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Abstract

These are my own notes on Hartree-Fock theory of fermions. Please let
me know if you �nd mistake/typos. Please don�t distribute these notes,
since I can not guarantee their accuracy.

1 Hamiltonian

These are my personal notes (please don�t distribute, since I can not guarantee
their accuracy) that cover Hartree-Fock approximation as well as other necessary
things to make a hopefully coherent story. The non-relativistic Hamiltonian for
N electrons and M nuclei is

bH =
NX
i=1

(�1
2
r2i ) +

NX
i=1

NX
j>i

1

rij

�
NX
i=1

MX
A=1

ZA
riA

+
MX
A=1

(�1
2
r2A) +

MX
A=1

MX
B>A

ZAZB
RAB

where I think the notation is self-explanatory, the capital letters denote the
nuclei. The Born-Oppenheimer approximation assumes that, because of the
mass di¤erence, we can ignore kinetic energy of the nuclei and that the po-
tential energy due to nuclear-nuclear interactions is a constant, which we can
ignore, because the zero of energy is de�ned arbitrarily. I will also denote the
electron-nuclei interaction as vext(r). The nuclei information (i.e. coordinates
and charge...) will be a set of parameters, which we are given to us and we then
try to solve the electronic problem. Our Hamiltonian is
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bH =
NX
i=1

(�1
2
r2i ) +

NX
i=1

vext(ri) +
NX
i=1

NX
j>i

1

rij

=
NX
i=1

h(i) +
NX
i=1

NX
j>i

1

rij

bH	 = E	

for the many body energy and wavefunction 	 = 	(x1;x2; :::;xN ), where
xi = fri; sig. The usual story:

j	(x1;x2; :::;xN )j
2
dr1dr2:::drN = probability of �nding the system with

position coordinates between (r1; r2:::rN )

and (r1 + dr1; r2 + dr2:::rN + drN ) and spin

coordinates (s1; s2; :::; sN ):

The variational principle says that any function will have an energy expec-
tation value that is greater than the true ground state, other than the exact
ground state wavefunction. Proof:(Sakurai-I, page-313)

For a trial ket je0i for the ground state of the(any) system (the system
has ground state energy E0)

H =
he0jHje0i
he0je0i

for the complete set of states fjkig, where Hjki = Ekjki

je0i = 1X
k=0

jkihkje0i
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H =

1X
k=0

���hkje0i���2Ek
1X
k=0

���hkje0i���2

=

1X
k=0

���hkje0i���2 (Ek � E0 + E0)
1X
k=0

���hkje0i���2

=

1X
k=0

���hkje0i���2 (Ek � E0)
1X
k=0

���hkje0i���2 + E0

� E0:

In general the spirit of the current approach is to �nd the wavefunction from
which the density of the system can be calculated trivially

E[	] = T [	] + Vext[	] + Vee[	]

E0 = min
	

E[	]:

The Hartree-Fock approximation is one method for �nding the approximate
wavefunction, from which everything else is obtained.

2 Hartree-Fock approach

Going back to

bH =
NX
i=1

h(i) +
NX
i=1

NX
j>i

1

rij

2.1 Hartree:

If one didn�t have to worry about Coulomb interaction, the Hamiltonian would
be separable to single particle wavefunctions can be found

h(i)�k(ri) = �k�k(ri)

The spin the particles can be included by using the single particle wavefunc-
tion  k(xi) = �k(ri)�(si); �k(ri)�(si) for the spin functions �(si) and �(si).
Then the Hartree ground state wavefunction is then given by
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	(x1;x2; :::;xN ) =  1(x1) 2(x2)::: N (xN )

one could use this as a variational wavefunction and ask: which set of
single particle wavefunctions  k(ri) can minimize the energy via the
variational principle. Of course, there is no guarantee that one reaches a ("true":
physical ground state of the system) minimum with this approach, nevertheless
this is a possibility (assuming normalization of the state).

