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ABSTRACT OF THE DISSERTATION

Nonlinear Methods for High Resolution Spectral Analysis and Their Applications in

Nuclear Magnetic Resonance Experiments

by

Jianhan Chen

Doctor of Philosophy in Chemistry

University of California at Irvine, 2002

Professor Vladimir A. Mandelshtam, Chair

Novel nonlinear methods for high resolution spectral analysis of time domain sig-

nals, namely, the Filter Diagonalization Method (FDM) and Regularized Resolvent

Transform (RRT), have been developed and applied to the signal processing prob-

lems in Nuclear Magnetic Resonance (NMR) experiments. Several important break-

throughs that significantly improve the efficiency and stability of FDM and RRT are

discussed. They include the multi-scale Fourier-type basis, regularization of multi-

dimensional FDM, and a doubling scheme for Constant-Time NMR signals. Applied

to several 2D and 3D protein NMR experiments, substantial resolution enhancement

has been demonstrated. Several qualitative and semi-quantitative ways of studying

the reliability and sensitivity of FDM and RRT are discussed. Various issues that are

specific to NMR spectral analysis are also addressed.
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Chapter 1

Introduction to Spectral Analysis

1.1 Definition and Significance

Spectral analysis is the process of obtaining spectral information, such as charac-

teristic frequencies, amplitudes and phases, from one or more time-varying signals.

Spectral analysis plays an important role in many fields of science and engineering.

Time domain signals are often acquired in modern experiments, including Nuclear

Magnetic Resonance (NMR), Ion Cyclotron Resonance (ICR) and others. Time sig-

nals also occur in numerical simulations of dynamic systems, such as in unimolecular

reactions [1], dissociation of vibrationally excited van der Waals complexes [2], and

many other chemical processes [3]. Spectral analysis is the key to revealing the infor-

mation encoded in these signals. The goal of spectral analysis is to extract maximum

information from the available time domain data, or, to minimize the required ex-

perimental or computational time for extracting the same amount of information.

The conventional Fourier Transform (FT) [4] has played an essential role in spectral
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analysis and was crucial to the development of many modern spectroscopies includ-

ing NMR, optical and mass spectrometry [5]. FT is a linear transformation that is

stable, reliable and fast if implemented as the Fast Fourier Transform (FFT) [6, 7].

In addition, FT does not make any assumptions about the functional form of the

signal and can be applied to processing any type of signal. Accordingly, FT is a very

powerful method and has been widely used for spectral analysis in many fields.

However, FT also has some well-known limitations. The FT resolution is limited

by the FT time-frequency uncertainty principle. Also, truncation of the signal leads

to sinc-like oscillative artifacts in the baseline of the FT spectrum. Another limitation

of FT is that additional information about the signal, if exists, cannot be efficiently

incorporated and utilized. Furthermore, multi-dimensional FT is simply a series of

1D FT applied to each dimension independently. Thus, FT is essentially a 1D method

for spectral analysis and cannot utilize the important information that evolution in

all dimensions are actually correlated. Therefore, spectral analysis remains an active

research area [8]. A lot of effort has been devoted to developing various alternative

methods to FT spectral analysis, seeking to make use of some a priori knowledge and

to extract information more efficiently from the time signals.

The purpose of this chapter is to introduce the existing methods for spectral anal-

ysis, with mainly the application of NMR spectroscopy in mind. We will first discuss

the basic properties and major limitations of the conventional FT spectral analysis

in Section 1.2, then briefly review some existing alternative methods in Section 1.3.

Finally, some conclusions and remarks are given in Section 1.4.
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1.2 Fourier Transform Spectral Analysis

A physical process can be either described by a time domain function, c(t), where

t is the time variable in seconds, or a frequency domain function, I(ω), where ω is the

angular frequency in radians per second. To be general, we consider both functions

to be complex. These two functions form a “Fourier pair” as they are connected by

the Fourier transform equations:

I(ω) =
∫ ∞

−∞
c(t) eiωt dt ,

c(t) =
1

2π

∫ ∞

−∞
I(ω) e−iωt dω . (1.1)

I(ω) is also called a spectrum, or a spectral representation of the time signal. The

transformation from c(t) to I(ω) is often called the (forward) Fourier transform, and

its inverse is often called the inverse Fourier transform.

From Eq. 1.1, it is obvious that Fourier transformation is a linear operation. There

is no information gained or lost by transforming from one representation to the other:

the two functions contain exactly the same information but in different formats. The

important difference is that features that are delocalized in one function become

localized in the other. Interestingly, this becomes very important when it comes to

interpreting the information encoded in these functions. In a typical time signal,

contributions from different constituents, or resonances, are highly delocalized and

strongly interfere with each other, making direct interpretation of the signal very

difficult. For example, Figure 1.1 plots two simple time signals: one with single

resonance, trace (a), and the other one with two resonances of equal intensities and

decay rates, trace (b). When there is only a single resonance, it is possible to estimate

3
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Time (second) Frequency (Hz)

(a)

(b)

J=1 Hz

2.0 sec

Figure 1.1: Two simple time signals and corresponding Fourier transform spectra
(only real parts of the complex functions are shown). While contributions from dif-
ferent components are delocalized and interfere with each other in the time domain,
they are highly localized and separated according to the characteristic frequencies in
the frequency domain.

the frequency by counting the zero-crossing and the linewidth from the decay rate.

When there are two components with equal intensity present, it is possible to use the

“beating”, a consequence of interference, to estimate the separation of two frequencies.

But it becomes difficult to tell much about the characteristics simply by looking at the

time signal, other than some vague judegements, such as that one or more components

are narrow if the signal decays slowly. When more than two components with different

intensities and decaying rates are present, it becomes impossible to interpret the

time domain signals directly. On the contrary, features are highly localized and

4



separated according to the characteristic frequencies in the frequency domain, making

the interpretation of them much easier.

Now it is clear that spectral analysis, the process of obtaining a spectral rep-

resentation from the time domain signal, is a key step in making the information

interpretable, even though such a transformation does not magically increase the

information content by any means. FT is a natural choice for performing such a

transformation. However, as it will become clear later, it is not the only way, nor the

optimal one, for obtaining the spectrum in many cases. One of the main focuses of

this dissertation is to exploit alternative methods for extracting more (interpretable)

information from the available data set, when the signal satisfies certain known con-

straints.

1.2.1 Fourier Transform of Discrete Signals

In the most common situations, the time signal c(t) is sampled (i.e., its value is

recorded) on an equidistant time grid, tn = nτ = 0, τ, . . . , (N − 1)τ , resulting in a

discrete signal c(n) ≡ c(nτ). The interval τ is also called sampling rate, or dwell time

in NMR terminology. The fact that the signal is discrete instead of continuous has

profound implications on its Fourier transform.

Sampling Theorem and Aliasing

For any sampling rate τ , there is a special frequency ωc, called the Nyquist critical

frequency, given as,

ωc ≡
π

τ
(1.2)

5



The Nyquist critical frequency is important for two reasons. The first one is known

as the sampling theorem: “If a continuous function c(t), sampled at an interval τ ,

happens to be bandwidth limited to frequencies in magnitude smaller than ωc, i.e., if

I(ω) = 0 for all |ω| ≥ ωc, the the function c(t) is completely determined by its samples

c(n).” [9]. The explicit formula for c(t), given in terms of c(n), is,

c(t) = τ
∞
∑

n=−∞

c(n)
exp[ωc(t − nτ)]

π(t − nτ)
. (1.3)

Therefore, even though generally speaking, the information content of a discrete signal

is infinitely smaller than that of a continuous signal, entire information content of the

bandwidth limited signal can be recorded in a discrete signal, sampled at at rate

τ−1 ≥ 2 ωmax. Fairly often, this is the case. For example, NMR signals are always

filtered and amplified in a finite frequency range before being sampled.

Another consequence of discrete sampling is a phenomenon called aliasing for sig-

nals that are not bandwidth limited to less than the Nyquist critical frequency: any

frequency component outside of the Nyquist frequency range, (−ωc, ωc), is aliased (or

falsely translated) into that range. In another word, frequencies that differ by mul-

tiples of 2 ωc are completely indistinguishable due to the discrete sampling. Aliasing

causes ambiguity in determining the true frequencies and should be avoided in most

circumstances. In some special cases, aliasing can be used on purpose to reduce the

spectral range and thus increase the digital resolution of the FT spectrum [10, 11].

6



Discrete Fourier Transform

Given a finite discrete time signal c(n), available from n = 0, 1, . . . , N − 1, we can

estimate its Fourier transform on the same numbers of discrete frequency points,

I(k) = I(ωk) =
∫ ∞

−∞
c(t) eiωkt dt ≈ τ

N−1
∑

n=0

c(n) einωkτ , (1.4)

where ωk = 2πk/Nτ, k = −N/2, . . . , N/2. The summation of Eq. 1.4 is called the

Discrete Fourier Transform (DFT) of the N data points c(n). The inverse discrete

Fourier transform to recover c(n) from I(k) is:

c(n) =
1

N

N−1
∑

k=0

I(k) e−inωkτ . (1.5)

DFT is a linear transform of the time domain data, and is thus stable and reli-

able. However, direct calculation of DFT is an order N2 process. A more efficient

implementation is called the Fast Fourier Transform (FFT) [6, 7], which requires

only O(N lnN) operations. FFT requires N to be a power of two1. For data sets of

arbitrary sizes, the Fastest Fourier Transform in the West (FFTW) [12] can be used.

