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I. INTRODUCTION

Classical or quantum devices could be constructed in
such a way that their energy spectrum is analogous to
the spectrum of a problem of physical importance. These
devices could be annealed to their local or global energy
minima, which might encode the solution to the compu-
tational problem. Many examples of possible systems on
which to apply this technique have been studied using
methods of statistical mechanics, such as simulated an-
nealing [1] and quantum annealing [2–5]. For example,
problems related to polymer physics, lattice models and
protein folding fall into this category [6–8]. The physical
annealing process of these devices, either by a classical or
a quantum process, may be competitive with more tradi-
tional computational approaches, such as digital comput-
ers. One of the goals of this study is to describe in detail
the mapping of statitiscal mechanical energy functions to
quantum Hamiltonians.

Finding the ensemble of low-energy conformations of
a peptide given its primary sequence is a fundamen-
tal problem of computational biology and is commonly
known as the “protein-folding problem” [9–15]. It is com-
monly assumed that the native fold of a protein is the
conformation corresponding to the lowest minimum free
energy (the so-called thermodynamic hypothesis [16]),
although some exceptions have been proposed [17, 18];
therefore, the protein-folding problem can be described
as a global optimization problem. Algorithms for quan-
tum computers have been developed for many applica-
tions such as factoring [19] and the calculation of molec-
ular energies [20]. In this report, we investigate the ap-
proach of using an adiabatic quantum computer for fold-
ing a highly simplified protein model.

The protein-folding problem comprises three parts: 1)
the model used to represent the protein; 2) the energy
function; and 3) the search algorithm. The models range
from full atomistic detail to simplified models where each
amino acid residue is treated as a single point [12]. How-

ever, even for the simplest of models, the classical time
complexity (the time it takes to solve the problem using
a classical computer) of the optimization scales exponen-
tially with the size of the system [21].

The HP (H: hydrophobic, P: polar) lattice model [21]
is one of the simplest protein models that still retains
some of the folding behavior of real proteins. As such,
it has been a useful benchmark for testing optimization
algorithms such as simulated annealing [22], genetic algo-
rithms [23–27], and ant colony optimization [28]. Other
heuristic methods such as hydrophobic core threading
[29], chain growth [30, 31], contact interactions [32], and
hydrophobic zippers [33] have also been considered. The
HP model has also been useful for a qualitative investi-
gation of the nature of the folding process and the in-
teraction between proteins. The HP model, as depicted
in Fig. 1, is defined by three assumptions: 1) There are
only two kinds of amino acids or residues, hydrophobic
(H) and polar (P); 2) Residues are placed on points on
a grid, which is typically a square grid for the 2D model
and a cubic grid for the 3D model; and 3) The only in-
teraction amongst amino acids is the favorable contact
between two H residues that are not neighbors in the
sequence; this interaction is defined to have an energy
of -1 in arbitrary units representing a hydrophobic effect
which tends to fold the protein in such a way that the H
residues end up buried in a predominantly hydrophobic
core, while the P or hydrophilic residues remain at the
surface of the protein. The search for the native confor-
mation of the protein is represented by a self-avoiding
walk on the grid.

An important property of the model is that the num-
ber of possible conformations is roughly proportional to
2.7N [21], where N is the length of the polypeptide chain.
The proofs of the NP-completeness of both the 2D and
3D HP models can be found in the literature [34, 35].
Due to this exponential growth, exhaustive enumeration
(the only certain way of finding the global minimum us-
ing a classical computer) becomes intractable when N
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reaches 30 to 40 residues, depending on the hardware re-
sources. For longer sequences, heuristics and stochastic
algorithms have been employed for N up to 136 for the
3D HP model [32]; the global minimum for the N = 136
test sequence is not known with certainty.

Sec. II presents the general quantum algorithm, the
terms of the Hamiltonian necessary to obtain the folded
structure of the protein, and a description of all tech-
niques used to map the problem to arrays of coupled
quantum bits [36, 37]. Sec. III explains the construction
of the core piece of the algorithm, i.e. the Hamiltonian
that encodes the lowest-energy conformation of the pro-
tein. Finally, in Sec. IV we solve in detail the four amino
acid sequence HPPH in a two-dimensional grid. In Sec-
tions V and VI we discuss the resources necessary to
carry out the reduction from a general n-body Hamilto-
nian to a two-body Hamiltonian, as a function of the size
of the protein.

II. IMPLEMENTATION OF AN ADIABATIC
QUANTUM ALGORITHM TO SOLVE THE HP

MODEL

We begin this section by describing the mapping of
the N amino acid sequence into binary variables, which
in turn will be mapped to spin variables in the quantum
mechanical version of the algorithm. Following, we dis-
cuss strategies for finding the global minima that involve
quantum mechanics, such as quantum adiabatic evolu-
tion. This could be realized using quantum computers or
quantum devices, when and if they become available [38].
Recent progress in architectures such as superconducting
Josephson junctions is promising [36, 37, 39, 40]. An al-
ternative to this approach is to simulate the quantum
evolution either fully or approximately using a classical
computer. This technique is known in the literature as
quantum annealing [2–5].

A. Mapping of the amino acids onto the lattice

The mapping of the coordinates of a sequence of N
amino acids to a given grid of size N × N is developed
as follows. We assume, without loss of generality, that
the number of amino acids is a power of 2 (as shown in
Fig. 2). A binary representation for the labels of the grid
requires log2N binary variables to specify the position
of an amino acid in each dimension. Notice that for a D
dimensional lattice and a number N of amino acids, the
number of Boolean variables qi forming the bit string q
is equal to DN log2N . For example, for the particular
case of N = 4, D = 2, the length of the bit string q is 16
and therefore the number of configurations that can be
explored is 216. Let q denote a particular configuration

of the protein in the grid, written in the form

q = q16q15︸ ︷︷ ︸
y4

q14q13︸ ︷︷ ︸
x4

q12q11︸ ︷︷ ︸
y3

q10q9︸ ︷︷ ︸
x3

q8q7︸︷︷︸
y2

q6q5︸︷︷︸
x2

q4q3︸︷︷︸
y1

q2q1︸︷︷︸
x1

,

(1)
where xi and yi are the x and y coordinate of the i-th
amino acid. Fig. 2 shows an example of the coordinate
mapping given a specific sequence of residues or amino
acids. The first step is to fix the two middlemost amino
acids in a central position. In the case of four amino
acids, fixing these two reduces translational symmetry.
This leads to a reduction of the number of binary vari-
ables from sixteen to eight, i.e., the variables correspond-
ing to amino acids 1 and 4, q4q3q2q1 and q16q15q14q13 re-
spectively, become the variables of interest and the vari-
ables q8q7q6q5 and q12q11q10q9 corresponding to amino
acids 2 and 3, the two middle ones, have a constant fixed
value throughout the optimization process. A general
way to do this is to assign the (N/2)th amino acid to the
(N/2)th grid point in all D dimensions and then fix the
(N/2+1)th amino acid to the (N/2+1)th grid point in the
x direction and to the (N/2)th grid point in all otherD−1
dimensions. As shown in Fig. 2, the final configuration we
will try to optimize for the case of four amino acids takes
the form |q〉 = |q16q15q14q13〉 |0110〉 |0101〉 |q4q3q2q1〉. In
the quantum version of the problem, we consider these
configurations to span a Hilbert space of dimension 216,
and the state vectors can be written as

|q〉 ≡ |q16〉 |q15〉 · · · |q2〉 |q1〉 . (2)

For the purposes of implementing the Hamiltonian which
encodes the ground state of the protein on a spin-1/2
quantum computer [41], or in particular onto an Ising-
like Hamiltonian with a transverse magnetic field [42]
(see Sec. II B), the 16-qubit Hilbert space can be real-
ized as a system of 16 spin-1/2 particles, with |qi = 0〉
mapped to the spin state |σz

i = +1〉 and |qi = 1〉 mapped
to |σz

i = −1〉. In other words, the quantum version of the
configuration states are related to spin variables through
the transformation

qi =
1
2
(1− σz

i ). (3)

Note that the mapping between classical variables qi and
quantum variables σz

i also implies a mapping from an en-
ergy function to a Hamiltonian. The mapping is rather
trivial and througout our discussion we will refer to the
binary energy functions and Hamiltonians interchange-
ably.

