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1 Preliminaries

Let S = (s1, · · · , sN ) represent the primary structure withsi ∈ {H, P}. Let xi = (x1
i , x

2
i , · · · , xD

i )
represent the lattice location inD dimensions of theith amino acid in the primary structure. Collectively,
we refer to allxi asX. If we consider aD-dimensional hypercubic lattice (other lattices will be similar),
then the domain of eachxd

i is {0, · · · , N − 1}. We represent each value in binary using⌈log2 N⌉ Boolean
variables. IfN is not a power of 2, then we do not need to add a constraint that says the binary representation
of xd

i is less thanN because other constraints will enforce legal folds. We definen = ⌈log2 N⌉.
We writexd

i in terms of Boolean variables as

xd
i =

n−1∑

α=0

2αbd
i,α

wherebd
i,α is theα bit in the binary representation ofxd

i .
It will be convenient for subsequent modeling to define a 1-to-1 functionf(x) that maps a lattice location

to an integer. For hypercubic lattices we can take1

f(x1
i , x

2
i , · · · , xD

i ) = x1
i + Nx2

i + · · · + ND−1xD
i .

We also viewf as a function of thenD Boolean variablesb·i,·. Further, on hypercubic lattices we observe
that two lattice locationsxi andxj are neighbours iff

|f(xi) − f(xj)| = 1 or |f(xi) − f(xj)| = N or · · · or |f(xi) − f(xj)| = ND−1. (1)

2 The energy function

There are three terms in the energy function to account for:

1. self-avoidance: making sure that the tertiary structuredoes not represent a fold that doubly occupies
a lattice site

2. valid walk: making sure that the tertiary structure is connected

3. pairwise potential: counting the number of neighbouringH-H interactions in the tertiary structure

1It is necessary that this function is linear in its arguments.
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Terms 1 and 2 are hard constraints and 3 enters as the optimization objective.
Before we derive energy contributions accounting for each requirement we note the symmetries of the

problem. Any fold can be rigidly translated and acted upon byany element from the symmetry group of the
lattice, and this will preserve the energy of the fold. We would like to eliminate all such symmetries, and we
can eliminate translations and rotations by clamping a pairof neighbouring amino acids to a specific pairs
of adjacent lattice locations. This means that any primary structure of lengthN is effectively only of length
N − 2. We clamp the middle of the primary sequence, amino acidssi∗ ≡ s⌊N/2⌋ andsi∗+1 ≡ s⌊N/2⌋+1 to
lattice locationsxi∗ = (⌊N/2⌋, ⌊N/2⌋, · · · , ⌊N/2⌋) andxi∗+1 = (⌊N/2⌋ + 1, ⌊N/2⌋, · · · , ⌊N/2⌋)

2.1 Self-avoidance

The self avoidance requirement can be enforced by requiringthat no pair of amino acids have the samef(x)
value. More formally, we require∀i, j f(xi) 6= f(xj) or equivalently2

∀i, j
(
f(xi) ≤ f(xj) − 1 ∨ f(xj) ≤ f(xi) − 1

)
.

This generates
(N

2

)
− 1 constraints each of which is a disjunction of linear inequalities.3 We represent the

disjunction of linear inequalities as follows: For eachi, j we introduce a Boolean variableci,j, and write the
disjunction of constraints as the conjunction

(
f(xi) − f(xj) + 1 ≤ NDci,j

)
∧

(
f(xj) − f(xi) + 1 ≤ ND(1 − ci,j)

)

whereND is an upper bound on the value of bothf(xi)− f(xj) + 1 andf(xj)− f(xi) + 1. If ci,j = 1 the
first constraint is trivially satisfied asND is an upper bound, and the second constraint is active. If on the
other handci,j = 0, then the first constraint is active, and the second is trivially satisfied.

Next, we convert the inequality constraints to equality constraints. We write the constraints as

(
f(xi) − f(xj) − NDci,j ≤ −1

)
∧

(
f(xj) − f(xi) + NDci,j ≤ ND − 1)

)
.

