICAL RESULTS

A. Incoherent part of the diffusion coefficient

The incoherent part of the diffusion coefficient~32! is
proportional to the magnitudeg1 of the nondiagonal fluctua
tions and to the functionF defined in Eq.~C7!,

D inc52g1F. ~39!

In Fig. 1 we plotF5D inc /(2g1) as a function ofe52Jtc .
The line F51 represents the results obtained with t
Haken-Strobl-Reineker model. As expected, the deviati
from the Haken-Strobl-Reineker model become quite d
matic for large values ofe, indicating the violation of the
assumptiontc!tcoh ~or Jtc!1) made by Haken, Strobl, an
Reineker. With increasinge, the functionF decreases mono
tonically. However, this does not imply that the incohere
part of the diffusion coefficient decreases as well, since
generalg1 depends onJ andtc . This dependence has to b
calculated separately. In a concrete example,19 some of us
have obtained dependencies of the formg1;J2 and g1
;tc , leading to an incoherent part of the diffusion coef
cient that increases withJ andtc .

B. Coherent part of the diffusion coefficient

Neglecting the small contributionsG1 andG2 , the coher-
ent part of the diffusion coefficient is given by

FIG. 1. The incoherent part of the diffusion coefficient divid
by 2g1 .
e,
a-

.
or

a

a
is

u-
-

s
-

t
n

Dcoh5
J2

g1
~2C02C2!. ~40!

The coefficientsC0 and C2 have to be determined numer
cally by the method described in Sec. III. They depend
e52Jtc and the ratiog0 /g1 .

In Fig. 2 we show the quantity 2C02C25(g1 /J2)Dcoh as
a function of the ratiog0 /g1 for different values ofe. We
have used the truncationnmax52 for this calculation which
approximates the exact result with an error of less than 0.

For a ratio g0 /g1!1, the quantity (g1 /J2)Dcoh ap-
proaches a constant value. This means that in this limit
coherent part of the diffusion coefficient is proportional
J2/g1 which is the same behavior observed in the origin
Haken-Strobl-Reineker model. However, its overall mag
tude is larger than in the original model.

The opposite limit (g0 /g1@1) can be understood best i
Fig. 3 where we plot the quantity (g0 /J2)Dcoh as a function
of the ratiog0 /g1 . In this case the curves approach const
values for large ratiosg0 /g1@1, indicating that the coheren
part of the diffusion coefficient is proportional toJ2/g0 ,
again in agreement with the original Haken-Strobl-Reine
model.

Independent of the ratiog0 /g1 , the diffusion coefficient
Dcoh is linear in e for large epsilon (e@1) and approaches
asymptotically the Haken-Strobl-Reineker value fore→0.

FIG. 2. The coherent part of the diffusion coefficient multiplie
by g1 /J2.

FIG. 3. The coherent part of the diffusion coefficient multiplie
by g0 /J2.
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VI. SUMMARY

In this paper we have calculated the diffusion coefficie
for a migrating particle on a one-dimensional chain of m
ecules with dynamical disorder described as diagonal
nondiagonal fluctuations. We have generalized the result
viously obtained by Haken, Strobl, and Reineker to lar
correlation times, provided that the density matrix is slow
varying.

We have shown that the calculation of an expansion of
diffusion constant in powers of the correlation time is pro
lematic, since the result depends on what type of seco
order equation is chosen as a starting point. The differ
results can be explained by inclusion of higher-order con
butions.
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION

The equation of motion assumes a particularly sim
form in the wave-vector representation. We therefore de

c̃k
†~ t !5

1

AN
(

n
e2 iknc̃n

†~ t !, ~A1!

c̃k~ t !5
1

AN
(

n
eiknc̃n~ t !, ~A2!

gk5
1

N
~g012g1 cosk!, ~A3!

Hk5«12J cosk ~A4!

and rewrite the Hamiltonian@Eq. ~1!# as

H~ t !5H01dH~ t ! ~A5!

5(
k

Hkck
†ck1(

k,k8
~ t !ck

†ck8 .

~A6!

The second moments@Eqs. ~4! and ~5!# can now be written
as

^dHk1 ,k2
~ t !dHk3 ,k4

~ t2t!&5Dk1 ,k2 ,k3 ,k4

1

tc
e2utu/tc

~A7!

with

Dk1 ,k2 ,k3 ,k4
5dk12k21k32k4,0S gk22k3

1gk21k4
2

gn50

N D .

~A8!