B. Adiabatic Quantum Computation

The hardware proposed for obtaining the lowest-energy
conformation of the protein is composed of superconduct-
ing flux qubits arranged in a square lattice, with couplers
connecting nearest neighbors and next-nearest neighbors
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[36]. The quantum computational model upon which the
hardware is based is that of adiabatic quantum compu-
tation [38, 43–45]. In adiabatic quantum computing, a
time-evolving quantum state |ψ(t)〉 represents the possi-
ble solutions to the problem of interest as a superposition
of states in a given computational basis. The goal of the
algorithm is to transform an initial state into a final state
which encodes the answer to the problem.

The state |ψ(t)〉 evolves in time according to the
Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (4)

where H(t) is the time-dependent Hamiltonian operator.
The specific constraints of the problem are encoded in the
final Hamiltonian. The design of the quantum computer
algorithm takes advantage of the quantum adiabatic the-
orem [46], which is satisfied wheneverH(t) is slowly vary-
ing throughout the time of propagation t ∈ [0, τ ]. Let
|ψg(t)〉 be the instantaneous ground state of H(t). If
we construct H(t) such that the ground state of H(0),
denoted as |ψg(0)〉, is easy to prepare, the adiabatic the-
orem states that the time propagation of the quantum
state will remain very close to |ψg(t)〉 for all t ∈ [0, τ ].
The form of H(0) is usually constructed in such a way
that |ψg(0)〉 is a uniform superposition of all possible
configurations of the system, i.e.

|ψg(0)〉 =
1√
216

∑
qi∈{0,1}

|q16〉 |q15〉 · · · |q2〉 |q1〉 (5)

where the sum is over all 216 basis vectors. The initial
Hamiltonian, H(0), is achieved by applying a magnetic
field in the x−direction to each quantum spin. More
details can be found in the work of Farhi et al. [43].

To find the lowest-energy conformation of the protein,
one defines a Hamiltonian, Hprotein, whose ground state
encodes the solution. The adiabatic evolution begins
with H(0) and |ψg(0)〉, and ends in Hprotein = H(τ). If
the adiabatic evolution is slow enough, we obtain at time
t = τ the state |ψg(τ)〉 which will be the ground state of
H(τ) = Hprotein. The details about the construction of
Hprotein will be provided in Sec. III. A possible adiabatic
evolution path can be constructed by a linear sweep of a
parameter t ∈ [0, τ ],

H(t) = (1− t/τ)H(0) + (t/τ)Hprotein (6)

Even though Eq. 6 connects smoothly H(0) and Hprotein,
determining the optimum value of τ is by itself a very im-
portant and non-trivial question. In principle, the adi-
abatic theorem states that for a long enough adiabatic
time τ , the state |ψ(τ)〉 will be the right solution to the
problem |ψg(τ)〉. To determine how long is long enough
is what dictates the ultimate usefulness of the quantum
algorithm proposed in this work. Farhi et al. [43, 44]
showed that it is possible to obtain quantum speed-up
for some hard instances of some NP-complete problems.

Notice that the parameter τ determines the rate at
which H(t) varies. Following the notation from Farhi et
al [43], consider H(t) = H̃(t/τ) = H̃(s), and the instan-
taneous values of H̃(s) are defined by

H̃(s) |l; s〉 = El(s) |l; s〉 (7)

with

E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s) (8)

whereN is the dimension of the Hilbert space. According
to the adiabatic theorem, if the gap between the two
lowest levels, E1(s) − E0(s), is greater than zero for all
0 ≤ s ≤ 1, and taking

τ � ε

g2
min

(9)

with the minimum gap, g2
min, defined by

gmin = min
0≤s≤1

(E1(s)− E0(s)), (10)

and ε given by

ε = max
0≤s≤1

|〈l = 1; s|dH̃
ds

|l = 0; s〉 |, (11)

then we can make

|〈l = 0; s = 1|ψ(τ)〉| (12)

arbitrarily close to 1. In other words, the existence of a
nonzero gap guarantees that |ψ(t)〉 remains very close to
the ground state of H(t) for all 0 ≤ t ≤ τ , if τ is big
enough.

In the following section we will derive the expression for
Hprotein for an array of coupled 2-level quantum systems.

III. CONSTRUCTION OF THE LATTICE
PROTEIN HAMILTONIAN FOR ADIABATIC

QUANTUM COMPUTATION

Our goal in this section is to find an algebraic expres-
sion for a Hamiltonian whose ground state is the lowest-
energy conformation of the protein. Ideally, the Hamilto-
nian should have the least possible number of terms. In
order to optimize the computational resources, we also
want to have terms with low locality. Locality is defined
as the number of products of qi’s that appear in a certain
term, e.g., a term of the form h = q1q3q4q6 is 4-local.

A. Small computer science digression

Since the position of the amino acids in the grid are
given in terms of Boolean variables, it is very convenient
to use tools from computer science and basic Boolean
algebra [47]. In this section, we will review these tools
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for the purpose of developing techniques for constructing
arbitrary Hamiltonians that encode the spectrum of sta-
tistical mechanical models. We begin with some simple
relations that are useful in the derivation of the Hamil-
tonian terms.

Consider two Boolean variables x and y. Expressions
for the and, or, and not operations can be written al-
gebraically as:

fand(x, y) = xy and operation (x ∧ y)
for(x, y) = x+ y − xy or operation (x ∨ y)
fnot(x) = 1− x not operation (¬x)

An additional useful expression for the construction of
Hamiltonian terms is the xnor operation. The xnor
Boolean function has the true logic value 1 as an output,
if all its arguments have the same value. The two-input
version xnor operation is also known as logical equality,
here denoted as EQ,

feq(x, y) = 1−x−y+2xy xnor operation(xeqy)

The xnor operator can be used to construct a very
useful term for statistical mechanics Hamiltonians: an
on-site repulsion penalty (described in Fig. 3).

B. Hamiltonian terms for protein folding: the HP
model

Most of the configurations represented by the bit
strings q of Eq. 1, are invalid protein states. Therefore,
we need to find a Hamiltonian that energetically favors
valid configurations of the HP model, by eliminating con-
figurations where two amino acids are on the same grid
point, and discarding the configurations that violate the
primary sequence of amino acids. This Hamiltonian can
be written as

Hprotein = Honsite +Hpsc +Hpairwise, (13)

where Honsite is an onsite repulsion term, Hpsc is a pri-
mary structure constraint term, andHpairwise is the pair-
wise interaction term that represents favorable hydropho-
bic interactions.

Each protein configuration can be described by a string
of ND log2N bits, where D is the number of dimensions
and N is the number of amino acids, which without loss
of generality can be made a power of two. Following, we
describe each one of the terms in Eq. 13.

1. Onsite term, Honsite

The first term in Eq. 13, Honsite, prevents two or more
amino acids from occupying the same grid point. If one
position variable is different between two amino acids,
then Honsite must evaluate to zero. As an illustrative
example, a simple one-dimensional two-site Hamiltonian

is shown in Fig. 3 using the xnor operation described in
Sec. III A.