Resolution and Sensitivity

The two most important measurements of the quality of a spectrum are resolution

and sensitivity. Resolution refers to the ability to distinguish components of the signal

that are close in frequency. It can be intrinsically determined by the signal itself, or,

in turn, by the underlying physical system and experimental techniques used to probe

and detect the signal. It is also often affected by the numerical method used to obtain

1There are also FFT algorithms for data sets of length N that are not a power of two. But they
still require N being divisible by some other prime numbers [9].
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the spectral representation. The obtainable resolution of a spectral analysis method

can be roughly measured by the Full-Width-at-Half-Height (FWHH) of the resulting

lineshape of an arbitrarily narrow line. The DFT resolution for a finite signal is

limited by the so called FT time-frequency uncertainty principle,

δω ∼ 1

Nτ
. (1.6)

Thus, the resolution of DFT converges linearly with respect to the signal length. This

is one of the limitations of DFT. We will discuss its consequences in more details in

Section 1.2.4.

Sensitivity refers to the ability to distinguish signal from noise. A commonly

used measurement for sensitivity is the Signal-to-Noise Ratio (SNR) of the spectrum.

SNR can be defined as the ratio between the height of the highest signal peak to

the standard deviation of the noise. As pointed out by Hoch and Stern [8], while

SNR is often used to quantify the sensitivity, they are not the same. When nonlinear

methods like maximum entropy reconstruction or others are used to compute the

spectrum, SNR is not a good measurement of the sensitivity any more. In these

cases, sensitivity should be accessed explicitly, rather than inferred from the SNR of

the resulting spectrum.

1.2.2 Data Manipulation

Direct Fourier transform of the time signal is often unsatisfactory, mainly due

to many potential imperfections of the data. It is routine practice to “pre-process”

the data set before it is Fourier transformed. In this section, we will discuss several
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common data manipulations, especially in NMR data processing.

Zero- and First-Order Phase Correction

In order to understand the concept of phase corrections, we need to first dis-

cuss two different lineshapes in NMR. Nuclear magnetic resonances in liquids can be

modeled as damped harmonic oscillators. Let’s consider a signal that has a single

component with frequency ω0 and decay constant γ0 > 0. It can be written as,

s(t) = exp[−iω0t − γ0t] = exp[−i(ω0 − iγ0)t] , (1.7)

for t ≥ 0; s(t) = 0 for t < 0. Such a signal is also called a damped sinusoid. Its Fourier

transform is then,

I(ω) =
∫ ∞

0
s(t) exp(iωt) dt =

1

i(ω − ω0) + γ0

=
γ0

(ω − ω0)2 + γ2
0

+ i
(ω − ω0)

(ω − ω0)2 + γ2
0

= A(ω) + iD(ω) , (1.8)

where A(ω) and D(ω) are called absorption and dispersion Lorentzian lineshapes,

illustrated in Figure 1.2. For large frequency offsets, the absorption Lorentzian line-

shape decays as 1/(ω − ω0)
2, while the decay of dispersion Lorentzian lineshape is

proportional to 1/(ω − ω0). Accordingly, absorptive Lorentzian lineshape is more

localized and thus preferred for high-resolution NMR. In addition, the zero crossing

at the center of the dispersive Lorentzian lineshape is also unfavorable.

Experimental signals are not always as perfect as Eq. 1.7. The signal might not

have zero phase at t = 0 and it might not even start at t = 0. A more general model

for the signal is,

s(t) = exp[i(φ0 + ω0 t0)] exp[−i(ω0 − iγ0)t] , (1.9)
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Re[I(ω)] Im[I(ω)]

Figure 1.2: Real and imaginary part of the Fourier transform of a damped sinu-
soid with zero phase at t = 0: (a) absorption Lorentzian lineshape; (b) dispersion
Lorentzian linshape.

where φ0 is called the zero-order phase, and ω0 t0 the first-order phase. The first-order

phase is due to the delay t0 and also called the linear phase as it has linear dependence

on the frequency. According to the linear property of FT, the Fourier transform of

s(t) is given as,

I(ω) = exp[i(φ0 + ω0 t0)] [A(ω) + iD(ω)] . (1.10)

Note that the real part of I(ω) automatically yields absorption lineshapes only when

both zero- and first-order phase are zero, or more precisely, φ0 +ω0 t0 = 0. Otherwise,

the real part of the complex spectrum will contain unfavorable dispersion lineshapes,

requiring the zero- and first-order phase corrections. The first-order phase correction
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is also called linear phase correction. The zero-order phase can be reliably removed

simply by multiplying I(ω) by exp(−iφ0). However, the first-order phase can only be

approximately corrected in FT. The reason is that exact first-order phase correction

requires knowledge of the frequencies of all components, which is not available in

FT spectral analysis. In practice, we simply multiply I(ω) by exp(−iω t0) to remove

the first order phase. Such a point-by-point correction will be exact only at the

center of each resonance. A large linear phase correction leads to severe phase roll

in the baseline. Such an example is given in Figure 3.1, trace (c). The linear phase

occurs very often in NMR due to many experimental limitations including limited

transmitter response time, stabilization delay after field gradient pulses and others.

One of the main goals of developing alternative methods to FT is actually to find a

more consistent way of correcting the linear phase.

Zero-Filling

The digital resolution of the DFT spectrum is given as δω = 1/Nτ and thus

limited by the number of data points in the time domain. We can append a sequence

of zeros to the available data set to arbitrarily increase the total number of data

points and thus improve the digital resolution of the resulting DFT spectrum. Such

a process is called zero filling. Zero-filling is equivalent to some interpolation in the

frequency domain. At the frequency points they have in common (n/Nτ), the DFT

spectra of the zero-filled and original data will agree.

NMR signals obeys the causality principle as c(t) = 0 for all t < 0. As a conse-

quence, the real and imaginary parts of the complex FT spectrum have a deterministic
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relationship according to the Kramers-Kronig relations [13, 14]. However, as noted by

Bartholdi and Ernst, the Kramers-Kronig relations do not hold for discretely sampled

NMR signal unless the signal is extended by a factor of two by zero-filling, because

the periodicity of DFT makes the real and imaginary parts independent [15]. It was

proved that real improvement in the information content was obtained by zero-filling

the signal by a factor of two. Further zero-filling results in only cosmetic interpola-

tion between data points in the frequency domain and no additional information is

obtained.

Apodization

Apodization is the process of modifying the original data by multiplying it with a

apodization function before zero-filling and Fourier transform:

c′(n) = c(n) w(n) .

w(n) is also called windowing function or filter function. The original DFT can be

treated as a DFT with a rectangular windowing function, w(n) = 1. The purpose of

apodization is to improve the quality of certain aspect of the spectrum or to obtain

a desired lineshape. For example, a matched filter, an apodization function that

matches the envelope of the signal, is often used to enhance the sensitivity of the

resulting spectrum [16], with the side effect of broadening the lines. Or, an increasing

exponential apodization function can be used to improve the resolution, but on the

price of reducing the sensitivity. For truncated signal, it is often necessary to use

some apodization to reduce the amplitude of the signal smoothly to zero in order
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to suppress the truncation artifacts2, which also inevitably broadens the lines. In

practice, one has to compromise among resolution, sensitivity, lineshape, amount of

truncation artifacts in finding an “optimal” apodization function. A comprehensive

overview of various commonly used apodization functions in NMR can be found in

Hoch and Stern’s seminar book on NMR data processing [8].

1.2.3 Multi-Dimensional DFT

It is the ability to perform multidimensional NMR experiments that makes NMR

such a powerful method as it is today. By introducing additional dimensions, we are

able to disperse the potentially heavily overlapping features in the one-dimensional

(1D) spectrum into the addition dimensions and thus have a much better separation.

We are also able to obtain important information about the chemical and/or dynamic

correlations between resonances. It is fair to say that without multidimensional NMR

experiments, many of the applications that fueled the explosive growth of NMR in

the last two decades would not be possible [8].

A D-dimensional complex signal, sampled discretely on a D-dimensional time grid,

can be written as,

c(~n) ≡ c(n1τ1, . . . , nDτD) , nl = 0, 1, . . . , Nl − 1 ,

where τl is the sampling rate along l-th dimension. In NMR, the last time variable

tD = nDτD is the acquisition time dimension by convention. The other time dimen-

sions are called indirect dimensions, because they can only be incremented indirectly

2See Section 1.2.4 for more details on truncation artifacts.
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as varying delays during the experiment. Figure 1.3 shows a general scheme [11]

for recording a two-dimensional NMR signal. There are two time dimension, t1 and

t2. Only the acquisition time t2 is the real time. t1 is an indirect time dimension,

implemented as a varying delay. For each value of t1 = n1τ1, n1 = 0, 1, . . . , N1 − 1,

the whole experiment is repeated and a 1D signal, c(n1τ1, t2), is recorded. After a

total of N1 1D experiments, a 2D signal results. It is important to notice that the

Preparation    evolution (t1)       mixing       acquisition (t2)

Figure 1.3: General scheme for 2D NMR spectroscopy. It includes four segments:
preparation of the states, evolution in the indirect dimension (t1), mixing period, and
acquisition time (t2). In the mixing period, a correlation is established between the
two time dimensions. Only t2 is the real time.

acquisition time dimension is the only inexpensive dimension, sampled in real time at

a rate of one data point per ms. Each increment in the indirect dimension requires

repeating the 1D experiment over and is thus time consuming. By analogy, for a 3D

experiment, each increment in the second indirect dimension requires repeating the

whole 2D experiment over, and so on. The total experimental time of a D-dimensional

NMR experiment is thus proportional to the total number of increments in the in-

direct dimensions , N1 × N2 × . . . × ND−1. This is the reason why multidimensional

NMR signals are typically truncated in the indirect dimensions.

