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1 Preiminaries

Let S = (s1,---,sxn) represent the primary structure with € {H,P}. Letx; = (z},22,---,2P)

represent the lattice location i dimensions of théth amino acid in the primary structure. Collectively,
we refer to allx; asX. If we consider aD-dimensional hypercubic lattice (other lattices will beniar),
then the domain of eact is {0,--- , N — 1}. We represent each value in binary usjigz, N| Boolean
variables. IfN is not a power of 2, then we do not need to add a constraintdlyattee binary representation
of 2¢ is less thanV because other constraints will enforce legal folds. We defir- [log, N7.

We writez¢ in terms of Boolean variables as

n—1
d __ ard
T; = E 2 bi,a
a=0

whereb? , is thew bit in the binary representation of .
It will be convenient for subsequent modeling to define a-1-fonction f (x) that maps a lattice location
to an integer. For hypercubic lattices we can take
flzl,a?, - 2Py =al 4+ Na? - + NP7 1zD,

R R ) )

We also viewf as a function of thexD Boolean variable$; .. Further, on hypercubic lattices we observe
that two lattice locations; andx; are neighbours iff

Fo) — fe) =1 or [f(x) — fix)l =N or - or [f(x)~ f(x;)| = NPT (@)

2 Theenergy function

There are three terms in the energy function to account for:

1. self-avoidance: making sure that the tertiary structlores not represent a fold that doubly occupies
a lattice site

2. valid walk: making sure that the tertiary structure isreected

3. pairwise potential: counting the number of neighboukihigl interactions in the tertiary structure

LIt is necessary that this function is linear in its arguments



Terms 1 and 2 are hard constraints and 3 enters as the ogtonindjective.

Before we derive energy contributions accounting for eacjuirement we note the symmetries of the
problem. Any fold can be rigidly translated and acted upomiy element from the symmetry group of the
lattice, and this will preserve the energy of the fold. We iddike to eliminate all such symmetries, and we
can eliminate translations and rotations by clamping a gfaneighbouring amino acids to a specific pairs
of adjacent lattice locations. This means that any primancture of lengthV is effectively only of length
N — 2. We clamp the middle of the primary sequence, amino agidss s| n/2) ands;«+1 = s|n/2)+1 10
lattice locationsx;« = (| N/2], |[N/2],--- ,|N/2]) andx;«1 = (| N/2] +1,|N/2],--- ,|N/2])

2.1 Sdf-avoidance

The self avoidance requirement can be enforced by requinaigno pair of amino acids have the safii&)
value. More formally, we requirei, j f(x;) # f(x;) or equivalently

Vi, j (f(xi) < f(x5) =1V f(x)) < f(xi) = 1).

This generate@f) — 1 constraints each of which is a disjunction of linear inedies® We represent the
disjunction of linear inequalities as follows: For each we introduce a Boolean variabig;, and write the
disjunction of constraints as the conjunction

(f6xi) = F(x)) +1 < NPeig) A (F(x5) = f() + 1< NP (1= ci5))

whereN” is an upper bound on the value of battx;) — f(x;) + 1 andf(x;) — f(x;) + 1. If ¢; ; = 1 the
first constraint is trivially satisfied a&” is an upper bound, and the second constraint is active. Ifien t
other hand:; ; = 0, then the first constraint is active, and the second is tiyvsatisfied.

Next, we convert the inequality constraints to equalitystaaints. We write the constraints as

(f(xi) = f(x;) = NPeiy < 1) A (f(x5) = f(xi) + NPeij < NP —1)).

The maximal slackness of the left/right constrainR{gv? — 1)/2NP respectively. Thus, for each;
pair we need to introduce at modbg, 2N”] = 1 + Dn slack variabless; ;. representing the slackness.
Further, since only one of the constraints can ever be atkiea a single set of slack variables is sufficient.
Thus, we can write the pair of inequality constraints as thie @f equality constraints

Dn
f(xl) - f(xj) - NDCi,j + Z QQSi,j;a +1=0
a=0
Dn
Fxj) = f(x) + NPej + Z 2%5i jia+1— NP =0
a=0
Note that the sums on extend to includeDn, and do not stop abn — 1 since the slackness extends to

2NP . These equality constraints contribute as penalties tobiective by squaring the left hand side of
each equality constraint. This will contribu(éy) — 1 quadratic terms (in the sum over> j exclude the

2Note that both constraints cannot simultaneously be true.
®Recall that two amino acids are fixed to neighbouring lattications and do not need to be accounted for.



fixed pair):

El(X):/\lz{<f(xi)—f( —NPej+ Zz sw+1> +

1>7

2
<f(Xj) — f(XZ') + NDCZ‘,]' + Z 2a8i,j;a +1-— ND> }

a=0

A1 is the multiplier adjusting the weight of this self-avoidanpenalty.

Variablecount: The total new variable count i) — 1)(1+ 1+ Dn) = ((}) —1)(Dn +2) to account
for both the indicator variables ; (one peri, j pair), and the slack variables ;... (1 + Dn peri, j pair).
There are(N) — 1 pairsto check since the two mid-point clamped amino agjdands;-, do not need to
be checked.

2.2 Valid walks

Valid walks require that neighbouring amino acids in theraniy structure are neighbours on the lattice once
mapped to their tertiary structure. Two lattice locatispsandx; are neighbours iffx; — x;||> = 1. The
Euclidean distance is clearly a quadratic function and @arepresented without additional variables.