EH =
D bHE = NX

i=1

Z
 �i (xi)(�

1

2
r2i ) i(xi)dxi +

NX
i=1

Z
 �i (xi)vext(ri) i(xi)dxi

+
NX
i=1

NX
j>i

Z Z
 �i (xi) 

�
j (xj)

1

rij
 i(xi) j(xj)dxidxj

EH =
NX
i=1

Z
 �i (xi)(�

1

2
r2i ) i(xi)dxi +

NX
i=1

Z
j i(xi)j

2
vext(ri)dxi

+
NX
i=1

NX
j>i

Z Z j i(xi)j
2 �� j(xj)��2
rij

dxidxj :

The above equation is what I would have written if I had to guess the energy
for a classical electron gas would be, i.e. just the addition of kinetic energy, the
classical Coulomb energy and the external energy of the system (of course there
would be no wavefunctions in the classical picture). The above wavefunction
	(x1;x2; :::;xN ) =  1(x1) 2(x2)::: N (xN ) has no correlation in it. This is
easy to see since the probability of �nding a particle with coordinates xi is
independent of all other particles, since the function is separable. Another
problem is that the wavefunction does not satisfy the Pauli exclusion principle
(this is nonrelativistic quantum mechanics, so we have to enforce Pauli exclusion
principle by hand).

2.2 Hartree-Fock

Lets consider a two particles system, one could write the following wavefunction
that would satisfy the Pauli exclusion principle

	(x1;x2) =
1p
2
( 1(x1) 2(x2)�  1(x2) 2(x1))

which is obviously anti-symmetric under exchange of the two particles

	(x2;x1) =
1p
2
( 1(x2) 2(x1)�  1(x1) 2(x2)) = �	(x1;x2)

	(x2;x1) =
1p
2

����  1(x1)  2(x1)
 1(x2)  2(x2)

���� � 1p
2
det( 1 2)
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note that 	(x;x) = 0, which is nice. We then generalize the above anti-
symmetrization to N particles and write the N particle Slater determinant:

	(x1;x2; :::;xN ) =
1p
N !

����������
 1(x1) : : :  N (x1)

: :
: :
: :

 1(xN ) : : :  N (xN )

����������
=

1p
N !
det( 1 2::: N ):

"The Hartree-Fock approximation is the method whereby the orthonormal
orbits  i are found that minimize [the energy] for this determinantal form of
	." Now we can evaluate the energy expectation value (Parr-Yang page-7 and
long derivation in Szabo and Ostlund)

EHF =

Z
::::

Z
	�(x1;x2; :::;xN ) bH	(x1;x2; :::;xN )dx1dx2:::dxN

EHF [f jg] =

NX
i=1

Hi +
1

2

NX
i;j=1

(Jij �Kij)

where

Hi =

Z
 �i (x)[�

r2

2
+ vext(r)] i(x)dx

Jij =

ZZ
 �i (x1) i(x1)

1

r12
 �j (x2) j(x2)dx1dx2 =

ZZ
j i(x1)j

2 1

r12

�� j(x2)��2 dx1dx2
Kij =

ZZ
 �i (x1) j(x1)

1

r12
 i(x2) 

�
j (x2)dx1dx2

it is important to note that the self interaction (SI) term is taken care of
very beautifully (and I think accidentally) in the Hartree-Fock approximation.

Jii =

ZZ
 �i (x1) i(x1)

1

r12
 �i (x2) i(x2)dx1dx2

Kii =

ZZ
 �i (x1) i(x1)

1

r12
 i(x2) 

�
i (x2)dx1dx2

Jii �Kii = 0

This SI energy is a problem for some of the more sophisticated many body
methods, that is why I �nd it interesting that HF, i.e. the simplest approxima-
tion seems to deal with it in such a nice way, I think this just say Pauli exclusion
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principle is fully taken care of, whereas in other approximations, this might not
be true, but this is just a guess.
Now we will use the Lagrange multiplier method to minimize the above

energy with respect to the wavefunctions  i using the constraintZ
 �i (x) j(x)dx = �ij

i.e.

�(EHF [f jg]�
X
ij

�ij(

Z
 �i (x) j(x)dx��ij) = 0

which gives

@

@ �k
EHF [f jg]�

X
ij

�ij
@

@ �k

�Z
 �i (x) j(x)dx��ij

�
= 0

@

@ �k

24 NX
i=1

Hi +
1

2

NX
i;j=1

(Jij �Kij)

35�X
ij

�ij
@

@ �k

�Z
 �i (x) j(x)dx��ij

�
= 0

NX
i=1

@

@ �k
Hi +

1

2

NX
i;j=1

(
@

@ �k
Jij �

@

@ �k
Kij)�

X
ij

�ij
@

@ �k

�Z
 �i (x) j(x)dx��ij

�
= 0

[�r
2

2
+ vext(r)] k(x)dx

+
1

2

@

@ �k

NX
j=1

ZZ
 �k(x1) k(x1)

1

r12
 �j (x2) j(x2)dx1dx2

+
1

2

@

@ �k

NX
i=1

ZZ
 �i (x1) i(x1)