Surprisingly, despite all of its importance, processing of multidimensional time

signals by FT requires few new concepts beyond those involved in the 1D FT spectral

analysis. The complex D-dimensional DFT, defined as,
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I(ω1, . . . , ωD) =
D
∏

l=1

τl

N1−1
∑

n1=0

. . .
ND−1
∑

nD=0

ein1ω1τ1 . . . einDωDτD c(n1τ1, . . . , nDτD) , (1.11)

where ωl is a Nl-point frequency grid specified as ωlk = 2πk/Nlτl, k = −Nl/2, . . . , Nl/2,

can be simply treated as a series of 1D DFT, applied to each dimension successively:

c(t1, ..., tD) 
FT

c(t1, ..., ωD)  
FT

.... I(ω1, ..., ωD)
FT

All the data manipulation such as phase correction, zero-filling and apodization can

be applied to each dimension independently.

Absorption Mode DFT Spectrum Using Multiple Data Sets

One of the few complications of multidimensional DFT is that the absorption

mode lineshape cannot be obtained simply by taking the real part of the appropriately

phased D-dimensional complex DFT spectrum. For the sake of simplicity, let’s only

consider the 2D case. Following Eq. 1.8, the 2D complex DFT spectrum computed

from a single 2D complex signal can be written as,

I(ω1, ω2) = (A1 + iD1)(A2 + iD2)

= (A1A2 − D1D2) + i(A1D2 + D1A2) (1.12)

with convenient notations Al = A(ωl), Dl = D(ωl), l = 1, 2. Therefore, the real

part of the 2D complex spectrum is a supposition of the double-absorptive, A1A2,

and double-dispersive, D1D2, 2D Lorentzian lineshapes. The resulting lineshape is

phase-twisted and extremely undesirable in high-resolution NMR spectroscopy, as the
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dispersive contributions tail off very slowly and degrade the resolution significantly.

Figure 1.4 compares the (a) double-absorption, (b) double-dispersion, and (c) phase-

twisted 2D Lorentzian lineshapes.

In order to obtain the desired double-absorption lineshape, FT requires two in-

dependent 2D complex data sets, acquired from the same experiment. In NMR, the

evolution in the indirect dimension, t1, can modulate either the amplitude or the

phase of the signal recorded during t2
3. In the former case, two amplitude modulated

signals, cosine and sine modulated signals, are acquired, which, in the case of a single

resonance, can be written as,

Sc(t1, t2) = cos(ω10t1) exp(−γ10t1) exp[−i(ω20 − iγ20)t2] , (1.13)

Sc(t1, t2) = sin(ω10t1) exp(−γ10t1) exp[−i(ω20 − iγ20)t2] . (1.14)

In the later case, N- and P-type phase modulated signals are acquired,

SN(t1, t2) = exp(−iω10t1 − γ10t1) exp[−i(ω20 − iγ20)t2] , (1.15)

SP (t1, t2) = exp(iω10t1 − γ10t1) exp[−i(ω20 − iγ20)t2] . (1.16)

Note that the signs of the frequency in t1 are opposite for N- and P-signals. These

two data formats can be converted into each other simply by linear combinations.

For example,

Sc(t1, t2) = [SP (t1, t2) + SN(t1, t2)]/2 , (1.17)

Ss(t1, t2) = [SP (t1, t2) − SN(t1, t2)]/2i . (1.18)

Using linear combination of the DFT of both of the 2D data sets from the same

3In derivation of Eq. 1.12, a purely phase modulated signal was actually assumed.
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(a): Α1Α2

(b): −D1D2

(c): Α1Α2 −D1D2

Figure 1.4: Comparison of (a) double-absorption, (b) double-dispersion, and (c)
phase-twisted 2D Lorentzian lineshapes, for a 2D Lorentzian line at frequency
(ω1, ω2) = (0, 0) Hz with linewidth being 1 Hz in both dimensions.
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experiment, double absorption lineshape can be constructed. Here, a procedure for

obtaining an absorption mode spectrum from two amplitude modulated data sets,

assuming that both data sets are correctly phased, is outlined:

(i). Apply DFT in the t2 dimension for both data sets:

Sc(t1, ω2) = cos(ω10t1) exp(−γ10t1)(A2 + iD2) , (1.19)

Ss(t1, ω2) = sin(ω10t1) exp(−γ10t1)(A2 + iD2) . (1.20)

(ii). Construct an intermediate signal according to:

Snew(t1, ω2) = Re[Sc(t1, ω2)] − i Re[Ss(t1, ω2)] = A2 exp[−i(ω10 − iγ10)t1] . (1.21)

(iii). Apply DFT to the intermediate signal in the t1 dimension. The real part of the

result gives the desired absorption mode 2D spectrum:

A(ω1, ω2) = Re[I(ω1, ω2)] = Re[A2(A1 + iD1)] = A1A2 . (1.22)

First Point Correction

Another complication of multidimensional FT is also related to the problem of

obtaining an absorption mode spectrum. The approximation of DFT to the FT

integral given in Eq. 1.4 has a systematic error: the first point should be weighted

by 1/2 before being transformed. While this only causes a constant vertical offset

in 1D DFT, the amount of such an offset will vary for each row in the indirect

dimension, causing so called t1-ridges in the 2D FT spectrum. These ridges deteriorate

the resolution of an absorption mode spectrum significantly and should be removed,

simply by incorporating the first point corrections into the multi-dimensional DFT

summation,
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I(ω1, . . . , ωD) =
D
∏

l=1

τl

N1−1
∑

n1=0

. . .
ND−1
∑

nD=0

ein1ω1τ1 . . . einDωDτD (1.23)

× (1 − δn1,0

2
) . . . (1 − δnD ,0

2
) c(n1τ1, . . . , nDτD) .

1.2.4 Limitations of FT

The Fourier transform is fast and numerically stable, and can produce frequency-

domain spectra in a convenient representation. It is the method of choice for spectral

analysis in many applications including NMR. Nonetheless, FT also has some well

known limitations, leaving plenty of room for improvement.

Truncation Artifacts and FT Uncertainty Principle

One of the most severe limitations of FT spectral analysis occurs when the signal

is truncated before it fully decays to zero, or, more realistically, below noise level.

The effect of truncation can be modeled as a step function, r(t) = 1 for t ≤ Tmax, and

r(t) = 0 for t > Tmax. The acquired signal c(t) can be then represented as the product

of the signal (extending to t = ∞), s(t), and the step function r(t): c(t) = s(t)r(t).

According to the convolution theorem, the resulting finite FT spectrum is given by,

I(ω) =
∫ ∞

−∞
s(t)r(t)dt = S(ω) ∗ sinc(Tmaxω) , (1.24)

where the sinc function is defined as sinc(x) = sin(x)/x. Convolution of the sinc

function has two direct consequences on the finite time FT spectrum: first, it produces

severe oscillating truncation artifacts in the baseline. The artifacts are often called

sinc-wiggles or Gibbs oscillations. Second, it broadens all the peaks to be at least
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Time (second) Frequency (Hz)

(a)

(b)

δω ∼ 1 / T

Figure 1.5: Effects of truncation on the FT spectrum: (1) sinc-wiggles in the baseline;
(2) all lines are broadened to a minimum width of δω ∼ 1/Tmax. Note that the doublet
of (b) is now unresolved due to the truncation of the signal.

the width of center envelope of the sinc function, which is roughly the inverse of the

signal length. The latter is often called the FT time-frequency uncertainty principle.

Figure 1.5 illustrates these two truncation effects using the same time signals used in

Figure 1.1, but truncated to 1/8 of the original sizes.

The sinc-wiggles are very unfavorable in high-resolution NMR as they obscure the

weak peaks around a strong peak. Apodization can be used to suppress the truncation

artifacts, which will further broaden the lines. Note that the resolution of finite FT,

determined by the FT uncertainty principle, improves only linearly with respect to the

signal length. While it does not look too bad in 1D, this slow convergence property
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becomes a severe limitation of multi-dimensional FT spectral analysis.

1D Spectral Analysis

Multidimensional Fourier transform is simply a series of 1D FT, applied to each

dimension sequentially. The FT uncertainty principle applies to each dimension in-

dependently. Accordingly, in order to obtain high resolution in all dimensions of the

FT spectrum, one has to acquire a signal that is long in all dimensions. However,

as we discussed in the beginning of Section 1.2.3, the indirect dimensions of a multi-

dimensional NMR experiment are expensive and thus always truncated, or severely

truncated in the case of three- and four-dimensional experiments, leading to poor

FT resolution in the corresponding spectral dimensions. This is one of the major

limitations of multidimensional FT-NMR.

The major limitation of 1D spectral analysis is that correlations among multiple

dimensions are not explicitly exploited. The fact that evolutions in all dimensions are

correlated is completely ignored in FT spectral analysis. A true multi-dimensional

method for spectral analysis, which can efficiently use this information, can have

substantial advantages over any 1D methods including FT.

Modelless Spectral Analysis

FT does not make any assumptions about the signal. On one hand, this is a big

advantage as FT can be used to analyze any type of signal. On the other hand, this

can be a big disadvantage when the signal does satisfy certain models. For example,

an NMR signal in liquids can be well modeled by a sum of finite number of damped
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sinusoids. Unfortunately, this useful information can not utilized and thus totally

wasted in the FT spectral analysis.