The general term for D dimensions and N amino acids
is

Honsite(N,D) = λ0

N−1∑
i=1

N∑
j=i+1

Hij
onsite(N,D) (14)

with

Hij
onsite(N,D) =

D∏
k=1

log2 N∏
r=1

(
1− qf(i,k)+r − qf(j,k)+r

+2 qf(i,k)+r qf(j,k)+r

)
(15)

and

f(i, k) = D(i− 1) log2N + (k − 1) log2N (16)

The terms enclosed in the parentheses of Eq. 15 are
xnor functions. The double product of these terms tests
that all of these conditions are considered simultaneously
by using and-type relations. In other words, if all the
binary variables describing the coordinates of the i-th and
j-th amino acids are equal, then the series of products of
xnor functions is evaluated to +1. In this case, the
energy penalty λ0 with λ0 > 0 is enforced. There will
be no energy penalty, however, if even one of the binary
variables for the i-th and j-th amino acids is different.

The function f(i, k) is a pointer to the bit string de-
scribing the coordinates of a particular amino acid. The
index i points to the i-th amino acid and the index k
points to the first bit variable of the k-th spatial coordi-
nate. Here, k = 1 corresponds to the x coordinate, k = 2
to the y coordinate, and k = 3 to the z coordinate.

2. Primary structure constraint, Hpsc

The term Hpsc in Eq. 13 enforces the primary struc-
ture of the protein. The primary structure constraint
evaluates to zero when two amino acids P and Q that
are consecutive sequence-wise are restricted to be near-
est neighbors. Nearest-neighbors must have a rectilinear
(L1) distance of dPQ = 1 on the grid. For the deriva-
tion of this term, it is very useful to construct a function
for the base 10 distance squared between any two amino
acids P and Q on the grid. The distance function gives
the base 10 distance squared between any two points P
and Q on the grid.

d2
PQ(N,D) =

D∑
k=1

(log2 N∑
r=1

2r−1(qf(P,k)+r − qf(Q,k)+r)
)2

(17)
with f(i, k) defined as in Eq. 16.

A simple way of defining Hpsc is

H ′
psc(N,D) = λ1

N−1∑
m=1

(1− d2
m,m+1)

2 (18)
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but an improved expression which achieves the same goal
is

Hpsc(N,D) = λ1

[
−(N − 1) +

N−1∑
m=1

d2
m,m+1

]
(19)

Because d2
PQ(N,D) is always 2-local, this Hamiltonian

term is always 2-local regardless of the number of amino
acids or the dimensionality of the problem. Note that
that Eq. 19 is superior to Eq. 18, which is 4-local.

First notice that for valid configurations, all (N − 1)
terms in the sum will equal one and then Hpsc(N,D)
would evaluate to zero. If any of the d2

m,m+1 terms is
zero, then Honsite will raise the energy abruptly through
the penalty λ0. This can be achieved setting λ0 > λ1.
Now that we have discarded the possibility of any d2

m,m+1

being zero, what is left are configurations with values of
d2

m,m+1 > 1. In these instances, Hpsc(N,D) > 0 and λ1

will play the role of an energy penalty (λ1 > 0). Choos-
ing λ0 = N and λ0 > λ1 guarantee that the eigenstates of
Hprotein associated with energies greater than zero cor-
respond to unwanted or penalized configurations, while
conformations associated with energies less than or equal
to zero will correspond to plausible configurations of the
protein. For the HP model, there is never an energy lower
than −N even the case of all hydrophobic sequences with
the maximum number of favorable contacts.

3. Pairwise hydrophobic interaction term, Hpairwise

In the HP model, hydrophobic interactions are fa-
vored by lowering the energy by -1, whenever non-nearest
neighboring hydrophobic amino acids are a rectilinear
distance of 1 away.

The following general expression represents this kind
of interaction:

Hpairwise(N,D) = −
N∑

i=1

N∑
j=1

GijH
ij
pairwise, (20)

where G is an N×N symmetric matrix where the entries
Gij are +1 when two amino acids interact hydrophobi-
cally, and 0 otherwise. Note that Gij is set to zero for
amino acids that are neighbors in the protein sequence.
Notice also that defining Gij in a different way would
allow us to specify lattice protein models that are more
complex than the HP model. One of these models is the
more realistic Miyazawa-Jernigan model [48] which in-
cludes interactions between 20 types of amino acids [48].

The form ofHij
pairwise depends on the number of spatial

dimensions of the problem. For the two dimensional case,
we have

Hij
pairwise = Hij,2D

pairwise(N) = xij,2D
+ (N) + xij,2D

− (N)

+yij,2D
+ (N) + yij,2D

− (N) (21)

and in three dimensions,

Hij
pairwise = Hij,3D

pairwise(N) = xij,3D
+ (N) + xij,3D

− (N)

+yij,3D
+ (N) + yij,3D

− (N) + zij,3D
+ (N) + zij,3D

− (N)(22)

Each term in the right hand side of Eq. 22 acts inde-
pendently and its purpose is to query whether the j-th
amino acid is to the right of the i-th through xij,3D

+ , or
to the left through xij,3D

− , above through yij,3D
+ , below

through yij,3D
− , in front through zij,3D

+ or behind through
zij,3D
− . If the j-th amino acid is in any of these positions,

i.e., a distance of one in any direction, Hij
pairwise will give

+1; otherwise it will be zero. There is a subtle but im-
portant condition encoded in these terms: in order for
any of these operators to act, the rightmost binary vari-
able describing the i-th residue’s coordinate of interest
(say x for xij,3D

+ and xij,3D
− or y for yij,3D

+ and yij,3D
− or z

for zij,3D
+ and zij,3D

− ) has to end in 0, i.e., the coordinate
has to correspond to an even number. If this condition is
not satisfied, then the term will vanish. This constraint
explains the intentional double counting in Eq. 20 given
by the freedom in indexes i and j running from 1 to N .
Additionally, there is no special treatment for the case
where i = j since the diagonal terms of Gij are all zero
due to the lack of amino acid self interaction. Finally,
because we want the interaction to be attractive rather
than repulsive, we use the minus sign in Eq. 20.

The case of N amino acids in a two dimensional
grid for N = 2M and M ≥ 3: The terms listed below
correspond to the pairwise interaction Hamiltonian terms
described above. The expressions below were constructed
for M ≥ 3. The two amino acid case (M = 2) is much
simpler and will be discussed in Sec. IV. The expression
for xij,2D

+ (N) is

xij,2D
+ (N) = (1− qf(i,1)+1)qf(j,1)+1

log2 N∏
s=2

(1− qf(j,1)+s

−qf(i,1)+s + 2 qf(j,1)+s qf(i,1)+s)
log2 N∏
r=1

(1− qf(i,2)+r

−qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r)(23)

The first two factors of xij,2D
+ (N) (Eq. 23) treat the

rightmost binary digit of the x position of the i-th and
j-th amino acid. The first factor guarantees that the i-
th residue is in an even x position and tests if the j-th
residue is next to the i-th. If this condition is satisfied,
then the x position of the i-th residue has to be odd. The
case where the position of the i-th residue is odd is dealt
with the second factor qf(j,1)+1. The remaining factors of
xij,2D

+ can be interpreted as xnor functions, equivalent
to those used in the construction of the onsite Hamilto-
nian described in Sec. III B 1. These factors ensure that
the rest of the binary digits that encode the x position
are equal for the i-th and j-th residues. Finally, all the
digits encoding the y position have to be equal, forcing
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the two residues to be in the same row. If all these condi-
tions are satisfied, xij,2D

+ evaluates to +1 and otherwise
to 0. These conditions rely on the fact that adding 1 to
an even number only changes the rightmost binary digit
from 0 to 1.