1

r12
 �k(x2) k(x2)dx1dx2

�1
2

@

@ �k

NX
j=1

ZZ
 �k(x1) j(x1)

1

r12
 k(x2) 

�
j (x2)dx1dx2

�1
2

@

@ �k

NX
i=1

ZZ
 �i (x1) k(x1)

1

r12
 i(x2) 

�
k(x2)dx1dx2

= �
X
j

�kj
@

@ �k

�Z
 �k(x) j(x)dx��ij

�
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[�r
2

2
+ vext(r)] k(x)dx

+
NX
j=1

Z
 �j (x2) j(x2)

1

r12
dx2 k(x1)

�
NX
j=1

Z
 j(x1)

1

r12
 �j (x2) k(x2)dx2

=
X
j

�kj
@

@ �k

�Z
 �i (x) j(x)dx��ij

�
By simply carrying through the derivatives (and the complex conjugate of

the above analysis), one ends up Par-Yang equation-1.3.7-1.3.12

bF i(x) =

NX
j=1

�ij j(x)

bF = �r
2

2
+ vext(r) + bj � bk

bj(x1)f(x1) =
NX
k=1

Z
 �k(x2) j(x2)

1

r12
f(x1)dx2

bk(x1)f(x1) =
NX
k=1

Z
 �k(x2)f(x2)

1

r12
 k(x1)dx2

the general form bF i(x) = NX
i=1

�ij j(x) include the general Lagrange multi-

pliers �ij , which is Hermitian, i.e. �ij = ��ji. I will come back to this in a minute.
From the above equation

Z
 �i (x) bF i(x)dx =

NX
i=1

�ij

Z
 �i (x) j(x)dx =�ii = �i

= Hi +
NX
j=1

(Jij �Kij)

summing over i

NX
i=1

�i =
NX
i=1

Hi +
NX

i;j=1

(Jij �Kij)

NX
i=1

�i =

NX
i=1

Hi +
1

2

NX
i;j=1

(Jij �Kij) +
1

2

NX
i;j=1

(Jij �Kij)
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but we already know that

EHF =
NX
i=1

Hi +
1

2

NX
i;j=1

(Jij �Kij)

therefore

NX
i=1

�i = EHF +
1

2

NX
i;j=1

(Jij �Kij)

EHF =
NX
i=1

�i �
1

2

NX
i;j=1

(Jij �Kij)

The term 1
2

NX
i;j=1

(Jij �Kij) is exactly the total Coulomb contribution to the

Hartree-Fock Theory. An important point that we will come back to in DFT is

that EHF 6=
NX
i=1

�i (There is a, somewhat physical, discussion of this term on

page 124 or Szabo/Ostlund). So the above discussion gives the equations

bF i(x) = NX
i=1

�ij j(x)

we can always change the basis as to diagonalize the matrix �, see pages
10-11 of Parr-Yang and page-120 of Szabo-Ostlund. Therefore one has to deal
with bF i(x) = �i j(x):

From the expression for

Jij =

ZZ
 �i (x1) i(x1)

1

r12
 �j (x2) j(x2)dx1dx2

Kij =

ZZ
 �i (x1) j(x1)

1

r12
 i(x2) 

�
j (x2)dx1dx2

it is clear that the Hartree-Fock equations are self-consistent equations that
have have to be solved iteratively. In practice, to solve Hartree-Fock equa-
tions, one can introduce a �xed basis and span the unknown single particle
wavefunctions in that basis. This leads to matrix equations and hence an eigen-
value/eigenvector problem (see page 136-rest of chapter 3 of Szabo and Ostlund).

 i(x) =
KX
�=1

Ci���(x)

i = 1:::K
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where the set f��g is a set of known functions. If the set is complete,
this would give exact solutions, and any complete set of basis could be used.
In practice, since one can only deal with �nite matrices, the choice of basis is
important. Di¤erent forms of the expansions are appropriate for a given problem
at hand. "In the case of the restricted closed-shell Hartree Fock one gets the
"Roothaan" equations, whereas for unrestricted open-shell Hartree-Fock, one
has "Pople-Nesbet" equations." For a detailed discussion, see sections 3.4-3.8 of
Szabo-Ostlund.