The interaction picture quantities are related to their co
terparts in the Schro¨dinger picture by
t
-
d
e-
r

e
-
d-
nt
i-

e
e

-

r̃~ t !5eiL 0tr~ t !, ~A9!

dL̃~ t !5eiL 0tdL~ t !e2 iL 0t, ~A10!

with L05@H0 ,...# and dL(t)5@dH(t),...#. Using Eqs.
~A5!–~A10!, Eq. ~6! takes the form

r8 ~ t !52
1

tc
(

k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4
d̃k1 ,k2

~ t !

3E
0

t

dtd̃k3 ,k4
~ t2t!e2t/ter̃~ t2t! ~A11!

with d̃k,k8(t)5@ c̃k
†(t) c̃k8(t),...#. Since the time dependenc

of the creation and destruction operators in the interac
picture is known we can expressd̃k3 ,k4

(t2t) by its value at
time t,

d̃k3 ,k4
~ t2t!5e2 i ~Hk3

2Hk4
!td̃k3 ,k4

~ t !. ~A12!

As long as we are not interested in the short-time beha
(t,tc) of the density matrix, we can safely replace the u
per integration limit by infinity and using Eq.~A12! we ob-
tain the equation of motion

r8 ~ t !52
1

tc
(

k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4
d̃k1 ,k2

~ t !d̃k3 ,k4
~ t !

3E
0

`

dt e2t/tee2 i ~Hk3
2Hk4

!tr̃~ t2t!. ~A13!

APPENDIX B: DERIVATION OF THE TIME-LOCAL
EQUATION OF MOTION

Expandingr(t2t) into a Taylor series aroundt50 and
performing the integrals, we obtain

r8 ~ t !52 (
k1 ,k2 ,k3 ,k4

Dk1 ,k2 ,k3 ,k4

11 i tc~Hk3
2Hk4

!
d̃k1 ,k2

~ t !d̃k3 ,k4
~ t !

3H r8 ~ t !2
tc

11 i tc~Hk3
2Hk4

!
r8 ~ t !

1
tc

2

@11 i tc~Hk3
2Hk4

!#2 r̈̃~ t !2¯J . ~B1!

We now assume that the first term in the Taylor expansio
dominant, i.e.,

ur̃~ t !u@U tc

11 i tc~Hk3
2Hk4

!
r8 ~ t !U, ~B2!

which is equivalent to



-

f

s
de
h
ll
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ur̃~ t !u@U tc

11 i tc~Hk3
2Hk4

!

3 (
k18 ,k28 ,k38 ,k48

Dk
18 ,k

28 ,k
38 ,k

48

11 i tc~Hk
38
2Hk

48
!

3d̃k
18 ,k

28
~ t !d̃k

38 ,k
48
~ t !r̃~ t !U . ~B3!

This is fulfilled if

max~g0 ,g1!tc

11e2 !1, e52Jtc . ~B4!

APPENDIX C: CALCULATION OF F, G1 , and G2

The quantitiesF, G1 , andG2 are derivatives of the gen
eralized rates@Eq. ~12!#:

F5
1

4g1

1

N (
k,K

S ]2Wk1q,k→K1q,K
o

]q2 U
q50

2
]2Wk1q,k→K1q,K

i

]q2 U
q50

D , ~C1!

G15
1

2iJ sink (
K

S ]Wk1q,k→K1q,K
o

]q
U

q50

2
]Wk1q,k→K1q,K

i

]q
U

q50
D , ~C2!
n-

ys
G252
1

2iJ sink (
K

S ]Wk1q,k→K1q,K
o

]q
U

q50

2
]WK1q,K→k1q,k

i

]q
U

q50
D . ~C3!

After some algebra we can rewrite this as

F5
1

N2 (
k,K

11cosk cosK

11e2~cosK2cosk!2 , ~C4!

G15
4g1tc

N (
K

cosK
cosK2cosk

11e2~cosK2cosk!2 , ~C5!

G25
2tc

N (
K

~g012g112g1 cosk cosK !

3
12e2~cosK2cosk!2

@11e2~cosK2cosk!2#2 ~C6!

with e52Jtc . Converting the sum~C4! into an integral, we
obtain

F5
~114e2!K~2i e!2E~2i e!

pe2 , ~C7!

whereK(x) and E(x) are the complete elliptic integrals o
the first and second kind, respectively.

The expressions forG1 andG2 can easily be integrated a
well, but since both quantities are of the order of magnitu
of max(g0,g1)tc /(11e2) which is assumed to be muc
smaller than unity@Eq. ~B4!#, they can be neglected and wi
not be given here.
ys.
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