The construction of yij,2D
+ follows the same procedure

as that of xij,2D
+ , namely,

yij,2D
+ (N) = (1− qf(i,2)+1)qf(j,2)+1

log2 N∏
s=2

(1− qf(j,2)+s

−qf(i,2)+s + 2 qf(j,2)+s qf(i,2)+s)
log2 N∏
r=1

(1− qf(i,1)+r

−qf(j,1)+r + 2qf(i,1)+rqf(j,1)+r)(24)

xij,2D
− (N) = (1− qf(i,1)+1)qf(j,1)+1

[
1−

log2 N∏
k=1

(1−

qf(i,1)+k)
]
(qf(j,1)+2 + qf(i,1)+2 − 2 qf(j,1)+2 qf(i,1)+2)

log2 N∏
r=3

[
1− (qf(j,1)+r +

r−1∏
u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)

−qf(i,1)+r + 2qf(i,1)+r(qf(j,1)+r +
r−1∏
u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)
]

log2 N∏
s=1

(1− qf(i,2)+s − qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s)(25)

The construction of xij,2D
− involves the following con-

siderations. We have to consider the cases where the i-th
amino acid is in an even x position by means of the fac-
tor (1 − qf(i,1)+1). Since we are interested in querying
whether the j-th amino acid is to the left of the i-th, we
need to use a different procedure than that of Eq. 23.
We add 00 · · · 01 to the x coordinate of the j-th residue
and then check by means of xnor functions if the re-
sult matches the x coordinate of the i-th amino acid. As
in the previous case of xij,2D

+ , we need to impose condi-
tions that guarantee that the y coordinate is the same for
both amino acids to make sure they are in the same row.
What makes the problem harder than the case of xij,2D

+

is the fact that having picked i to be in an even spot,
j is supposed to be in an odd spot and the addition of
00 · · · 01 to an odd binary number in general will not just
change the last digit due to the carry bits. After using
the circuit presented in Fig. 4, we obtained the general
expression for the addition of 00 · · · 01 to an n-bit num-
ber. If we take x = xnxn−1 · · ·x2x1 and y = 00 · · · 01,
then the result z = zn+1znzn−1 · · · z2z1 for the addition
z = x+ y is the recursive algebraic expression,

z1 = 0
z2 = 1− x2

zi = xi +
i−1∏
u=2

xu − 2
i∏

u=2

xu for 3 ≤ i ≤ n

zn+1 =
n∏

u=2

xu

This algebraic result for the zi digit was constructed by
exploiting the circuit for addition of two binary numbers
shown in Fig. 4 and the Boolean algebra introduced in
Sec. III A. This result is fundamental for the derivation
of xij,2D

− in Eq. 25. The i-th digit of z is taken as the
result of adding 00 · · · 01 to the x coordinate of the j-th
residue and compared to the corresponding coordinate of
the i-th amino acid through xnor operations.

The remaining factor in Eq. 25, [1 −
∏log2 N

k=1 (1 −
qf(i,1)+k)], makes xij,2D

− zero if the x coordinate of the
i-th amino acid is 00 · · · 00. We need to exclude this
possibility since there is nothing to the left of 00 · · · 00.
At the same time this also takes care of the possibility
whenever the j-th amino acid has an x coordinate equal
to 11 · · · 11 that would match the coordinates 00 · · · 00
after the addition of 1. Therefore, the zn+1 case does not
need to be considered because the expression would be
different from zero only in the case of j having 11 · · · 11.

The construction of yij,2D
− follows the same procedure

as that of xij,2D
− , namely,

yij,2D
− (N) = (1− qf(i,2)+1)qf(j,2)+1

[
1−

log2 N∏
k=1

(1−

qf(i,2)+k)
]
(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2 qf(i,2)+2)

log2 N∏
r=3

[
1− (qf(j,2)+r +

r−1∏
u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)

−qf(i,2)+r + 2qf(i,2)+r(qf(j,2)+r +
r−1∏
u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)
]

log2 N∏
s=1

(1− qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)(26)

The three-dimensional extension of these equations is
presented in the Appendix.

C. Maximum locality and scaling of the number of
terms in Hprotein

In this section, we estimate the number of terms in-
cluded in the total Hamiltonian Hprotein, as well as pro-
cedures required to reduce the locality of the terms to
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2-local. These estimates provide an assessment of the
size of a quantum device necessary for potential exper-
imental realizations of the algorithm. The reduction of
the locality of the terms involves ancillary qubits.

Since in our algorithm we are fixing two amino acids,
the number of qubits needed to encode the coordinates
of the (N −2) remaining amino acids is (N −2)D log2N .
Each amino acid requires D log2N qubits. From the
expressions for Honsite, Hpsc and Hpairwise, one can
deduce that the maximum locality is determined by
2D log2N — the number of qubits corresponding to
two amino acids. The onsite and pairwise terms involve
comparison of the coordinates of two amino acids, and
the expansion of all possible terms leads to a single
term involving all possible q variables for the i-th and
j-th amino acid. As described in Sec. III B 2, Hpsc term
is always 2-local in nature regardless of the number
of amino acids. For scaling arguments, it is crucial
to point out that all possible 1-local(N − 2)D log2N

term and 2-local
(
(N−2)D log2 N

2

)
terms appear in the

expansion, but not all possible 3-local or higher locality
terms will be present. For example, the term qiqjqk
where the indexes i, j and k are associated with three
different amino acids would not be included in the
expansion, since every term regardless of its locality
should involve only products of qubits coming from two
amino acids. Table I summarizes the number of k-local
terms required for constructing the protein Hamiltonian,
Hprotein = Honsite + Hpsc + Hpairwise. Notice that
Eq. 14 contains all the terms in Table I (and therefore
in Hprotein) and the expansion of Eq. 14 gives a total
number of terms that scales polynomially as N2D+2.
The alternative count from the combinatorial expressions
of Table I scales exactly as a N6 for D = 2 and as N8 for
D = 3 in agreement with Eq. 14. Counting directly from
Eq. 14 is an upper bound to the number of terms since
some of the terms in the expansion will be duplicated.
Table I provides the exact term count.

IV. CASE STUDY: FOUR AMINO ACIDS IN
TWO DIMENSIONS, HPPH.

For the purposes of designing an experiment for early
quantum devices, we concentrate on the simplest possi-
ble instance of the HP-model: a four amino acid loop
that contains a favorable interaction and therefore that
“folds”. This instance is probably not large enough to
discern between a quantum adiabatic approach and a
classical approach, but would be a landmark experiment
for the development of early adiabatic quantum devices.

In Sec. IVA we present the protein Hamiltonian, fol-
lowed by with the partitioning of the N -local Hamilto-
nian terms to 2-local. Finally, we present numerical sim-
ulations that find the local minimum through the use of
the algorithm proposed.

A. Hamiltonian terms for the case of four amino
acids in 2D

The onsite Hamiltonian for this particular example
takes the form,

1. Onsite term, Honsite

Honsite(N = 4, D = 2) = λ0(H12
onsite +H13

onsite +
H14

onsite +H24
onsite +H34

onsite) (27)

with

Hij
onsite(N = 4, D = 2) =

2∏
k=1

2∏
r=1

(
1− qf(i,k)+r −

qf(j,k)+r + 2 qf(i,k)+r qf(j,k)+r

)
(28)

and

f(i, k) = 4(i− 1) + 2(k − 1) (29)

Note that H23
onsite does not appear in Eq. 27 since, as de-

scribed in Sec. II A, we fixed the two middle-most amino
acids. This pair would not contribute any energy penal-
ties in the onsite term a priori .