The exchange term: I want to go back and look at the exchange term and
consider two electrons.

j	(x2;x1)j2 dx1dx2 =
1

2
j 1(x2) 2(x1)�  1(x1) 2(x2)j

2
dx1dx2

=
1

2
( �1(x2) 

�
2(x1)�  �1(x1) �2(x2)) ( 1(x2) 2(x1)�  1(x1) 2(x2)) dx1dx2

=
1

2

0@ j 1(x2)j
2 j 2(x1)j

2
+ j 1(x1)j

2 j 2(x2)j
2

� �1(x1) 2(x1) �2(x2) 1(x2)
� 1(x1) �2(x1) 2(x2) �1(x2)

1A dx1dx2

the probability of �nding the particle 1 at space coordinates 1 and particle 2
at space coordinate 2, is obtained by by integrating over the spin degrees of
freedom: P (r1; r2)

P (r1; r2) =
1

2

0BBBBBBBBB@

Z Z
j 1(x2)j

2 j 2(x1)j
2
ds1ds2

+

Z Z
j 1(x1)j

2 j 2(x2)j
2
ds1ds2

�
Z Z

 �1(x1) 2(x1) 
�
2(x2) 1(x2)ds1ds2

�
Z Z

 1(x1) 
�
2(x1) 2(x2) 

�
1(x2)ds1ds2

1CCCCCCCCCA
Case-1: two fermions with di¤erent spins

 1(x1) = �1(r1)�(s1)

 1(x2) = �1(r2)�(s2)

 2(x1) = �2(r1)�(s1)

 2(x2) = �2(r2)�(s2)
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P (r1; r2) =
1

2

0BBBBB@

Z Z
j 1(x2)j

2 j 2(x1)j
2
ds1ds2 +

Z Z
j 1(x1)j

2 j 2(x2)j
2
ds1ds2

���1(r1)�2(r1)��2(r2)�1(r2)
Z
��(s1)�(s1)ds1

Z
��(s2)�(s2)ds2

�
Z Z

 1(x1) [ 2(x1)]
�
 2(x2) [ 1(x2)]

�
ds1ds2

1CCCCCA
=

1

2

�
j�1(x2)j

2 j�2(x1)j
2
+ j�1(x1)j

2 j�2(x2)j
2
�

Case-2: two fermions with the same spin

 1(x1) = �1(r1)�(s1)

 1(x2) = �1(r2)�(s2)

 2(x1) = �2(r1)�(s1)

 2(x2) = �2(r2)�(s2)

P (r1; r2) =
1

2

0BBB@
j�1(x2)j

2 j�2(x1)j
2
ds1ds2 + j�1(x1)j

2 j�2(x2)j
2

�
Z Z

[ 1(x1)]
�
 2(x1) [ 2(x2)]

�
 1(x2)ds1ds2

�
Z Z

 1(x1) [ 2(x1)]
�
 2(x2) [ 1(x2)]

�
ds1ds2

1CCCA
=

1

2

�
j�1(x2)j

2 j�2(x1)j
2
ds1ds2 + j�1(x1)j

2 j�2(x2)j
2

�2Re (��1(r1)�2(r1)��2(r2)�1(r2))

�
Note the minus sign, the electron density includes a "hole" (Fermi hole)

due to Pauli exclusion principle. This is simply saying that Pauli exclusion
principle keeps electrons away from each other independent of the
repulsive Coulomb interaction. We will come back to this in the context
of density matrices. The correlation energy is, usually, de�ned as the energy
beyond Hartree-Fock energy

Ecorr = E � EHF :

3 density matrix language

This section follows closely chapter 2 of Parr-Yang. I will �rst review the usual
density matrix formalism for both pure (the extended formalism for mixed states
is discussed in Parr-Yang, for example) and then go on to essentially write the
expectation value of a general Hamiltonian, using density matrices, which will
be then useful to see what is meant by HF and beyond....etc. For a pure state
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of N interacting particles j	i, the density matrix ( is used here, because � is
sometimes used for density)

bN = j	ih	j
the real space representation is then

hx01;x02; ::::;x0N jbN jx1;x2; ::::;xN i = hx01;x02; ::::;x0N j	ih	jx1;x2; ::::;xN i
= 	(x01;x

0
2; ::::;x

0
N )	

�(x1;x2; ::::;xN )

the usual properties of the pure state density matrix are

tr(j	ih	j) =

Z
hx1;x2; ::::;xN jbN jx1;x2; ::::;xN idx1:::dxN

=

Z
hx1;x2; ::::;xN j	ih	jx1;x2; ::::;xN idx1:::dxN = 1

which is the normalization condition. Also

bN � bN = j	ih	j	ih	j = bN
tr(b2N ) = 1

one can de�ne the following useful reduced-density matrices

2(x
0
1;x

0
2;x1;x2)