1.3 Alternative Methods for Spectral Analysis

Due the limitations of FT discussed in previous section, extensive efforts have

been made to develop alternative methods. One common goal of all these methods

is to produce resolution beyond the FT uncertainty principle, especially in the case

of truncated signals. We thus call these methods high-resolution methods for spectral

analysis. In this section, we will first discuss the basis principle of high resolution

spectral analysis and then briefly review major high-resolutions methods that have

been applied to NMR spectral analysis.

1.3.1 Principle of High-Resolution Spectral Analysis

A high-resolution method for spectral analysis is a method that can obtain a spec-

tral resolution beyond FT time-frequency uncertainty principle. In order to obtain

high-resolution, additional information must be used.

Let’s consider a simple example where we know that the signal contains a single

Lorentzian line and thus satisfies following model:

c(t) = d0 exp(−iω0t) , (1.25)

where the complex amplitude d0 = |d0| exp(iφ0) and complex frequency ω0 = 2πf0 −

iγ0 are two unknown parameters. Note that we extend the notation ω0 be complex so
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that both the line position and linewidth can be represented by a single parameter.

The magnitude of the complex amplitude, |d0|, gives the peak integral, and φ0 defines

the phase of the peak. As shown in Figure 1.1 (a) and 1.5 (a), FT is not able to use

this information and cannot provide a fully converged spectrum4 unless the signal

fully decays (Figure 1.1 (a)). Alternatively, armed with the model of Eq. 1.25, we

know that only two unknowns, d0 and ω0, need to be found. In turn, it requires only

two data points, so that we can set up the two equations, from which both parameters

can be solved accurately:



















c(0) = d0

c(τ) = d0 exp(−i ω0τ)

=⇒



















d0 = c(0)

ω0 = i ln [c(τ)/c(0)] /τ

By analogy, for the slightly more complicated case of two Lorentzian lines (Figure 1.1

(b) and 1.5 (b)), as few as four complex data points are required to solve for four

unknowns: two pairs of complex amplitudes and complex frequencies, providing a

fully converged spectrum.

We just demonstrated that it was possible to obtain resolution beyond the FT un-

certainty principle by using some additional information that was not utilized in FT.

However, in practice, how we model the signal, how the model is used to reformulate

the problem, and how the problem is solved numerically are all very important limit-

ing factors. Experimental signals like NMR signals are often both large and complex,

and contain an unknown number of peaks. In addition, experimental signals do not

satisfy the model perfectly due to the noise and other imperfections. As a result, one

can easily end up solving a large, ill-conditioned linear or nonlinear problem, which

4A fully converged spectrum should show a peak at the right position with the true linewidth.
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is computationally expensive and numerically unstable. In the rest of this section,

we will briefly review existing high-resolution methods, with the main focus being on

their main advantages and remaining difficulties.

The existing high-resolution methods can be grouped into two main categories:

parametric methods and nonparametric methods, based on whether a parametric

representation, a list of complex characteristic frequencies and amplitudes, is involved.

FT is a nonparametric method, as the spectral representation is directly obtained

without computing an intermediate parametric representation of the signal.

1.3.2 Parametric Methods

Practical methods for estimating the spectral parameters can be traced all the

way back to 1795, when Baron de Prony published his method for fitting the data

to a sum of complex sinusoids [17]. The idea of using linear algebra for identifying

the parameters of multi-exponential decay of a time signal is still used in more recent

parametric methods including Linear Prediction (LP) [18, 19, 20, 8], the matrix pencil

method [21, 22, 23], and the Filter Diagonalization Method (FDM) [24, 25]. The first

two methods will be described below, and FDM will be introduced later in Chapter 2.

Other parametric methods rely on nonlinear optimization of complex score functions,

based on either probability theories such as in Bayesian and maximum likelihood

techniques [26, 27, 28, 29], or simple minimum variation principle like in Least Squares

(LSQ) fitting in the frequency domain [30] and the time domain [31].
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All these methods model the NMR signal as a sum of Lorentzian lines:

c(n) =
∑

k

dk e−inωkτ + ξ(n) =
∑

k

dk un
k + ξ(n) , (1.26)

where dk and ωk are complex amplitudes and complex frequencies, and ξ(n) is noise.

The line list {ωk, dk} is called a parametric representation of the signal c(n). Each

pair of (ωk, dk) represents a peak, or, a pole. This model has been proved to be a

good model for most NMR signals in liquids. It is the additional information that

all these methods utilize, in one way or another. However, how this model is used to

reformulate the problem and the numerical approach used to solve for the unknown

spectral parameters vary from one method to another, and determine the efficiency

and stability of each method.

Linear Prediction

Linear prediction is one of the most popular high-resolution alternatives for NMR

spectral analysis. Even though linear prediction is typically only use to extrapolate

the signal, LP is intrinsically a parametric method. It is based on the concept of

autoregressive modeling (AR) [17, 16]:

c(n) =
K
∑

k=1

ak c(n − k) + ε(n) , n = K, . . . , N − 1 , (1.27)

where the coefficients ak are called LP coefficients, K is the prediction order, and

ε(n) is the prediction error. It can be proved that the AR model is equivalent to

the Lorentzian model of Eq. 1.26 with K damped sinusoids. Once the prediction

coefficients are determined, the spectral representation can be directly computed, or
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more commonly, the AR expression is used to extrapolate the signal, typically, by a

factor of 2, then the FT of the extended signal is computed.

There exist several LP algorithms for finding the prediction coefficients including

LP-SVD [32], LP-QRD [33] and LP-TLS [34]. Detailed descriptions can also be found

in Refs. [8] and [20]. The basic idea is to find a set of coefficients ak that minimizes

the prediction error by solving a linear least squares problem,
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,

or in a compact form,

H x = b + ε . (1.28)

The complex frequencies ωk of all poles can be then computed by rooting the

characteristic polynomial, defined as,

P (u) =
K
∑

k=1

ak uK−k , (1.29)

where the roots uk = exp(−iωkτ). The complex amplitudes dk are determined by

solving another linear least squares problem based on Eq. 1.26:
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Eqs. 1.29 and 1.30 might seem necessary only when LP is used as a parametric

estimator, while for LP extrapolation, only Eq. 1.28 needs to be solved. This is

not true. Some roots of the characteristic polynomial P (u) might fall outside of

the unit circle on the complex plane, i.e., |uk| > 1, which correspond to increasing

exponentials. In this case, direct use of the prediction coefficients to extrapolate the

signal is unstable and can result in numerical overflow. In practice, all the roots of

P (u) are first found, then some procedures have to be used to eliminate unwanted

roots. For example, those uk lying outside of the unit circle are either discarded or

replaced by their images reflected about the circle: uk → [u−1
k ]∗. Finally, a new set of

prediction coefficients are computed by reconstructing the characteristic polynomial

using the “corrected” roots:

P ′(u) = (u − u1)(u − u2) . . . (u − uK) . (1.31)

The main advantage of LP is that the highly nonlinear problem of fitting the sig-

nal to the summation of damped sinusoids is solved by a linear fitting of the signal to

the AR model, and thus avoids the notoriously finicky nonlinear fitting procedures.

However, there are also several severe limitations:

(i). Filter order is a complete part of the AR model, and finding its correct value is

a crucial issue. Even though extensive efforts have been made in developing methods

for order selection [35, 36, 37, 38], no universal solution exits [20].

(ii). LP attempts to fit the whole 1D signal in one shot. The size of the least

squares problem is determined by the signal size and the filter order. Thus LP can

be prohibitively expensive for very large data sets. In addition, rooting high degree
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polynomial requires significantly higher algorithm complexity necessary to avoid nu-

merical instability, round-off errors and overflow.

(iii) When parametric LP is used, it requires a second least squares calculation for

computing the complex amplitudes. Any errors in the rooting step might be ampli-

fied, making the parametric LP very unreliable.

(iv) In principle, it is possible to use LP for complete analysis of multidimensional

data sets. However, it is not in common practice due to the expensive computational

cost and numerical instabilities. Instead, hybrid LP and FT spectral analysis is typi-

cally used. For example, in 2D, LP is used to extrapolate each t1 trace independently

after FT is applied to the t2 dimension. Such a hybrid method is essentially a 1D

method and does not have the advantages of true multidimensional data processing.

(v) Even though the prediction coefficients are optimized by various tricks, the noisy

tail part of the signal is always used for extrapolation. Thus the extrapolation is

doomed to be noisy and unreliable.

The Matrix Pencil Method

The matrix pencil method was developed independently by Hua and Sarkar [21, 22]

and by Kailath and coworkers [39]. Instead of rooting a polynomial to obtain the

complex frequencies, they are computed directly from the data matrices by solving a

generalized eigenvalue problem. Its formulation exploits of the property of the matrix

pencil constructed from the underlying exponentially damped sinusoids (Eq. 1.26).

The matrix pencil refers to linear combinations of two matrices defined on a common

domain (i.e., same linear space). For example, given two matrices L and R, the set
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of all matrices of form L− λR is said to be a matrix pencil.

Given a discrete time signal c(n) with N data points that satisfies Eq. 1.26, and

ignoring the noise term ξ(n), the (N − L) × L data matrices X0 and X1, which are

defined as:

Xl =































c(L − 1 + l) c(L − 2 + l) · · · c(l)

c(L + l) c(L − 1 + l) · · · c(1 + l)

...
...