2. Primary structure constraint term, Hpsc

The pairwise term,

d2
PQ(N = 4, D = 2) =

2∑
k=1

( 2∑
r=1

2r−1(qf(P,k)+r−qf(Q,k)+r)
)2

(30)
with

Hpsc(N = 4, D = 2) = λ1

(
−3 + d2

12 + d2
23 + d2

34

)
= λ1

(
−2 + d2

12 + d2
34

)
(31)

takes advantage of the fact that d2
23 = 1 by construction.

3. Pairwise term, Hpairwise

Finally, a pairwise interaction term is required to im-
pose an energy stabilization for non-nearest neighbor hy-
drophobic amino acids which are in adjacent sites in the
lattice.

H2D
pairwise(N = 4, D = 2) = −(H14,2D

pairwise +H41,2D
pairwise)

(32)
For this particular case of interest

Hij,2D
pairwise(N = 4) = xij,2D

+ (N = 4) + xij,2D
− (N = 4) +

yij,2D
+ (N = 4) + yij,2D

− (N = 4)(33)
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The explicit forms of these functions are:

xij,2D
+ (N = 4) = (1− qf(i,1)+1)qf(j,1)+1(1− qf(j,1)+2 −

qf(i,1)+2 + 2 qf(j,1)+2qf(i,1)+2)
2∏

s=1

(1− qf(i,2)+s − qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s)(34)

yij,2D
+ (N = 4) = (1− qf(i,2)+1)qf(j,2)+1(1− qf(j,2)+2 −

qf(i,2)+2 + 2 qf(j,2)+2 qf(i,2)+s)
2∏

s=1

(1− qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)(35)

xij,2D
− (N = 4) = (1− qf(i,1)+1)qf(j,1)+1qf(i,1)+2

(qf(j,1)+2 + qf(i,1)+2 − 2qf(j,1)+2qf(i,1)+2)
2∏

s=1

(1−

qf(i,2)+s − qf(j,2)+s + 2 qf(i,2)+sqf(j,2)+s) (36)

yij,2D
− (N = 4) = (1− qf(i,2)+1)qf(j,2)+1qf(i,2)+2

(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2qf(i,2)+2)
2∏

s=1

(1−

qf(i,1)+s − qf(j,1)+s + 2 qf(i,1)+sqf(j,1)+s) (37)

After expanding all the terms for Honsite, Hpsc and
Hpairwise, the final version of Hprotein depends on the 8
binary variables encoding the coordinates of amino acids
1 and 4. The spin 1

2 representation can be obtained after
substituting the qi for operators q̂i = 1

2 (1− σz), and the
final result is a 28 x 28 Hamiltonian matrix. The ini-
tial Hamiltonian representing the transverse field whose
ground state is a linear superposition of all 28 states in
the computational basis can be written as

Hi = H(t = 0) =
8∑

i=1

q̂i
x =

8∑
i=1

1
2
(1− σx

i ) (38)

with

|ψg(t = 0)〉 =
1√
28

∑
qi∈{0,1}

|q16q15q14q13q4q3q2q1〉 (39)

Finally, we can construct a time dependent Hamilto-
nian given by Eq. 6,

H(t) = (1− t/τ)Hi + (t/τ)Hprotein (40)

This time dependent Hamiltonian is also a 28 x 28 matrix
and the instantaneous spectrum can be obtained by di-
agonalizing at every t/τ without need to specify τ . Since
τ is the running time, we are interested in 0 ≤ t/τ ≤ 1.
The spectrum of the corresponding H(t) for this four
amino acid peptide HPPH is given in Fig. 5

Snapshots of the instantaneous ground state are shown
in Fig. 6. Even though these snapshots do not correspond
to explicit propagation of the Schrödinger equation, they
indicate that the final Hprotein is correct and that it pro-
vides the correct answer if a sufficiently long time τ is
picked. Notice that at t/τ = 0, the amplitude for all 256
states is equal, indicating a uniform superposition of all
states; at t/τ = 1, the readout corresponds to the two
degenerate solutions of HPPH.

V. CONVERTING AN N-LOCAL
HAMILTONIAN TO A 2-LOCAL HAMILTONIAN

Motivated by the possibility of an experimental imple-
mentation, in this section we explain how to reduce a
k-local Hamiltonian to a 2-local Hamiltonian, while con-
serving the low-lying spectrum of the Hamiltonian. We
will use one of the gadgets developed by Biamonte [49].
By reducing the locality of the interactions, we introduce
new ancilla qubits to represent higher-order interactions
with sums of at most 2-local terms. Let’s assume a sim-
pler Hamiltonian of the form,

H = 1− q1q2q3 (41)

This Hamiltonian has a non-degenerate ground state
given by q = q3q2q1 = 111. The energy associated with
this configuration is 0 in arbitrary units. The configura-
tions for all other possible values of the binary variables
q1, q2 and q3 have an energy equal to 1 in arbitrary units.
Our goal is to obtain an energy function H such that it
still preserves these energies along with their associated
bit strings, but we want H to have terms involving just
1-local and 2-local terms. That is,

H(q1, q2, q3) = 1− q1q2q3

H ′ = c0 +
M∑
i=1

ciq̃i +
M−1∑
i=1

M∑
j=i+1

dij q̃iq̃j(42)

In Eq. 42 the new binary variables q̃ include the orig-
inal variables qi and the additional ancillary variables
required for achieving the reduction. The total number
of variables M is larger than the original set of variables
due to the required ancilla qubits. For example, consider
the substitution a1 = q1q2. Since the new form of H be-
comes H = 1 − a1q3, this Hamiltonian will not provide
enough information to recover the values of q1 and q2 due
to the irreversibility of the and function. For example, if
a1 = 0, then we do not know which of the three bit strings
q1q2 = 01, q1q2 = 10 and q1q2 = 00 generated a1 = 0.
Therefore, one cannot simply reduce the number of vari-
ables in the Hamiltonian without losing information. We
need to use a1 as an extra ancilla bit and try to add a
function which is still 2-local and involves q1, q2, q3 and
a1. As a consequence we have now a larger Hilbert space
spanned by configurations of the form |a1q3q2q1〉. The
added function needs to penalize cases where the truth
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table for the and function is violated, i.e., it should pe-
nalize cases where a1 6= q1q2. Biamonte has showed [49],
the following term can be added to our reduced Hamil-
tonian,

H∧(q1, q2, a1) = δ(3a1 + q1q2 − 2q1a1 − 2q2a1) (43)

and our original Hamiltonian in Eq. 41 assumes the re-
duced form,

H ′(q1, q2, q3, a1) = 1− a1q3 +H∧(q1, q2, a1)
= 1− a1q3 + δ(3a1 + q1q2 − 2q1a1 − 2q2a1) (44)

To summarize the reduction procedure, Table II lists the
truth table for both Hamiltonians, the original and the
2-local Hamiltonian H ′. Notice that by setting δ above
the energy values of all plausible conformations of the
protein, the two Hamiltonians H and H ′ will have the
same truth table for the first eight rows of Table II. Any
other configurations will be penalized. The first eight
rows correspond to the configurations where the relation
a1 = q1 ∧ q2 is satisfied.

In the case of a k-local Hamiltonian term, e.g., h =
q1q2 · · · qk, the reduction is carried out iteratively, adding
the penalty function H∧(qi, qj , an) for every substitution
of the form an = qiqj . For a k-local term, (k − 2) sub-
stitutions are required for the reduction to 2-local, and
therefore require (k − 2) ancilla bits.