The maximal slackness of the left/right constraint is2(ND − 1)/2ND respectively. Thus, for eachi, j
pair we need to introduce at most⌈log2 2ND⌉ = 1 + Dn slack variablessi,j;α representing the slackness.
Further, since only one of the constraints can ever be active, then a single set of slack variables is sufficient.
Thus, we can write the pair of inequality constraints as the pair of equality constraints

f(xi) − f(xj) − NDci,j +

Dn∑

α=0

2αsi,j;α + 1 = 0

f(xj) − f(xi) + NDci,j +
Dn∑

α=0

2αsi,j;α + 1 − ND = 0

Note that the sums onα extend to includeDn, and do not stop atDn − 1 since the slackness extends to
2ND. These equality constraints contribute as penalties to theobjective by squaring the left hand side of
each equality constraint. This will contribute

(
N
2

)
− 1 quadratic terms (in the sum overi > j exclude the

2Note that both constraints cannot simultaneously be true.
3Recall that two amino acids are fixed to neighbouring latticelocations and do not need to be accounted for.
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fixed pair):

E1(X) = λ1

∑

i>j

{(

f(xi) − f(xj) − NDci,j +

n∑

α=0

2αsi,j;α + 1

)2

+

(

f(xj) − f(xi) + NDci,j +

n∑

α=0

2αsi,j;α + 1 − ND

)2
}

.

λ1 is the multiplier adjusting the weight of this self-avoidance penalty.

Variable count: The total new variable count is
((N

2

)
−1

)
(1+1+Dn) =

((N
2

)
−1

)
(Dn+2) to account

for both the indicator variablesci,j (one peri, j pair), and the slack variablessi,j;α (1 + Dn per i, j pair).
There are

(N
2

)
− 1 pairs to check since the two mid-point clamped amino acidssi∗ andsi∗+1 do not need to

be checked.

2.2 Valid walks

Valid walks require that neighbouring amino acids in the primary structure are neighbours on the lattice once
mapped to their tertiary structure. Two lattice locationsxi andxj are neighbours iff‖xi − xj‖

2 = 1. The
Euclidean distance is clearly a quadratic function and can be represented without additional variables.

If the self avoidance constraint has been imposed with a large penalty then‖xi − xj‖
2 must be greater

than or equal to 1. Thus, we may impose the penalty

E2(X) = λ2

N−1∑

i=1|i6=i∗

‖xi − xi+1‖
2

whereλ2 is sufficiently smaller thatλ1 to ensure that constraint 1 is always satisfied in a low energystate.

2.3 Counting H-H bonds

To count the number of H-H interactions4 we use an indicator variableri,j which if 1 implies that theith
andjth amino acids are neighbours on the lattice. With this definition we can count the number of H-H
interactions by minimizing

−
∑′

i,j

ri,j

where the primed sum is restricted to those amino acids wheresi = H andsj = H, and where the separation
|i − j| is greater than 1 (so that they are not neighbours along the primary structure). On bipartite lattices,
like the hypercubic lattice, we can further restrict thingsto amino acids both being H that are separated by
|i − j| = 3, 5, 7, · · · . It is only these possibilities that will allow for an H-H interaction.

Maximizing this term will setri,j to 1, and in that case we want to trigger constraints that check if xi and
xj are neighbours. If they are not, then the penalty is large enough so thatri,j will remain zero. Ifri,j = 1
then latticexi andxj can be neighbours in2D possible ways, one if which will be true. We indicate which

4The results of this section are straightforwardly extendedto larger amino acid alphabets, and more complex pairwise interaction
energies.

3



neighbour through the Booleansdi,j;k wherek ranges over the2D possible neighbours. Thus, we want to
express the requirement that

ri,j = 1 →
2D∑

k=1

di,j;k = 1. (2)

Thedi,j;k variables turn on penalties checking for neighbours; that is we add terms

di,j;1

(
f(xi) − f(xj) − 1)

)2
+ di,j;2

(
f(xi) − f(xj) + 1)

)2
+

di,j;3

(
f(xi) − f(xj) − N)

)2
+ di,j;4

(
f(xi) − f(xj) + N)

)2
+ · · · (3)

The implication constraint Eq. (2) is modeled as

∑

k

di,j;k − ri,j = 0.