=
N(N � 1)

2

Z
� � �
Z
	(x01;x

0
2;x3; ::::;xN )	

�(x1;x2;x3; ::::;xN )dx3:::dxN

and

1(x
0
1;x1) = N

Z
� � �
Z
	(x01;x2; ::::;xN )	

�(x1;x2; ::::;xN )dx2:::dxN

then

tr(2(x
0
1;x

0
2;x1;x2)) =

ZZ
2(x1;x2;x1;x2)dx1dx2

=
N(N � 1)

2
�Z

� � �
Z
	(x1;x2;x3; ::::;xN )	

�(x1;x2;x3; ::::;xN )dx1dx2dx3:::dxN

=
N(N � 1)

2
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tr(1(x
0
1;x1)) =

Z
1(x1;x1)dx1

= N

Z
� � �
Z
	(x1;x2; ::::;xN )	

�(x1;x2; ::::;xN )dx1dx2:::dxN

= N

also

1(x
0
1;x1) =

2

N � 1

Z
2(x

0
1;x2;x1;x2)dx2

=
2

N � 1
N(N � 1)

2

Z
� � �
Z
	(x01;x2;x3; ::::;xN )	

�(x1;x2;x3; ::::;xN )dx2dx3:::dxN

= 1(x
0
1;x1)

Also 1(x1;x1) � 0 and 2(x1;x2;x1;x2) � 0 (i.e. are semide�nite) and
Hermitian

1(x
0
1;x1) = �1(x1;x

0
1)

2(x
0
1;x

0
2;x1;x2) = �2(x1;x2;x

0
1;x

0
2)

and from the antisymmetry of the wavefunction with respect to exchange
of particles, any reduced density matrix changes its sign on exchange of two
primed or two unprimed particle indices.

2(x
0
1;x

0
2;x1;x2) = �2(x02;x01;x1;x2) = �2(x01;x02;x2;x1) = 2(x

0
2;x

0
1;x2;x1)

as usual the expectation value of any operator is then

h bAi = tr( bAbN ) = tr(bN bA)
=

Z
hx01;x02; ::::;x0N jbN bAjx01;x02; ::::;x0N idx01:::dx0N

=

Z
hx01;x02; ::::;x0N jbN jx1;x2; ::::;xN ihx1;x2; ::::;xN j bAjx01;x02; ::::;x0N idx01dx1:::dx0NdxN

If bA is a single particle operator of the form
bA = NX

i=1

bA(xi;x0i)
then
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h bAi =
NX
i=1

Z
hx01;x02; ::::;x0N jbN jx1;x2; ::::;xN i �

hx1;x2; ::::;xN j bA(xi;x0i)jx01;x02; ::::;x0N idx1dx01:::dxNdx0N
=

NX
i=1

Z
hx1;x2; ::x0i::;xN jbN jx1;x2; ::xi::;xN i �

hxi j bA(xi;x0i)jx0i idx1:::dxidx0i:::dxN
=

NX
i=1

Z
hx1;x2; ::x0i::;xN j	ih	jx1;x2; ::xi::;xN i �

hxi j bA(xi;x0i)jx0i idx1:::dxidx0i:::dxN
=

NX
i=1

Z
	(x1;x2; ::x

0
i::;xN )	

�(x1;x2; ::xi::;xN )�

hxi j bA(xi;x0i)jx0i idx1:::dxidx0i:::dxN
but

1(x
0
1;x1) = N

Z
� � �
Z
	(x01;x2; ::::;xN )	

�(x1;x2; ::::;xN )dx2:::dxN

h bAi =
1

N

NX
i=1

Z
1(x

0
i;xi)hxi j bA(xi;x0i)jx0i idxidx0i

h bAi =
1

N

NX
i=1

Z
1(x

0
i;xi)A(xi;x

0
i)dxidx

0
i

I don�t quite understand equation 2.3.22 of Parr-Yang where they seem to
have reduced everything to particle-1!!