For the particular case of the protein Hamiltonian the
reduction procedure needs to be repeated (N − 2)(ND −
D log2N−1) times. All the terms in the HP Hamiltonian
include at most interactions between two amino acids,
which results in a maximum locality of 2D log2N . In
the following discussion, the cluster notation [k][l] spec-
ifies the contributions of a particular (k + l)−local term
into k variables coming from an i-th amino acid and l
variables from a j-th amino acid. Since all the terms
are of this form, to obtain a 2-local Hamiltonian, all
the products corresponding to each cluster have to be
converted to 1-local terms. We concentrate in reduc-
ing terms for the variables describing each amino acid,
for a total of D log2N variables. All possible combi-
nation of two variables from the D log2N variables for
an amino acid are substituted. The number of ancilla
bits required for this substitution is

(
D log2 N

2

)
. These

substitutions convert all terms of the form [3][0] and
[2][1] to 2-local. To convert terms of the form [4][0] or
[3][1] to 2-local we need to consider

(
D log2 N

3

)
terms orig-

inally containing three variables from one amino acid.
By employing an additional ancilla bit per term and us-
ing the previous reduction step, all these terms collapse
to 1-local with respect to the i-th aminoacid, i.e., these
terms will asssume the form [1][l]. Repeating the proce-
dure for terms with higher locality until we exhaust the
D log2N variables for a specific amino acid will give us
the number of substitutions or ancilla bits needed per
amino acid to reduce products a particular cluster [k]
to [1] or 1-local. The total number of substitutions per

aminoacid corresponds to
∑D log2 N

k=2

(
D log2 N

k

)
. The pro-

cedure needs to be carried out for all (N − 2) amino
acids the number of ancilla qubits required is therefore
(N − 2)

∑D log2 N
k=2

(
D log2 N

k

)
. Adding the ancillary qubits

to the original (N − 2)D log2N quantum bits, the num-
ber of qubits needed to represent a 2-local Hamiltonian
version of the protein Hamiltonian is given by

T2 = (N − 2)
D log2 N∑

k=2

(
D log2N

k

)
+ (N − 2)D log2N

= (N − 2)(ND − 1)(45)

Eq. 45 provides a closed formula for the number of qubits
needed to find the lowest-energy conformations for a pro-
tein with N amino acids in D dimensions. In particular,
for the example case of a four amino acid peptide HPPH
in 2-dimensions considered in Sec. IV, 30 qubits will be
required. For a 32 amino acid protein in 3-dimensions
corresponding to the limits for an exhaustive search in
a modern classical computers, the number of qubits re-
quired for carrying out this experiment is 983010 qubits.

The resource counting of this section is very relevant
to experimental implementations. On one hand, a 30-
qubit system with arbitrary 2-local couplings could be
employed to fold the smallest instance of the HP model.
On the other hand, about a million quantum bits would
be required to compete with current classical computers.

In Sec. VI, we present an illustrative example of the re-
duction of a 4-local Hamiltonian to 2-local and the direct
comparison of both energy spectra to show the conserva-
tion of the low-lying energy states of the original k-local
Hamiltonian.

VI. LOCALITY-REDUCED HAMILTONIAN
EXAMPLE

To examine the validity of the reduction to 2-local, we
constructed a toy 4-local Hamiltonian.

Htoy = 1− q1q2q3q4 (46)

Using the technique described in Sec. V, the correspond-
ing 2-local Hamiltonian is

Htoy,reduced = 1− a1a2 + δ(3a1 + q1q2 − 2a1q1 −
2a1q2) + δ (3a2 + q3q4 − 2a2q3 − 2a2q4) (47)

where the reduction added two ancillary bits a1 and
a2. Both of these Hamiltonians have the same minimum
value of qi = 1. This is accomplished by plotting the
energy levels of Eq. 6 vs. t/τ , where Hprotein is replaced
either by Htoy or Htoy,reduced (see Fig. 7). From the
spectra of Fig. 7, it can be seen that the ground state
is preserved in the transformation. It is clear that the
ground state is conserved but unfortunately due to de-
generacy issues and overlap of lines in the spectra it is
hard to visualize in the figure that indeed both spectra
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have the same number of states in the first excited state
of Htoy as well. There is a one-to-one correspondence be-
tween the states of the 4-local toy Hamiltonian and the
ones of the reduced one. The states with energy greater
than 1 in the reduced Hamiltonian spectra correspond to
states which violate the and condition introduced by the
reduction (see Sec. V).

VII. CONCLUSIONS

We constructed the essential elements of an adiabatic
quantum algorithm for finding the low energy conforma-
tions of a protein in a lattice model. The number of
resources (qubits) needed to map N amino acids to an
N ×N lattice is (N − 2)D log2N and the maximum lo-
cality of the final Hamiltonian is determined by the in-
teraction between pairs of amino acids is 2D log2N .

General strategies to construct energy functions to
map into further quantum mechanical Hamiltonians used
for adiabatic quantum computing were presented. The
strategies used in the construction of the Hamiltonian
for the HP model can be used as general building blocks
of Hamiltonians associated physical systems where onsite
energies and/or pairwise potentials are present.

We also demonstrated an application of the Bia-
monte scheme for converting the proposed 2D log2N lo-
cal Hamiltonian into a 2-local Hamiltonian, aiming to-
ward an experimental implementation in quantum de-
vices. The resulting couplings although 2-local are not
necessarily couplings amongst nearest neighbor quantum
bits in a two-dimensional geometry. The experimental
implementation of these couplings might prove challeng-
ing, or require the introduction of a large number of ad-
ditional ancilla quantum bits.

The scaling of the qubit resources required for this
problem is polynomial, nevertheless a million quantum
bits with two-local couplings would be required to com-
pete with a modern classical computer. The advantage of
adiabatic quantum computers is that no active ultrafast
quantum control to perform quantum gates is required,
but in this case, the downside is the large number of
qubits required to compete with a classical computer. It
is instructive to compare this results to the case of quan-
tum chemical molecular energies using the gate model
[20]. In this case, the threshold where a quantum com-
puter would outperfom the best modern classical com-
puters is about 100 quantum bits and millions of gates
or elementary quantum operations.

As previously mentioned, the construction of the final
Hamiltonian encoding the solution to the problem is an
essential piece for the evolution of the system according
to the time-dependent Schrödinger equation. The most
important question remaining to be explored in future
work is the scaling of the running time τ with respect
to the number of amino acids N . The running time
τ is dependent on the particular instance of the prob-
lem. In our case, the instances correspond to different

protein sequences. It has been proposed that proteins
have evolved towards a many-dimensional funnel-like po-
tential energy surface [15]. The sequences that show a
funnel-like structure might be easier to study using adia-
batic quantum computation. The funnel structure might
facilitate the annealing of the quantum wave function
toward low-energy conformations. The efficiency of the
algorithm for protein sequences of biological importance
of more realistic models might be better than that for
the average instance of the problem if this hypothesis
is correct. This is consistent with a recent speculation
by Aaronson which states that the computational com-
plexity of protein sequences might be related to reliable
folding pathways.

Further studies need to be done to determine the run-
ning time, τ . Its scaling with the number of amino acids
will eventually determine the efficiency of the algorithm.
Our hope is to find a speed-up for proteins or instances
that are intractable with classical computers. Recently,
Schutzhold et al. [45] proposed that adiabatic quantum
algorithms that are constructed to present second-order
phase transitions could be more efficient, and in partic-
ular showed how a second-order adiabatic algorithm was
more efficient numerically for random instances of the 3-
satisfability problem. Detailed numerical simulations to
explore the potential speedup of the algorithm over clas-
sical methods will be reported in a future publication.