Whenri,j = 1 this imposes the correct condition, and whenri,j = 0 this requires alldi,j;k to be zero so that
we don’t check the neighbourhood penalty terms.

The implication constraint contributes to the object by squaring the left hand side of the above equation.
We must also add the cubic penalty function Eq. (3). The totalcontribution to the optimization objective is

E3(X) =
∑′

i>j

{

− ri,j + λ1
3

( 2D∑

k=1

di,j;k − ri,j

)2

+

λ2
3di,j;1

(
f(xi) − f(xj) − 1)

)2
+ λ2

3di,j;2

(
f(xi) − f(xj) + 1)

)2
+

λ2
3di,j;3

(
f(xi) − f(xj) − N)

)2
+ λ2

3di,j;4

(
f(xi) − f(xj) + N)

)2
+ · · ·

}

The weightsλ1
3 andλ2

3 adjust the importance of the penalty terms.

Variable count: We must linearize the quadratic terms in the squares appearing in Eq. (3) using variables
yd

i,j,α;k = di,j;kb
d
i,α.5 For eachi, j pair this adds2nD×2D = 4nD2 variables. In addition there is the single

ri,j and the2D di,j;k variables. Thus, if there areH(S) amino acids that enter the sum for some primary
structureS, then the total number of new variables isH(S)(1 + 2D + 4nD2).6 This estimate is pessimistic
because, depending on the primary structure, some possiblei andj may recur in the set of possible pairs. In
such cases we can reuse some of the previously defined pairs, but I will not account for such improvements
here.

3 Total variable count

The total objective function is taken as

E(X) = E1(X) + E2(X) + E3(X).

5Since we require thati, j are not neighbours inS, none of these new pairwise variables have previously been defined.
6H(S) counts the number of pairs inS wheresi = H, sj = H, and|i − j| = 3, 5, 7, · · · .
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In addition to the(N − 2)nD base variablesbd
i,k we have had to introduce other variables, the total count is

(N − 2)nD
︸ ︷︷ ︸

base

+

((
N

2

)

− 1

)

(Dn + 2)

︸ ︷︷ ︸

self avoidance

+H(S)
(

1 + 2D + 4nD2
)

︸ ︷︷ ︸

H-H counting

.

In the worst case whereS = (H H H · · ·H), i.e. all H,H(S) = O(N2). The order of each contribution is

O(NnD) + O(N2nD) + O(N2nD2).

The highest order term isO(N2nD2). ForN = 32, D = 3 we haven = 5 andH(S) =
(N−1

2

)
= 465 on

general lattices, andH(S) = 240 on bipartite lattices.7 The variable count on a bipartite lattice is therefore

30(5)(3) + (496 − 1)(17) + 240(1 + 6 + 180) = 53745

This is the worst case. For example, for the primary structure PHHHPPHHHHPHHHHHHPHPHPPHHH-
PPPHHH, which has 11 Ps, hasH(S) = 100 (on bipartite lattices), and the total variable count is 27565.

4 Ideas for further reductions

Here are some ideas for further reducing the variable count and/or increasing the relative utility of this
approach vs. classical approaches:

• Exploit geometric symmetries (further pin the fold so that possible degenerate folds are eliminated):
might give prefactor difference in number of variables

• The H-H counting term as introduced here has cubic terms; a lot of variables are introduced to reduce
to quadratic. It is likely that by doing something like was done in the self-avoidance encoding these
cubic terms could be eliminated

• Apply these basic concepts to more realistic lattice modelswithout increasing the number of variables
(ie make the problem harder/more realistic but keep the variable count fixed by construction)

I suspect that the limit for encoding into binary variables here is limited by eitherO(N2) orO(N log N).
If it’s the former then we’re up against the limit and gains are to be had by reducing the prefactor. To see if
things can be done inO(N log N) I would try to see if the self-avoidance term can be done inO(N log N)
variables somehow. If it can then I suspect theH − H term can be also.

7I evaluatedH(S) with Matlab code, I could figure out a closed form for the string of all H.
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