. . .
...

c(N − 2 + l) c(N − 3 + l) · · · c(N − L − 1 + l)































, (1.32)

l = 0, 1, with L being the pencil parameter, can can be decomposed as [21],

X0 = ZLBZR , X1 = ZLBZZR , (1.33)

where
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and B = diag{b1, b2, . . . , bK}, Z = diag{u1, u2, . . . , uK}. If K ≤ L ≤ N − K, each of

{uk : k = 1, 2, . . . , K} is the rank reducing number of the matrix pencil X1 − uX0:

X1 − uX0 = ZLB
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ZR . (1.35)
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Therefore, by definition, {uk} are the K nonzero generalized eigenvalues of the matrix

pair (X1,X0),

X1 qk = ukX0 qi , (1.36)

where qk is the eigenvector associated with the eigenvalue uk. Note that Eq. 1.36 can

be solved by first multiplying both sides by a pseudo-inverse of X0, X+
0 , and then

using standard eigenvalue solvers to find the K nonzero eigenvalues of L × L matrix

product X+
0 X1:

X+
0 X1 qk = uk qk . (1.37)

Finally, the complex amplitudes dk can be computed by solving the linear least squares

problem of Eq. 1.30. Note that spurious poles with |uk| > 1 can lead to numerical

instabilities in solving Eq. 1.30, and should be eliminated in similar ways to those

employed in linear prediction.

While sharing the advantages of being a linear algebraic method with LP, the

matrix pencil method has several advantages over LP. First, the pencil parameter L

will affect the results, in a similar way that LP is affected by the prediction order.

However, the performance of matrix pencil method is less sensitive to the choice of

L [21]. It was empirically found that the optimal value for L ranged from L = N/3

for noisy signals to L = N/2 for signals with high SNR. Second, in the matrix pencil

method, all the poles are computed directly from the data matrices in one step,

while LP requires first solving a linear least squares problem and then rooting the

resulting polynomial. Accordingly, the matrix pencil method is more efficient and

more accurate. It was also found that the matrix pencil method was less sensitive to
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noise than the polynomial method [21, 23].

Nevertheless, the matrix pencil method still has some severe limitations, most of

which are shared by linear prediction. They are listed below:

(i). Estimating the pencil parameter L is still a problem, even though the results are

less sensitive to its value than in linear prediction.

(ii). The matrix pencil method still attempts to fit the whole signal in a single shot.

Thus for large data sets, it is computationally very expensive and has problems with

numerical instabilities, round-off error and overflow.

(iii). The amplitudes dk are computed by solving a separate linear least squares prob-

lem. Errors that are introduced in the diagonalization step might lead to disastrous

results in dk, making its application to analyzing NMR signals problematic5.

(iv). There are significant difficulties in generalizing the matrix pencil method to pro-

cessing multidimensional signals. Specifically, for example, in 2D, there are problems

in identifying the frequency pairs [22].

The Nonlinear Least Squares Analysis

Several least squares analysis of the DFT NMR spectra have appeared in the liter-

ature (see ref. [30] and references therein). Some of them are based on fitting the DFT

spectrum to the theoretical lineshape, Eq. 1.8, obtained from evaluating the infinite

time FT integral. However, as pointed out by Abildgaard and coworkers [40, 30],

there are several severe discrepancies between the DFT spectrum and the theoreti-

cal spectrum, which in many cases hamper these analyses. Instead, a more realistic

5The matrix pencil method was initially introduced to process acoustic and radar imaging signals,
where only the complex frequencies were of general interest.
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lineshape that corresponds to finite DFT of damped sinusoids should be used:

Iτ (ω) = τ
N−1
∑

n=0

c(n) einωτ = τ
∑

k

dk
1 − (uk/u)N

1 − uk/u
, (1.38)

where u ≡ exp(−iωτ). The object of least squares fitting in the frequency domain is

to minimize the variance between the estimated spectrum of Eq. 1.38 and the actual

DFT. Note that no zero-filling or apodization should be used in obtaining the actual

DFT spectrum. Least squares analysis can be also directly carried out in the time

domain by simply minimizing following loss function [31],

χ2(f) = χ2(K, {ωk, dk : k = 1, 2, . . . , K}) =
N−1
∑

n=0

∣

∣

∣

∣

∣

c(n) −
K
∑

k=1

dk e−inωkτ

∣

∣

∣

∣

∣

2

. (1.39)

It was claimed that the complete least squares analysis was the optimum spectral

estimator and maximum spectral information could be extracted [40]. While the

validity of such a statement is still under debate, there are other serious drawbacks

of the LSQ estimator. Firstly, LSQ is a nonlinear optimization method. Both an

accurate estimate of the number of pole and a good set of initial values for the spectral

parameters are required and essential for convergence. In the case of complicated

spectra with heavily overlapped features, such a requirement can not be fulfilled.

In addition, LSQ also attempts to fit the whole spectrum together in a single shot

and is thus computationally very expensive for large data sets. Finally, in principle,

LSQ can be applied to analyze multidimensional signals. However, due to the large

size and high complexity of multidimensional spectra, general application of LSQ to

multidimensional spectral analysis is totally infeasible.
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Bayesian and Maximum Likelihood Methods

Bayesian analysis is a powerful statistical technique for estimating the degree to

which a hypothesis is confirmed by experimental data. It was introduced to NMR

spectral analysis in 1990 by Bretthorst [26, 27, 28] and Sibisi [41]. It has also been

applied to processing multidimensional NMR signals [29]. Only the basic principles

are described here. The details are quite complicated and can be found in the original

references or Hoch and Stern’s book on NMR data processing [8].

In essence, it is based on probability theory: given the data D and a particular

model M , according to Bayes’s rule, we have,

P (D)P (M |D) = P (D, M) = P (M)P (D|M) (1.40)

where P (D) and P (M) are the individual probabilities, P (D|M) and P (M |D) are

the conditional probabilities, and P (D, M) is the joint probability6. Accordingly, we

can calculate the conditional probability of the model for a given data set as

P (M |D) =
P (D|M)P (M)

P (D)
∼ P (D|M)P (M) . (1.41)

P (M |D) is also called the posterior of the model; P (D|M) is also called the likelihood

of the data (i.e., for a given model M , how likely the experimental data would be

obtained); and P (M) is also called the prior of the model (i.e., empirical or theoretical

estimation of the probability of the model M being true). P (D) is independent of

the model, and thus can be dropped out. The prior is only part the human a priori

knowledge can bias the results. It can be set to a flat function (such as a infinitely

6The conditional probability P (A|B) is the probability of A being true given that B is true. The
joint probability P (A, B) is the probability of both A and B being true.
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broad Gaussian function) so that no model is preferred. In this case, P (M) term can

be also dropped in the analysis.

Assuming that 1D NMR signals can be modeled as a sum of damped sinusoids7

of Eq. 1.26, the parameters of the model are then the number of peaks, K, and 2K

complex frequencies and complex amplitudes, {ωk, dk}. Thus,

P (M |D) ∼ P (D|M)P (M) = P (D|K, {ωk, dk : k = 1, 2, . . . , K})P (M) . (1.42)

The calculation of the likelihood P (D|M) can be quite complicated. Details can

found in the original references. In order to find the best (most likely) model, i.e,

the number of poles and corresponding spectral parameters, for a given experimental

data, one needs to maximize the posterior, or equivalently, the likelihood in the case

of a flat prior function, by solving a high-dimensional optimization problem.

Despite the neat probability theory behind them, Bayesian and maximum like-

lihood techniques are hampered by the resulting nonlinear optimization problem.

Similar to LSQ method, finding a reasonable solution requires good initial set of

values for all the parameters, which is not available for complex signals. In addi-

tion, constructing a good likelihood funtion, P (D|M), is essential and can be tricky.

Finally, even though, in principle, these techniques can be applied to analyze any di-

mensional signals, the fast growing computational cost and resulting high dimensional

optimization problem make them practically infeasible.

7This assumption is equivalent to use a prior function P (M) = 1 for all Lorentzian models and
P (M) = 0 for others.
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1.3.3 Nonparametric Methods

The parametric approaches for high-resolution spectral analysis suffer from a com-

mon drawback: it is essential for the time signal to sufficiently satisfy the model em-

ployed. In the contrary, nonparametric methods like FT do not make any assumption

about the signal’s functional form, and are thus insensitive to the noise and lineshape

distortions of the signal. While there exist other nonparametric methods [42, 43, 44],

the most popular one in NMR spectroscopy is Maximum Entropy Reconstruction

(MaxEnt).

Maximum Entropy Reconstruction

The maximum entropy reconstruction for NMR spectral analysis was first intro-

duced by Sibisi in 1983 [45]. It can provide high resolution spectral estimation from

truncated data sets, and can evem be used to analyze signals that are nonuniformly

sampled. MaxEnt has generated considerable interest, and also some controversy on

the claims of simultaneous noise suppression and resolution enhancement. The de-

tails of the method have been described extensively [46, 47, 19, 8]. Here we merely

summarize the principles.

MaxEnt reconstructs the frequency domain spectrum, f(ω), directly by solving

an optimization problem similar to those in nonlinear least squares methods, with an

additional constraint of maximizing some entropy function, S(f). It is claimed that

the minimum variance principle along (such as Eq. 1.39) does not provide enough

information on the possible spectral reconstructions to be of much use. There exists
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an infinite number of spectral reconstructions that satisfy the statistic constraint,

χ2(f) <
N−1
∑

n=0

|ξ(n)|2 = C0 ,

where ξ(n) is the noise in the data, and χ2(f) is defined as,

χ2(f) =
N−1
∑

n=0

∣

∣

∣[iDFT(f)]n − c(n)
∣

∣

∣

2
, (1.43)

where iDFT(f) is the “mock” time signal computed by inverse DFT of the spectrum

f(ω). If we are to improve over DFT, we have to include some additional criterion for

choosing an optimal reconstruction, such as the maximum entropy principle. What

maximum entropy principle implies is that a reasonable reconstruction should not

add any new information beyond what is contained in the experimental data [46, 8].