Recently, Somma et al. [50] have proposed a genrael
approach for quantum simulated annealing that shows
a quadratic speedup over classical simulated annealing.
The protein folding model Hamiltonian presented in this
work could be a very interesting test case for the algo-
rithm.
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Appendix A: Extension of the pairwise interaction
to three dimensions and N amino acids , N = 2M and

M ≥ 3

This extension is follows the principles presented in
Sec. III B 3 and extends the terms of the Hamiltonian
to the case of a three-dimensional lattice protein. The
pairwise term for the three-dimensional case is,

H3D
pairwise(N) = −

N∑
i,j=1

GijH
ij,3D
pairwise (A1)
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xij,3D
+ (N) = (1− qf(i,1)+1)qf(j,1)+1

log2 N∏
s=2

(1− qf(j,1)+s

−qf(i,1)+s + 2 qf(j,1)+s qf(i,1)+s)
log2 N∏
s=1

(1− qf(i,2)+s

−qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s)
log2 N∏
r=1

(1− qf(i,3)+r

−qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r)(A2)

yij,3D
+ (N) = (1− qf(i,2)+1)qf(j,2)+1

log2 N∏
s=2

(1− qf(j,2)+s

−qf(i,2)+s + 2 qf(j,2)+s qf(i,2)+s)
log2 N∏
s=1

(1− qf(i,1)+s

−qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)
log2 N∏
r=1

(1− qf(i,3)+r

−qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r)(A3)

zij,3D
+ (N) = (1− qf(i,3)+1)qf(j,3)+1

log2 N∏
s=2

(1− qf(j,3)+s

−qf(i,3)+s + 2 qf(j,3)+s qf(i,3)+s)
log2 N∏
s=1

(1− qf(i,1)+s

−qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)
log2 N∏
r=1

(1− qf(i,2)+r

−qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r)(A4)

xij,3D
− (N) = (1− qf(i,1)+1)qf(j,1)+1

[
1−

log2 N∏
k=1

(1−

qf(i,1)+k)
]
(qf(j,1)+2 + qf(i,1)+2 − 2 qf(j,1)+2 qf(i,1)+2)

log2 N∏
r=3

[
1− (qf(j,1)+r +

r−1∏
u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)

−qf(i,1)+r + 2qf(i,1)+r(qf(j,1)+r +
r−1∏
u=2

qf(j,1)+u −

2
r∏

u=2

qf(j,1)+u)
] log2 N∏

s=1

(1− qf(i,2)+s − qf(j,2)+s +

2qf(i,2)+sqf(j,2)+s)
log2 N∏
r=1

(1− qf(i,3)+r −

qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r)(A5)

yij,3D
− (N) = (1− qf(i,2)+1)qf(j,2)+1

[
1−

log2 N∏
k=1

(1−

qf(i,2)+k)
]
(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2 qf(i,2)+2)

log2 N∏
r=3

[
1− (qf(j,2)+r +

r−1∏
u=2

qf(j,2)+u −

2
r∏

u=2

qf(j,2)+u)− qf(i,2)+r + 2qf(i,2)+r(qf(j,2)+r +

r−1∏
u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)
]

log2 N∏
s=1

(1− qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N∏
r=1

(1− qf(i,3)+r − qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r)(A6)

zij,3D
− (N) = (1− qf(i,3)+1)qf(j,3)+1

[
1−

log2 N∏
k=1

(1−

qf(i,3)+k)
]
(qf(j,3)+2 + qf(i,3)+2 − 2 qf(j,3)+2 qf(i,3)+2)

log2 N∏
r=3

[
1− (qf(j,3)+r +

r−1∏
u=2

qf(j,3)+u −

2
r∏

u=2

qf(j,3)+u)− qf(i,3)+r + 2qf(i,3)+r(qf(j,3)+r +

r−1∏
u=2

qf(j,3)+u − 2
r∏

u=2

qf(j,3)+u)
]

log2 N∏
s=1

(1− qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N∏
r=1

(1− qf(i,2)+r − qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r)(A7)
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TABLE I: Number of k-local terms that are obtained in the
final expression for Hprotein as a function of the number of
amino acids N , N = 2M , and dimensions (D) of the lattice

locality Number of terms, Tk

k = 0 1
k = 1 (N − 2)D log2N

2 ≤ k ≤ D log2N
`

N−2
2

´ Pk−1
i=1

`
D log2 N

i

´`
D log2 N

k−i

´
+ (N − 2)

`
D log2 N

k

´
D log2N < k ≤ 2D log2N

`
N−2

2

´ PD log2 N
i=k−D log2 N

`
D log2 N

i

´`
D log2 N

k−i

´

TABLE II: Comparison between the problem Hamilto-
nian, H(q1, q2, q3), and the locality-reduced Hamiltonian,
H ′(q1, q2, q3, a1), defined in Eqs. 41 and 44 respectively. Val-
ues for H ′ and H are given in arbitrary units. The value of δ
is an energy penalty applied to the cases where a1 6= q1 ∧ q2

q3 q2 q1 a1 H ′(q1, q2, q3, a1) H(q1, q2, q3)
0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
0 0 0 1 1 + 3δ 1
0 0 1 1 1 + δ 1
0 1 0 1 1 + δ 1
0 1 1 0 1 + δ 1
1 0 0 1 3δ 1
1 0 1 1 δ 1
1 1 0 1 δ 1
1 1 1 0 1 + δ 0



14

F
IG

.
1
:

T
h
e

la
tt

ic
e

p
ro

te
in

h
y
d
ro

p
h
o
b
ic

-p
o
la

r
(H

P
)

m
o
d
el

,
sh

ow
in

g
th

e
g
lo

b
a
l
en

er
g
y

m
in

im
u
m

co
n
fo

rm
a
ti

o
n

fo
r

a
se

q
u
en

ce
o
f
2
4

a
m

in
o

a
ci

d
s,

H
H

P
H

P
P

P
H

H
H

H
P

P
H

-
H

H
H

P
P

P
H

P
H

H
(E

=
−

1
2
).

T
h
e

b
lu

e
b
ea

d
s
re

p
re

se
n
t
h
y
d
ro

p
h
o
b
ic

re
si

d
u
es

(H
)
a
n
d

th
e

o
ra

n
g
e

b
ea

d
s
re

p
re

se
n
t
p
o
la

r
re

si
d
u
es

(P
).

T
h
e

m
o
d
el

co
n
si

st
s
o
f
a

se
lf
-a

v
o
id

in
g

ch
a
in

w
it

h
fa

v
o
ra

b
le

(E
=
−

1
)

en
er

g
et

ic
in

te
ra

ct
io

n
s

a
m

o
n
g
st

h
y
d
ro

p
h
o
b
ic

re
si

d
u
es

in
co

n
ta

ct
.

T
h
e

n
ea

re
st

-n
ei

g
h
b
o
r

co
n
ta

ct
s

d
u
e

to
th

e
p
ri

m
a
ry

se
q
u
en

ce
d
o

n
o
t

co
n
tr

ib
u
te

to
th

e
en

er
g
y.

B
la

ck
d
o
ts

re
p
re

se
n
t

la
tt

ic
e

si
te

s.
F
av

o
ra

b
le

en
er

g
et

ic
in

te
ra

ct
io

n
s

a
re

re
p
re

se
n
te

d
b
y

th
e

d
o
tt

ed
li
n
es

.
S
o
li
d

li
n
es

re
p
re

se
n
t

th
e

se
lf
-a

v
o
id

in
g

ch
a
in

.