If the self avoidance constraint has been imposed with & lpegalty therx; — x;{|* must be greater
than or equal to 1. Thus, we may impose the penalty

N-1
By(X) =X > xi—xial?
i=1]ii*

where\, is sufficiently smaller thak; to ensure that constraint 1 is always satisfied in a low ensiajg.

2.3 Counting H-H bonds

To count the number of H-H interactiche/e use an indicator variable ; which if 1 implies that theth
and jth amino acids are neighbours on the lattice. With this défimiwe can count the number of H-H
interactions by minimizing
/
iij

where the primed sum is restricted to those amino acids wheteH ands; = H, and where the separation
|i — j| is greater than 1 (so that they are not neighbours along thrapr structure). On bipartite lattices,
like the hypercubic lattice, we can further restrict thingsamino acids both being H that are separated by
li —j] =3,5,7,---. Itis only these possibilities that will allow for an H-H &raction.

Maximizing this term will set-; ; to 1, and in that case we want to trigger constraints thaticlieg and
x; are neighbours. If they are not, then the penalty is largegmso that; ; will remain zero. Ifr; ; = 1
then latticex; andx; can be neighbours inD possible ways, one if which will be true. We indicate which

“The results of this section are straightforwardly extertdddrger amino acid alphabets, and more complex pairwtsedntion
energies.



neighbour through the Booleads;.,, wherek ranges over theD possible neighbours. Thus, we want to
express the requirement that

2D
Ti,j =1— Zdi7j§k =1. (2)
k=1
Thed, ;.;. variables turn on penalties checking for neighbours; thate add terms
2 2
di i1 (f(xi) = f(x5) = 1))" +dija (F(x:) = f(x5) + 1))+
i (FOxi) = F0%3) = N))? 4 i gua () = F(x5) + V) - 3)

The implication constraint Eq. (2) is modeled as
> dijr—rij =0.
k

Whenr; ; = 1 this imposes the correct condition, and when = 0 this requires all; ;.;, to be zero so that
we don't check the neighbourhood penalty terms.

The implication constraint contributes to the object byasing the left hand side of the above equation.
We must also add the cubic penalty function Eq. (3). The tmatribution to the optimization objective is

2D 2
/
E3(X) = Z { — Tt /\é <Z d@j;k — ri,j> +

1>] k=1

Adi o (f(xi) — f(x5) — 1))2 + A3di g (f (%) — f(x5) + 1))2+

Ndijia(f(xi) = f(x5) — N))2 + A3d; g (f(xi) = f(x)) + N))2 o }
The weights\{ and A3 adjust the importance of the penalty terms.

Variablecount: We must linearize the quadratic terms in the squares apgearEqg. (3) using variables
Y o = di kb .- For eachi, j pair this add@n D x 2D = 4nD? variables. In addition there is the single
r;,; and the2D d; ;. variables. Thus, if there arE(S) amino acids that enter the sum for some primary
structureS, then the total number of new variablesHgS) (1 + 2D + 4nD?).6 This estimate is pessimistic
because, depending on the primary structure, some possibt&j may recur in the set of possible pairs. In
such cases we can reuse some of the previously defined paitsyiti not account for such improvements
here.

3 Total variable count
The total objective function is taken as

E(X)=FEi(X)+ E2(X) + Eg(X)

®Since we require that j are not neighbours i, none of these new pairwise variables have previously beéned.
®H(S) counts the number of pairs Biwheres; = H, s; = H, and|i — j| = 3,5,7,---.



In addition to the( NV — 2)n.D base variables?, we have had to introduce other variables, the total count is

(N —2)nD + ((g) - 1) (Dn + 2) + H(S) (1 oD+ 4nD2> .

base

self avoidance H-H counting

In the worst case wherg = (HH H--- H), i.e. all H,H(S) = O(N?). The order of each contribution is
O(NnD) + O(N*nD) + O(N*nD?).

The highest order term ©(N?nD?). For N = 32, D = 3 we haven = 5 andH(S) = (V,') = 465 on
general lattices, ant{(S) = 240 on bipartite latticed. The variable count on a bipartite lattice is therefore

30(5)(3) + (496 — 1)(17) + 240(1 + 6 + 180) = 53745

This is the worst case. For example, for the primary strecRiHHHPPHHHHPHHHHHHPHPHPPHHH-
PPPHHH, which has 11 Ps, h&ag§S) = 100 (on bipartite lattices), and the total variable count is&5

4 |deasfor further reductions

Here are some ideas for further reducing the variable comdtoa increasing the relative utility of this
approach vs. classical approaches:

e Exploit geometric symmetries (further pin the fold so thasgible degenerate folds are eliminated):
might give prefactor difference in number of variables

e The H-H counting term as introduced here has cubic termg;d i@riables are introduced to reduce
to quadratic. It is likely that by doing something like wasédn the self-avoidance encoding these
cubic terms could be eliminated

¢ Apply these basic concepts to more realistic lattice modélsout increasing the number of variables
(ie make the problem harder/more realistic but keep thebricount fixed by construction)

| suspect that the limit for encoding into binary variablesehis limited by eithe©(N?) or O(N log N).
If it's the former then we’re up against the limit and gaine & be had by reducing the prefactor. To see if
things can be done i@(N log V) | would try to see if the self-avoidance term can be don@{ log N)
variables somehow. If it can then | suspect fiie- H term can be also.

"I evaluatedH(S) with Matlab code, | could figure out a closed form for the iraf all H.
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