The entropy the spectrum f can be expressed in a general form,

S(f) = −
N−1
∑

n=1

R(fn) , (1.44)

where R(fn) is the negative of the contribution of each spectral point to the overall

entropy. The functional form of R(fn) resembles |fn| log(fn). Their actual forms can

be very complicated [47, 19, 8], but irrelevant to the present discussions.

The constrained optimization problem can be converted to an unconstrained one

of maximizing the following objective function,

Q(f) = S(f) − λ χ2(f) , (1.45)

where λ is a Lagrange multiplier that determines the relative weight of the entropy

and χ2-statistic constraint. The maximization problem of Eq. 1.45 does not have an

analytical solution and has to be solved numerically. Many algorithms have been
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proposed [48, 8]. They typically rely on iteratively improving a trial guess of the

spectrum and simultaneously adjusting certain parameters such as λ to arrive at a

final solution.

There are certain attractions to MaxEnt. First, it does not make any assumption

about the signal to be recovered, while being flexible enough to incorporate some prior

information into reconstruction when such kind of knowledge is available. Second, a

good initial spectrum is not required for convergence, nor an accurate estimation of

the number of poles present in the signal. Third, it can be proved that there exists

a unique, global solution. Fourth, data sets that are not uniformly sampled can be

used, providing considerable flexibility to balance among sensitivity, resolution and

experimental time. However, the claim that MaxEnt can produce simultaneous noise

suppression and resolution enhancement [46] was proved to be largely unsubstantiated

due to the confusions between the sensitivity and SNR of the spectrum and between

the resolution enhancement and linewidth reduction [49, 8].

Nevertheless, there are also some severe limitations of MaxEnt:

(i). The efficiency and accuracy of MaxEnt hinge on the techniques used to solve the

high dimensional optimization problem. While theoretically a unique solution exists,

in practice, it relies on adjusting parameters such as the noise power C0, and there is

little guarantee that such a solution could be actually found.

(ii). MaxEnt is computationally very expensive, attempting to reconstruct the whole

signal in a single shot. Similar to all the previously described high-resolution meth-

ods, it is infeasible to use MaxEnt to analyze very large data sets.

(iii). As a result of its expensive computational cost, MaxEnt is typically only applied
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in a trace-by-trace fashion for reconstruction of multidimensional spectra, losing the

advantages of true multi-dimensional spectral analysis.

(iv). Nonlinearity is intrinsic to MaxEnt, making it hard to use MaxEnt for quan-

titative purpose. Some techniques such as in situ calibration [48] were proposed to

overcome this limitation but only with limited efficiency.

(v). Even though additional information can be incorporated in MaxEnt, it is not used

in the optimal way. For example, when the signal sufficiently satisfies the Lorentzian

model, more aggressive methods like LP or the matrix pencil method can use this

information more efficiently and provide larger resolution enhancements.

1.3.4 Subspace Methods

Another common limitation of all the high-resolution alternatives we just dis-

cussed is the expensive computational cost. They all attempt to analyze the whole

signal in a single shot, i.e., in the full space, and can be prohibitively expensive and

very unstable for large data sets. In this section, we will discuss an example of sub-

space methods, LP-Zoom, that can avoid this limitation. Even though due to other

remaining difficulties, it is not actually successful enough for general spectral analysis

in NMR, the idea of converting a large problem into small problems in the subspace is

very interesting and one of the key reasons for the success of the filter diagonalization

method.
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LP-Zoom

LP-Zoom [50] is based on LP theory but revised to analyze the local spectral

structures in contrast the global structure, and thus avoid the demands for large

computational time and memory of ordinary LP methods. The idea is as simple as

applying the z-transform to both sides of the AR model of Eq. 1.27,

g0(z) =
K ′

∑

k=1

akgk(z) , (1.46)

where

gk(z) =
N−1
∑

n=K ′

c(n − k)zn , (1.47)

with z = exp(iωτ), and K ′ is a new prediction order. The essence of LP-Zoom is

that Eq. 1.46 allows the selective evaluation in a certain (small) frequency range of

interest. Because the zoomed area might contain only a few peaks, even if the whole

spectrum is very complicated, the required prediction order, K ′, is much smaller than

that of conventional LP. Selectively analyzing areas that contain peaks rather than

fitting the whole spectrum can significantly reduce the computational time and can

also yield a more accurate result.

However, other major difficulties of LP remain unsolved: 1). one still needs

to estimate the order of prediction filter, which is further complicated by the local

spectral analysis as an “effective rank” could be even more difficult to define. 2). the

amplitudes are still computed by solving another least square problem after all the

roots are solved. The errors in the rooting step could be disastrous for the second

step and are problematic to correct. 3). True multidimensional extensions still have

severe difficulties.
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1.4 Summary and Remarks

Spectral analysis is an important step in extracting the spectral information from

the time signal. The conventional Fourier transform spectral analysis is a linear

method that is stable, reliable and fast if implemented as fast Fourier transform.

However, FT also has some well known limitations such as the FT time-frequency

uncertainty principle and sinc-like truncation artifacts. Moreover, FT is essentially a

one-dimensional spectral analysis method that is not able to use the important infor-

mation that evolution in all dimensions is correlated. Finally, additional information

about the signal, if exists, can not be efficiently incorporated in FT.

Extensive efforts have been made to develop high-resolution alternatives to the

FT spectral analysis. By utilizing some additional information about the signal, it is

possible to obtain resolutions beyond the FT uncertainty principle. However, due to

the large size and high complexity of NMR signals, none of these methods have been

completely successful. They all suffer from one or more of the following limitations:

(i). Rely on adjusting parameters to obtain satisfactory results.

(ii). Computationally very expensive and numerically unstable.

(iii). Rely on nonlinear optimization of some complex score functions with hun-

dreds of degrees of freedom.

(iv). Significant difficulties or limitations in their multidimensional extensions.

The Filter Diagonalization Method (FDM) is a high-resolution method that was

introduced to NMR spectral analysis only very recently. It seems to be free of all the

difficulties mentioned above, and shows the promise to be a final working method.
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In the next two chapters, we will describe the theory of FDM and its application to

NMR spectral analysis in details. Here, a preview of FDM is provided:

(i). FDM is a parametric method based on the Lorentzian model of Eq. 1.26.

(ii). FDM solves the highly nonlinear fitting problem by converting it into pure

linear algebraic problems of diagonalizing some small data matrices in the frequency

subspace. It is thus intrinsically both computationally efficient and numerically sta-

ble.

(iii). In FDM, both the complex frequencies and complex amplitudes are obtained

simultaneously from the same eigenvalue problem.

(iv). Multi-dimensional extensions of FDM exist and have been successfully ap-

plied to analyze realistic NMR experimental signals. The whole multidimensional

data set is used by FDM to characterize the intrinsically multidimensional features.

Astonishing resolution enhancements have been demonstrated.
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Chapter 2

Theory of the Filter

Diagonalization Method

2.1 Historical Overview

The filter diagonalization was first introduced by Neuhauser in 1990 to extract

eigenvalues and eigenstates of a potentially large system in any energy range of in-

terest [51]. In essence, a Fourier filter is applied to remove the correlation between

distant eigenstates, then, by diagonalizing the Hamiltonian matrix in the subspace,

the eigenstates in a small energy range can be computed very accurately. There are

two advantages of filter diagonalization: first, by filtering, the size of the Hamilto-

nian matrix is reduced; second, by diagonalization, it is possible to obtain accuracy

beyond the Heisenberg uncertainty principle, δE ∼ h̄/t, where t is the length of the

time propagation. One of the most successful early applications of filter diagonal-

ization was the accurate calculation of quantum scattering resonance of the HO2
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radical [52], which is still very difficult to be reproduced by other methods. An

important breakthrough was made in 1995 by Wall and Neuhauser [24], where the

generation of a quantum time correlation function and its spectral analysis were split

into two independent steps. It was discovered that as long as the time correlation

function was available, the Hamiltonian matrix could be computed and diagonalized

to provide the eigenstates. In this new formulation, FDM became suitable for spec-

tral analysis of a general time signal, simply by ignoring the signal generation step.

However, this perspective remained only an interesting observation until its efficiency

was significantly improved by Mandelshtam and Taylor [25, 53]. The new version,

named the Filter Diagonalization Method (FDM), used a rectangular filter that was

computationally more efficient, and was reformulated for the conventional problem of

analyzing discrete time signals defined on an equidistant time grid. It was shown to

be an optimal method for fitting the signal to the summation of Lorentzian lines in

several points of view including convergence, computational efficiency and numerical

stability. FDM was then extensively exploited and applied to many problems in both

theoretical and experimental physics and chemistry, where the harmonic inversion

was essential [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. In particular, FDM started

to be applied to processing Nuclear Magnetic Resonance (NMR) signals [65, 66, 67],

which turned out to be one of the most interesting applications of FDM.

From the spectral analysis point of view, 1D NMR does not really have limitations

as very long signals are typically available and therefore converged FT spectra1 can

be obtained. However, multi-dimensional NMR signals are often truncated in the in-

1A converged spectrum should show peaks at right frequencies with true linewidths.