15

F
IG

.
2
:

G
ri

d
-l
a
b
el

in
g

co
n
v
en

ti
o
n
s

fo
r

a
se

q
u
en

ce
o
f

4
a
m

in
o

a
ci

d
s,

H
P

P
H

.
(a

)
A

m
in

o
a
ci

d
s

2
a
n
d

3
a
re

fi
x
ed

in
th

e
ce

n
te

r
o
f

th
e

g
ri

d
fo

r
el

im
in

a
ti

n
g

tr
a
n
sl

a
ti

o
n
a
l

d
eg

en
er

a
cy

.
(b

)
O

n
e

o
f

th
e

p
o
ss

ib
le

in
va

li
d

co
n
fi
g
u
ra

ti
o
n
s

th
a
t

m
ig

h
t

a
ri

se
in

th
e

se
a
rc

h
a
n
d

th
a
t

w
o
u
ld

n
ee

d
to

b
e

d
is

ca
rd

ed
b
y

th
e

o
p
ti

m
iz

a
ti

o
n

a
lg

o
ri

th
m

.
(c

)
L
ow

es
t-

en
er

g
y

co
n
fo

rm
a
ti

o
n

fo
r

th
is

ex
a
m

p
le

.
T

h
e

d
o
tt

ed
li
n
e

b
et

w
ee

n
a
m

in
o

a
ci

d
s

1
a
n
d

4
re

p
re

se
n
ts

th
e

fa
v
o
re

d
h
y
d
ro

p
h
o
b
ic

in
te

ra
ct

io
n

o
f

th
e

H
P

m
o
d
el

.
T

h
e

co
n
fi
g
u
ra

ti
o
n
s

to
o
p
ti

m
iz

e
a
ss

u
m

e
th

e
fo

rm
q

=
q 1

6
q 1

5
q 1

4
q 1

3
0
1
1
0

0
1
0
1
q 4
q 3
q 2
q 1

,
w

h
er

e
th

e
se

t
o
f
va

ri
a
b
le

s
q 1

6
q 1

5
q 1

4
q 1

3
a
n
d
q 4
q 3
q 2
q 1

d
et

er
m

in
e

th
e

p
o
si

ti
o
n

o
f
a
m

in
o

a
ci

d
s

4
a
n
d

1
,
re

sp
ec

ti
v
el

y.
F
o
r

th
e

p
a
rt

ic
u
la

r
ca

se
o
f
(b

),
q

=
1
1
0
0

0
1
1
0

0
1
0
1

1
0
1
1
.



16

F
IG

.
3
:

Il
lu

st
ra

ti
v
e

ex
a
m

p
le

o
f
o
n
e

o
f
th

e
u
se

s
o
f
th

e
x
n
o
r

B
o
o
le

a
n

fu
n
ct

io
n

in
o
u
r

sc
h
em

e
fo

r
th

e
co

n
st

ru
ct

io
n

o
f
H

a
m

il
to

n
ia

n
s.

C
o
n
si

d
er

1
a
n
d

2
b
ei

n
g

tw
o

p
a
rt

ic
le

s
th

a
t

a
re

re
st

ri
ct

ed
to

o
cc

u
p
y

ei
th

er
p
o
si

ti
o
n

0
o
r

1
,
a
n
d

le
t
x

1
a
n
d
x

2
en

co
d
e

th
e

p
o
si

ti
o
n

o
f
p
a
rt

ic
le

1
a
n
d

p
a
rt

ic
le

2
re

sp
ec

ti
v
el

y.
T

h
e

B
o
o
le

a
n

fu
n
ct

io
n
f E

Q
ca

n
b
e

in
te

rp
re

te
d

a
s

a
n

o
n
si

te
re

p
u
ls

io
n

H
a
m

il
to

n
ia

n
w

h
ic

h
p
en

a
li
ze

s
co

n
fi
g
u
ra

ti
o
n
s

w
h
er

e
x

1
=
x

2
.

T
h
e

p
o
ss

ib
le

co
n
fi
g
u
ra

ti
o
n
s

a
re

en
co

d
ed

in
th

e
b
it

st
ri

n
g
x

=
x

1
x

2
.



17

F
IG

.
4
:

H
a
lf
-a

d
d
er

a
n
d

fu
ll
-a

d
d
er

C
o
m

p
o
n
en

ts
fo

r
th

e
a
d
d
it

io
n

ci
rc

u
it

im
p
le

m
en

te
d

in
th

e
p
a
ir

w
is

e
in

te
ra

ct
io

n
H

a
m

il
to

n
ia

n
.

W
e

sh
ow

th
e

im
p
le

m
en

ta
ti

o
n

o
f
th

es
e

tw
o

co
m

p
o
n
en

ts
fo

r
th

e
a
d
d
it

io
n

o
f
tw

o
4
-b

it
n
u
m

b
er

s
y
ie

ld
in

g
z

=
z 5
z 4
z 3
z 2
z 1

.
T

h
e

a
d
d
it

io
n

o
f
n
-b

it
n
u
m

b
er

s
ca

n
b
e

g
en

er
a
li
ze

d
tr

iv
ia

ll
y.



18

F
IG

.
5
:

S
p
ec

tr
u
m

o
f
th

e
in

st
a
n
ta

n
eo

u
s

en
er

g
y

ei
g
en

va
lu

es
fo

r
th

e
8
-l
o
ca

l
ti

m
e

d
ep

en
d
en

t
H

a
m

il
to

n
ia

n
u
se

d
in

th
e

a
lg

o
ri

th
m

fo
r

th
e

p
ep

ti
d
e

H
P

P
H

(l
ef

t)
.

T
h
e

p
lo

t
to

th
e

ri
g
h
t

ex
a
m

in
es

th
e

lo
w

es
t

1
5

st
a
te

s
o
f
th

e
2
5
6

st
a
te

s
fr

o
m

th
e

le
ft

.



19

F
IG

.
6
:

S
n
a
p
sh

o
ts

o
f
th

e
in

st
a
n
ta

n
eo

u
s

g
ro

u
n
d

st
a
te

fo
r
H

(t
).

T
h
e

b
ri

g
h
tn

es
s

o
f
th

e
b
ox

is
re

la
te

d
to

|c
n
|2

.
T

h
e

la
b
el

s
o
f
th

e
a
x
es

a
n
d

th
e

w
ay

to
re

a
d

o
u
t

th
e

st
a
te

v
ec

to
r

fo
r

a
p
a
rt

ic
u
la

r
b
ox

a
re

a
cc

o
rd

in
g

to
|ψ
〉

=
P 25

5
n
=

0
c n
|n
〉

w
it

h
|n
〉

th
e
n
-t

h
st

a
te

v
ec

to
r

o
u
t

o
f
th

e
2
5
6

p
o
ss

ib
il
it

ie
s

g
iv

en
b
y
|q

1
6
〉|
q 1

5
〉|
q 1

4
〉|
q 1

3
〉|
q 4
〉|
q 3
〉|
q 2
〉|
q 1
〉.

N
o
ti

ce
th

a
t

th
e
x

a
x
is

is
g
iv

en
b
y
|q

4
〉|
q 3
〉|
q 2
〉|
q 1
〉

a
n
d

th
e
y

a
x
is

g
iv

en
b
y
|q

1
6
〉|
q 1

5
〉|
q 1

4
〉|
q 1

3
〉.

T
h
e

fi
n
a
l
st

a
te

co
rr

es
p
o
n
d
s

to
th

e
tw

o
d
eg

en
er

a
te

m
in

im
a

sh
ow

n
a
t

th
e

en
d



20

F
IG

.
7
:

S
p
ec

tr
u
m

co
m

p
a
ri

so
n

o
f
th

e
in

st
a
n
ta

n
eo

u
s

en
er

g
y

ei
g
en

va
lu

es
fo

r
th

e
4
-l
o
ca

l
to

y
H

a
m

il
to

n
ia

n
(l

ef
t)

a
n
d

2
-l
o
ca

l
to

y
H

a
m

il
to

n
ia

n
(r

ig
h
t)

.
N

o
ti

ce
th

a
t

th
e

g
ro

u
n
d

st
a
te

o
f
th

e
4
-l
o
ca

l
to

y
H

a
m

il
to

n
ia

n
is

co
n
se

rv
ed

a
ft

er
th

e
re

d
u
ct

io
n