h bAiParr�Y ang = Z 1(x
0
1;x1)A(x1;x

0
1)dx1dx

0
1

For a two particle operator then (assumed to be local)

bB = NX
i;j=1

bB(xi;xj)
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h bBi =
NX

i;j=1

Z
hx01;x02; ::::;x0N jbN jx1;x2; ::::;xN i

�hx1;x2; ::::;xN j bB(xi;xj)jx01;x02; ::::;x0N idx1dx01:::dxNdx0N
=

NX
i;j=1

Z
hx01;x02; ::::;x0N j	ih	jx1;x2; ::::;xN i �

hx1;x2; ::::;xN j bB(xi;xj)jx01;x02; ::::;x0N idx1dx01:::dxNdx0N
=

NX
i;j=1

Z
	(x01;x

0
2; ::::;x

0
N )	

�(x1;x2; ::::;xN )�

hx1;x2; ::xi;xj ::;xN j bB(xi;xj)jx01;x02; ::x0i;x0j ::;x0N idx1dx01:::dxNdx0N
=

NX
i;j=1

Z
	(x1;x2; ::x

0
i;x

0
j ::;xN )	

�(x1;x2; ::xi;xj ::;xN )�

hxi;xj j bB(xi;xj)jx0i;x0jidx1::dx0idx0jdxidxj ::dxN
=

2

N(N � 1)

NX
i;j=1

Z
2(x

0
i;x

0
j ;xi;xj) hxi;xj j bB(xi;xj)jx0i;x0jidx0idx0jdxidxj

h bBi =
2

N(N � 1)

NX
i;j=1

Z
2(xi;xj ;xi;xj)B(xi;xj)dxidxj

again

2

N(N � 1)2(x
0
i;x

0
j ;xi;xj)

=

Z
� � �
Z
	(x1;x2; ::x

0
i;x

0
j ::;xN )	

�(x1;x2; ::xi;xj ::;xN )�

dx1dx2::dx
0
i�1dx

0
j�1dxi�1dxj�1dx

0
i+1dx

0
j+1dxi+1dxj+1::dxN

and again, I am not getting Parr-Yang equation 2.3.26

h bBiParr�Y ang = Z [2(x
0
1;x

0
2;x1;x2)B(x1;x2)]x01=x1;x02=x2

dx1dx2

nevertheless it is clear that total energy can be written as (at least of the
form)
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E = h bHi = 1

N

NX
i=1

Z ��
�1
2
r2i + vext(ri)

�
1(x

0
i;xi)

�
x0i=xi

dxi

+
2

N(N � 1)

NX
i;j=1

Z Z
2(xi;xj ;xi;xj)

1

rij
dxidxj

i.e. if we knew 1(x
0
i;xi) and 2(xi;xj ;xi;xj) then we would know the

total energy, of course this is where all of many-body science sits. In fact if we

knew 2(xi;xj ;xi;xj) then from 1(x
0
1;x1) =

2
N�1

Z
2(x

0
1;x2;x1;x2)dx2, in

principle, we could evaluate 1(x
0
1;x1), and then we would be done, at least as

far as the energy goes. So lets see if we can develop an intuition for what these
reduced-density matrices means.
Lets simplify the above expression by extracting the spin degrees of free-

dom out of the above expressions. There is a very interesting discussion on
N-represntability on page 31-32 of Parr-Yang and also very interesting work
by a number of people, in particular (in my opinion) the Mazziotti group in
Chicago has done a lot of nice work on this. In any event to get rid of spins,
one does the usual integration (sum will be written in the general form of an
integral):

1(r
0
1s1; r1s1) = N

Z
� � �
Z
	(r01s1; r2s2; ::::; rNsN )

�	�(r1s1; r2s2; ::::; rNsN )dr2ds2:::drNdsN

�1(r
0
1; r1) =

Z
1(r

0
1s1; r1s1)ds1

= N

Z
� � �
Z
	(r01s1; r2s2; ::::; rNsN )

�	�(r1s1; r2s2; ::::; rNsN )ds1dr2ds2:::drNdsN

2(r
0
1s1; r

0
2s2; r1s1; r2s2) =

N(N � 1)
2

Z
� � �
Z
	(r01s1; r

0
2s2; r3s3; ::::; rNsN )

�	�(r1s1; r2s2; r3s3; ::::; rNsN )dr3ds3:::drNdsN

�2(r
0
1; r

0
2; r1; r2) =

Z Z
2(r

0
1s1; r

0
2s2; r1s1; r2s2)ds1ds2

=
N(N � 1)

2

Z
� � �
Z
	(r01s1; r

0
2s2; r3s3; ::::; rNsN )

�	�(r1s1; r2s2; r3s3; ::::; rNsN )ds1ds2dr3ds3:::drNdsN
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shorthand notation

�(r1) = �1(r1; r1)

= N

Z
� � �
Z
j	(r1s1; r2s2; ::::; rNsN )j2 ds1dr2ds2:::drNdsN

which is the electron density at r1 and

�2(r1; r2) = �2(r1; r2; r1; r2)