43



direct dimensions due to many practical limitations, leading to poor FT resolution in

corresponding frequency dimensions. Therefore there is plenty of room for resolution

enhancement. Interestingly, the true power of FDM actually lies in its multidimen-

sional extensions. FDM is a true multidimensional method that is able to process the

whole multi-dimensional data set to characterize the intrinsically multi-dimensional

features. The obtainable resolution in all dimensions is determined together by the

total information content of the signal, instead of by the signal sizes along individual

dimensions. In another word, it is possible for FDM to use the information encoded in

the long dimensions to enhance resolution in the short dimensions. Early implemen-

tations of multi-dimensional FDM [68, 69, 70] require simultaneous diagonalization

of multiple data matrices, which is very difficult, if not impossible, for noisy signals

with degenerate resonances. A major breakthrough was made by Mandelshtam and

coworkers [71], when a Green’s function approach was introduced to compute mul-

tidimensional spectral estimations directly using the eigenvalues and eigenvectors of

solving several independent 1D generalized eigenvalue problems. The difficult prob-

lem of finding a unique set of eigenvectors to diagonalize multiple data matrices is

thus avoided. However, applied to noisy experimental signals, the spectra computed

from a single FDM calculation are often be contaminated by many artifacts including

spurious poles and distortions of genuine features, which are very sensitive to any

change in the input data and FDM processing parameters. The source of the arti-

facts was not fully understood at first, but the sensitivity was exploited by various

averaging methods to suppress the artifacts [72, 71, 73]. An obvious drawback of

these averaging methods was that they were very time consuming and the conver-
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gence was slow. It was later realized that the averaging was actually an inefficient way

of regularization for removing the ill-conditioning of FDM. More efficient methods of

regularization were exploited, among which FDM2K [74], proposed in year 2000 and

thus named FDM2K to honor the new millennium, was particular efficient and ef-

fective. With regularization implemented, stable high-resolution spectral estimations

can be computed using single FDM calculations, provided that the signal sufficiently

satisfies the Lorentzian model and is sufficiently long. FDM2K has since been ap-

plied to several Constant-Time (CT) NMR experiments [75, 76] and demonstrated

significant resolution enhancements. There are some special properties associated

with processing CT-NMR signals, which makes them particularly suitable for FDM

data processing. Very short constant-time periods can be used without sacrificing the

resolution, leading to better sensitivities, especially for fast relaxing proteins.

It was also realized that various spectral representations could be directly com-

puted without diagonalizing the data matrices [77, 78]. The new expression was

named Regularized Resolvent Transform (RRT). RRT corresponds a direct, nonlin-

ear transformation of time domain signal into frequency domain spectrum. It is a

very efficient method with appealing transparency and simplicity. RRT is also quite

flexible and can be used to construct many non-FT types of spectral estimations.

In the rest of the chapter, the theory of 1D FDM will be first described in Sec-

tion 2.2, then extended to a multi-dimensional case in Section 2.3. Various ways to

regularize FDM will be discussed in Section 2.4, followed by detailed descriptions of

RRT in Section 2.5. Several ways for checking the validity of FDM/RRT results will

be discussed in Section 2.6. Finally, some conclusions are given in Section 2.7.
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2.2 One-Dimensional FDM

In this section, we first review the theory of 1D FDM with emphasis on its two most

important properties: solving the nonlinear fitting problem by pure linear algebra and

local spectral analysis by using a Fourier-type basis. FDM is able to fit both large and

complicated signals to the summation of Lorentzian lines in an efficient and stable

way. In the case of of noisy data, the original FDM algorithm might yield a line list

that contains unphysical poles with both large amplitude and negative linewidth. By

using a more sophisticated Multi-Scale Fourier basis [79], this kind of poles can be

eliminated and a line list more consistent with the decaying signal can be obtained.

2.2.1 Nonlinear Fitting by Linear Algebra

The basic object of 1D FDM is to fit a given complex time signal c(n) = c(tn),

defined on an equidistant time grid, tn = nτ, n = 0, 1, 2, . . . , N − 1, to the sum of

exponentially damped sinusoids (i.e., Lorentzian lines),

c(n) =
K
∑

k=1

|dk|eiθe−in2πτfke−nτγk =
K
∑

k=1

dke
−inτωk , (2.1)

with a total of 2K unknowns: the K complex amplitudes dk = |dk|eiθ and K complex

frequencies ωk = 2πfk − iγk. The real part of complex frequency, 2πfk, gives the line

position and negative of the imaginary part, γk, gives the line width. The absolute

value of complex amplitude, |dk|, corresponds to the integral of the peak and the

phase angle, θ, defines the phase of the peak. The line list {ωk, dk} corresponds to

a parametric representation of the time signal, c(n), of which each pair of (ωk, dk)

defines a peak, or, a pole.
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Although the fitting problem of Eq. 2.1 is highly nonlinear, its solutions can be

obtained by pure linear algebra. In FDM, we assume that the complex time signal,

c(n), is associated with a time autocorrelation function of a dissipative dynamical

quantum system that is described by an effective non-Hermitian Hamiltonian operator

Ω̂ and some initial state Φ0 [24],

c(n) =
(

Φ0

∣

∣

∣Φn

)

=
(

Φ0

∣

∣

∣e−inτΩ̂
∣

∣

∣Φ0

)

. (2.2)

Here a complex symmetric inner product2 is used, (a|b) = (b|a) without complex

conjugation. We use the round brackets to distinguish it from the Hermitian inner

product, < a|b >=< b|a >∗. Ω̂ is a complex symmetric operator,

{(Ψ|}{Ω̂|Φ)} = {(Ψ|Ω̂}{|Φ)} = (Ψ|Ω̂|Φ) . (2.3)

Assuming that Ω̂ is diagonalizable, it can be written in its spectral representation,

Ω̂ =
∑

k

ωk|Υk)(Υk| , (2.4)

where ωk are the eigenvalues and Υk, the corresponding eigenvectors. {Υk} are or-

thonormal with respect to the complex symmetric inner product, i.e.,

(Υk|Υk′) = δkk′ . (2.5)

Inserting Eq. 2.4 into Eq. 2.2, we can recover the HIP equation of Eq. 2.1 with,

d
1/2
k = (Υk|Φ0) . (2.6)

Therefore the harmonic inversion problem of Eq. 2.1 becomes equivalent to the linear

algebraic problem of diagonalizing the “Hamiltonian” Ω̂. Or equivalently, we can

2See Appendix at the end of this chapter for a brief overview of non-Hermitian quantum mechanics
for describing dissipative systems.
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diagonalize the evolution operator Û ≡ e−iτΩ̂:

Û |Υk) = uk|Υk) , (2.7)

with eigenvalues uk = e−iτωk . From the eigenvalues of Û , we can determine {ωk}, line

positions and widths, and from the eigenvectors, {dk}, line integrals and phases.

Even though neither Û nor Φ0 is explicitly available, their matrix representation

in an appropriately chosen basis set can be computed purely from the time signal

c(n). The basis can be chosen in many different ways. The total number of basis

functions is determined by the size of the available signal. For a signal of N complex

points, the maximum basis size is N/2: each Lorentzian line requires two complex

parameters to specify it, so that at most M = N/2 lines can be uniquely fitted to a

signal of length N .

Krylov Basis

The simplest basis would correspond to a set of Krylov vectors |Φn), n = 0, 1, . . . , M−

1, with M = N/2, generated by propagating the initial state, |Φ0), using the effective

evolution operator Û ,

|Φn) = Ûn|Φ0) = exp(−inτ Ω̂)|Φ0). (2.8)

The matrix elements of Û in this basis are trivial to obtain as

U (1)
nm =

(

Φn|Û |Φm

)

=
(

Φ0|UnUUm+1|Φ0

)

= (Φ0|Φn+m+1) = c(n + m + 1) . (2.9)

Since the Krylov basis is not orthonormal, the overlap matrix

U (0)
nm = (Φn|Φm) = (Φ0|Φn+m) = c(n + m), (2.10)
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must also be computed. Here convenient notations U (1)and U (0) are adopted to rep-

resent the evolution matrix and the overlap matrix. Note that both matrices are

symmetric, which is a direct result of the complex symmetric inner product formal-

ism. The fitting problem of Eq. 2.1 is then cast into a complex Generalized Eigenvalue

Problem (GEP),

U(1)Bk = ukU
(0)Bk . (2.11)

Note that the eigenvectors Bk are normalized with respect U(0) as,

BT
k U(0)Bk′ = δkk′. (2.12)

The complex frequencies and complex amplitudes are then,

ωk =
i

τ
ln(uk)

d
1/2
k =

M−1
∑

n=0

[Bk]n c(n) , (2.13)

where Eq. 2.13 follows from Eq. 2.6 by substituting

|Υk) =
M−1
∑

n=0

[Bk]n |Φn) . (2.14)

Note that the maximum basis size M = N/2 is always used. There are several

advantages to this. First, we can thus avoid the problem of estimating the number

of resonances present in the signal, which is problematic for most realistic signals.

Second, all the available data are used to construct the evolution matrix and overlap

matrix. Therefore, the resulting data matrices contain all the information that we

can use. The rest of the problem becomes a pure mathematical problem of solving

the generalized eigenvalue problem. When the true number of resonances is less than
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M , the matrices become singular, or near singular in the case of noisy data. In these

cases, eigenvalue solvers that are capable of handling ill-conditioned matrices should

be used, such as QZ [80] and GUPTRI [81, 82]. Numerical experiments showed that

the U matrices in 1D were actually well-behaviour enough so that stable solutions

of GEP could be readily obtained by most standard eigenvalue solvers such as those

from the LAPACK [83] library.