=
N(N � 1)

2

Z
� � �
Z
j	(r1s1; r2s2; r3s3; ::::; rNsN )j2 ds1ds2dr3ds3:::drNdsN

and

�1(r
0
1; r1) =

Z
1(r

0
1s1; r1s1)ds1

=
2

N � 1

Z Z
2(r

0
1s1; r2s2; r1s1; r2s2)ds2ds1dr2

�1(r
0
1; r1) =

2

N � 1

Z
�2(r

0
1; r2; r1; r2)dr2

in particular

�(r1) =
2

N � 1

Z
�2(r1; r2)dr2

The expectation of one and two particle operators can be evaluated similarly
...

E =
1

N

NX
i=1

Z ��
�1
2
r2i + vext(ri)

�
1(r

0
isi; ridsi)

�
x0i=xi

dridsi

+
2

N(N � 1)

NX
i;j=1

Z Z
2(risi; rjsj ; risi; rjsj)

1

rij
dridsidrjdsj

=
1

N

NX
i=1

Z �
�1
2
r2i �1(r0i; ri)

�
r0i=ri

dri +
1

N

NX
i=1

Z
vext(ri)�(ri)dri

+
2

N(N � 1)

NX
i;j=1

Z Z
1

rij
�2(ri; rj)dridrj

again this doesn�t seem to exactly match equation 2.4.9 of Parr-Yang, but I will
push on, since it contains the same science. The �rst, second and third parts
of the above equations correspond to the kinetic energy, the energy due to the
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nuclei and the energy due to Coulomb potential. Lets examine components of
the last piece

Ecoulombij =

Z Z
1

rij
�2(ri; rj)dridrj

if we only had classical Coulomb interaction between particles, e.g. Hartree
limit, the above energy would be

J [�] =
1

2

Z Z
1

rij
�(ri)�(rj)dridrj

where the factor 1/2 is due to double counting of interactions between par-
ticles. This suggests writing

�2(ri; rj) =
1

2
[�(ri)�(rj) + �(ri)�(rj)h(ri; rj)]

=
1

2
�(ri)�(rj) [1 + h(ri; rj)]

the pair correlation function h(ri; rj) is a function that incorporates all non-
classical e¤ects in the system, including exchange, i.e. the anti-symmetric prop-
erty of the wavefunction (Fock�s terms). It has very interesting and physically
relevant properties.

Since �2(ri; rj) is symmetric under exchange of the two particles, h(ri; rj)
should be symmetric under exchange.
From

�(r1) =
2

N � 1

Z
�2(r1; r2)dr2

=
�(r1)

N � 1

Z
�(r2) [1 + h(r1; r2)] dr2

N � 1 =

Z
�(r2) [1 + h(r1; r2)] dr2

N � 1 =

Z
�(r2)dr2 +

Z
�(r2)h(r1; r2)dr2

Z
�(r2)h(r1; r2)dr2 = �1

which hold for all r1. It is conventional to de�ne exchange-correlation hole
(sometimes called the exchange-correlation charge) of an electron at r1 by

�xc(r1; r2) = �(r2)h(r1; r2)
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�2(ri; rj) =
1

2
�(ri)�(rj) +

1

2
�(ri)�xc(ri; rj)

=
1

2
�(ri) [�(rj) + �xc(ri; rj)]

then Z
�xc(r1; r2)dr2 = �1

in trying to extract some "understanding" of all this, lets put �2(ri; rj) back
into the Coulomb energy

Ecoulombij =

Z Z
1

rij
�2(ri; rj)dridrj

=
1

2

Z Z
1

rij
�(ri) [�(rj) + �(ri)�xc(ri; rj)] dridrj

=
1

2

Z Z
1

rij
�(ri)�(rj)dridrj

+
1

2

Z Z
1

rij
�(ri)�xc(ri; rj)dridrj

= J [�] +
1

2

Z Z
1

rij
�(ri)�xc(ri; rj)dridrj

then one interprets the above equation as including the classical (Hartree)
Coulomb piece plus a term that digs an exchange-correlation hole (that is why
it is called density) that takes away from the Hartree energy. Note that condi-

tion
Z
�xc(r1; r2)dr2 = �1 means that one digs a charge, such that no matter

how complicated the shape of the hole, it integrates to exactly -1, always! It
is beautiful this comes out with no approximation and with so little e¤ort. Of
course, the challenge of what �xc(ri; rj) (which is a non-local function) remains
and gives us jobs.

4 Hartee-Fock in the density matrix language

If we take the state of the system to be a single determinant as is the case in
Hartree-Fock theory
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	(x1;x2; :::;xN ) =
1p
N !

������������

 1(x1)  2(x1) : : :  N (x1)
 1(x2)  2(x2) : : :  N (x2)

: : :
: : :
: : :

 1(xN )  2(xN ) : : :  N (xN )

������������
=

1p
N !
det( 1 2::: N ):

Parr-Yang (page-34) has a very nice discussion and derivation of the following

and theorems about uniqueness of the form of the reduced-density matrices in
the Hartree-Fock limit

HF1 (x01;x1) =

NX
i=1

 i(x
0
1) 

�
i (x1)

HF2 (x01;x
0
2;x1;x2) =

1

2

���� HF1 (x01;x1) HF1 (x02;x1)
HF1 (x01;x2) HF1 (x02;x2)

����

HFp (x01;x
0
2:::;x

0
p;x1;x2:::;xp) =

1

2

����������
HF1 (x01;x1) HF1 (x01;x2) : : HF1 (x01;xp)
HF1 (x02;x1) HF1 (x02;x2) : : HF1 (x02;xp)

: : : : :
: : : : :

HF1 (x0p;x1) : : : HF1 (x0p;xp)

����������
going back to the previous section where I wrote the total energy in terms of

reduced-density matrices (and reverting to Parr-Yang notation, equation 2.3.37)

E =

Z ��
�1
2
r21 + vext(r1)

�
1(x

0
1;x1)

�
x01=x1

dx1

+

Z Z
2(x1;x2;x1;x2)

1

r12
dx1dx2

which in the Hartree-Fock approximation is then (for even number of parti-
cles, "closed shell"), using

HF2 (x1;x2;x1;x2) =
1

2

�
HF1 (x1;x1)

HF
1 (x2;x2)� HF1 (x2;x1)

HF
1 (x1;x2)

�
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EHF =

Z ��
�1
2
r21 + vext(r1)

�
HF1 (x01;x1)

�
x01=x1

dx1

+
1

2

Z Z �
HF1 (x1;x1)

HF
1 (x2;x2)� HF1 (x2;x1)

HF
1 (x1;x2)

� 1

r12
dx1dx2

=

Z ��
�1
2
r21 + vext(r1)

�
HF1 (x01;x1)

�
x01=x1

dx1

+
1

2

Z Z
HF1 (x1;x1)

HF
1 (x2;x2)

1

r12
dx1dx2 �

1

2

Z Z ��HF1 (x2;x1)
��2 1

r12
dx1dx2

which would then be minimized with respect to the wavefunctions, i.e. with

respect to HF1 (x01;x1) =

NX
i=1

 i(x
0
1) 

�
i (x1) to give us back the usual Hartree-

Fock equations (for even number of particles, "closed shell", pages 38-40 of
Parr-Yang).

EHF [�1] = T [�1] + vext[�] + J [�]�K[�1]

T [�1] =

Z ��
�1
2
r21 + vext(r1)

�
�HF1 (r01; r1)

�
r01=r1

dr1

vext[�] =

Z
vext(r)�

HF (r)dr

J [�] =
1

2

Z Z
�HF1 (r1)�

HF
1 (r2)

1

r12
dr1dr2

K[�1] =
1

4

Z Z ���HF1 (r1; r2)
��2 1

r12
dr1dr2

de�ning the pair correlation function hHF (ri; rj) in the Hartree-Fock limit
(using the notation of the last section):

�HFxc (r1; r2) = �HFx (r1; r2) = �
1

2

���HF1 (r2; r1)
��2

�HF (r2)

hHF (r1; r2) = �
1

4

���HF1 (r2; r1)
��2

�HF (r1)�HF (r2)

note that the summation rules hold in the Hartree-Fock limit:
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�HF (r1) =
2

N � 1

Z
�HF2 (r1; r2)dr2

=
�HF (r1)

N � 1

Z
�HF (r2)

�
1 + hHF (r1; r2)

�
dr2

N � 1 =

Z
�HF (r2)

�
1 + hHDF (r1; r2)

�
dr2

Z
�HF (r2)h

HF (r1; r2)dr2 =

Z
�HFx (r1; r2)dr2 = �1:

1) Density-Functional Theory of Atoms and Molecules, by R.C. Parr and
W. Yang.
2) Modern Quantum Chemistry, A. Szabo and N. S. Ostlund.

3) Modern Quantum Mechanics, J. J. Sakurai.
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