Armed with Eq. 2.9, Eq. 2.10 and Eq. 2.11, we have a simple method for solving

the nonlinear fitting problem of Eq. 2.1 by pure linear algebra of solving a general-

ized eigenvalue problem. The latter is a very well studied problem and an unique

solution is always guaranteed. Unfortunately, while the problem is certainly easy to

set up, it could be very difficult to solve in practice. The size of the data matrices

is determined by the signal size. For large signals, solving the generalized eigenvalue

problem becomes very demanding on the computational power as well as the com-

puter memory for storage. Large matrices might also lead to numerical problems

such as round-off error and overflow. In addition, if the signal happens to contain far

less than M = N/2 peaks (K � M), then the basis becomes over-complete and the

matrices are ill-conditioned. As a result, formulated in this way, we end up solving a

large and ill-conditioned linear system, of which stable solutions are very difficult, if

not impossible, to obtain numerically. This is also one of the main drawbacks of all

full space method such as LP and the matrix pencil method we discussed in Chapter

1. In conclusion, the simple formalism with the Krylov basis has severe limitations

and cannot be applied on a regular basis to signals of size more than, say, a few

thousand data points.
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2.2.2 Local Spectral Analysis: Fourier-Type Basis

The primitive Krylov basis leads to large and ill-conditioned linear systems for

realistic experimental signals, and therefore is not a practical choice. There is a way

to avoid diagonalizing the huge matrices in single step. By applying a special unitary

transformation to the data matrices U(1) and U(0), the diagonalization can be carried

out in multiple steps. In other words, instead of trying to analyze the whole spectrum

at one time, we can divide it into small spectral windows and analyze them separately.

This local spectral analysis is the second important property of FDM.

Any linear combinations of the primitive Krylov basis functions can also serve as

a basis. Among them, a good choice is a Fourier transform of the Krylov basis, of

which a particularly simple and efficient variant is the rectangular window Fourier

basis [53], defined as 3:

|Ψj) =
M−1
∑

n=0

einτϕj |Φn) , (2.15)

with {ϕj} being a set of equidistant values taken inside a small frequency window

of interest. For this choice the transformation from the Krylov basis {Φn} , n =

0, 1, 2, ..., M − 1, to the Fourier basis {Ψj} , j = 1, 2, ..., M , is unitary. More im-

portantly, due to the Fourier transform, each basis function |Ψj) is localized in the

frequency domain, i.e., it is a linear combination of only those eigenfunctions |Υk)

of Ω̂ for which ωk ∼ ϕj. This implies that we can consider a small subset of, say,

Kwin � M values ϕj in the frequency region [ωmin, ωmax] where the eigenfunctions

3Other window functions can also be used in constructing the Fourier basis. However, they are
mathematically equivalent to the case of no window function, and practically lead to little numerical
difference. See Appendix III for more details.
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~

window

 ϕjFrequency Grid

Figure 2.1: An example of FDM single window calculations. Using a small set of
Fourier-Type basis functions inside the specified frequency range, the resulting data
matrices contain mostly the spectral information of the local spectral window. The
signal is a 1D NMR signal of human progesterone with N=2000 points and spectral
width of 4 ppm.

can be sufficiently represented by,

|Υk) =
∑

ωk∼ϕj

[

B̃k

]

j
|Φj) . (2.16)

Note that a tilde (∼) is added to notation B because |Υk) is now expanded in a

Fourier-type basis. It will also be added to notation U, the matrix representation of

Û operator in the Fourier basis.

Eq. 2.16 means that the operator Û can be diagonalized in the Fourier subspace

that corresponds to some pre-specified frequency window to yield the eigenvalues and

eigenvectors, and subsequently, the spectral parameters for that window. Figure 2.1

illustrates such a window calculation. Note that the extraction of the complex fre-
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quencies ωk to a high precision only requires that the local completeness condition,

ρ(ϕj) =
Mτ

2π
≥ ρ(ωk) , (2.17)

be satisfied for the densities of the grid points ρ(ϕj) and that of the eigenfrequencies

ρ(ωk). In other words, the number Kwin of the basis vectors Φj should be larger than

the number of the eigenvalues in the small interval [ωmin, ωmax]. Moreover, the local

spectral analysis to certain extent is insensitive to the spectral properties outside

the chosen small spectral domain. Therefore, FDM has a local convergence property.

Even when the signal is so short that some crowded regions can not be fully resolved,

accurate results can still be obtained for spectral regions that are less crowded. This

property will be demonstrated with more examples when we discuss 2D FDM ant its

applications.

The idea of local spectral analysis was not first invented in FDM. The idea of

making high-resolution spectral analysis local, called “beamspacing” [84] in digital

signal processing literature, has been known for a long time and widely exploited

in various algorithms such as MUSIC and ESPRIT [3]. In NMR data processing

literature, there is also a variant of the beamspace idea that is called LP-ZOOM [50].

LP-Zoom is a modified linear prediction algorithm which uses z-transform to zoom

in on a small spectral region in the frequency domain and thus reduces the size of

the problem. In principle, it shares the many advantages of local spectral analysis

with 1D FDM. However, other difficulties of LP, such as estimating the prediction

order and accurate computation of the amplitudes (see Section 1.3.4 for more details),

remains unaddressed.
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The matrix elements of the evolution operator in the Fourier basis can also be

evaluated purely in terms of the time signal c(n):

[

Ũ
(p)
]

jj′
=

(

Ψj

∣

∣

∣Û (p)
∣

∣

∣Ψj′

)

=
M−1
∑

n=0

M−1
∑

n′=0

einτϕjein′τϕj′

(

Φn

∣

∣

∣Û (p)
∣

∣

∣Φn′

)

=
M−1
∑

n=0

M−1
∑

n′=0

einτϕjein′τϕj′ c(n + n′ + p) (2.18)

=
M−1
∑

n=0

M−1
∑

n′=0

ei(n+n′)τϕjein′τ(ϕj′−ϕj) c(n + n′ + p) . (2.19)

The double sum in Eq. 2.18 can be simplified to a single sum by first changing the

variables from (n, n′) to (l = n + n′, n′), Eq. 2.19, and breaking it into two terms,

M−1
∑

n=0

M−1
∑

n′=0

=
M−1
∑

l=0

l
∑

n′=0

+
2(M−1)
∑

l=M

M−1
∑

n′=l−(M−1)

,

then analytically evaluating the summations over n′, which gives,

[

U(p)
]

jj′
=

1

1 − eiτ(ϕj′−ϕj)

{

M−1
∑

n=0

einτϕjc(n + p)

− eiτ(ϕj′−ϕj)
M−1
∑

n=0

einτϕj′ c(n + p)

+ e−i(M−1)τ(ϕj′−ϕj)
2(M−1)
∑

n=M

einτϕj′ c(n + p)

− eiMτ(ϕj′−ϕj)
2(M−1)
∑

n=M

einτϕjc(n + p)







. (2.20)

Note that the final result Eq. 2.20 is symmetric with respect to the interchange of

indices j and j′ as it should be. We can rewrite Eq. 2.20 in a compact form that can

be easily generalized to the multi-dimensional cases,

[

Ũ
(p)
]

jj′
= Ŝ

∑

σ=0,1

eiσ[τM(ϕj′−ϕj)+π]

1 − eiτ(ϕj′−ϕj)
(2.21)

×
(σ+1)(M−1)

∑

n=σM

einτϕjc(n + p) ,
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where Ŝ defines symmetrization operator over the indices j and j′:

Ŝ gjj′ = gjj′ + gj′j . (2.22)

In principle, Eq. 2.21 is correct for all choices of ϕ and ϕj′ except for the singularity

arising at ϕj = ϕj′. To obtain a numerically practical expression for this singular

case, we evaluate the ϕj → ϕj′ limit, which leads to,

[

Ũ
(p)
]

jj
=

2(M−1)
∑

n=0

einτϕj (M − |M − n − 1|)c(n + p) . (2.23)

Notably and quite importantly, the resulting matrices Ũ
(p)

have a sinc-like struc-

ture with generally large diagonal and decaying off-diagonal terms. The latter become

much smaller than the former once Mτ |ϕj −ϕj′| � 2π. It is this structure that justi-

fies the possibility to perform the eigenvalue calculation in a small Kwin ×Kwin block

fashion for possibly large M × M matrices Ũ
(p)

.

After the new matrix representations are computed, the same generalized complex

eigenvalue equation of Eq. 2.11 can be solved. From the eigenvalues and eigenvectors,

we can compute the complex frequencies and complex amplitudes. According to

Eqs. 2.6 and 2.15 the amplitudes dk are given as4,

d
1/2
k = B̃

T

k C̃ , (2.24)

where B̃
T

k is the transpose of eigenvectors, and the 1 × Kwin column vector C̃ is the

FT of the original 1 × M signal array C:

[

C̃
]

j
=

M−1
∑

n=0

einτϕjc(n) , j = 1, 2, ..., Kwin . (2.25)

4There exists an alternative expression for computing the amplitudes, which is more accurate for
narrow poles in the case of high signal to noise ratio. See Appendix II for details.
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2.2.3 FDM as a High-Resolution Spectral Estimator

Up to this point, FDM seems to be just a parameter estimator which can provide

the parameter representation {wk, dk} for a given FID by fitting it into Eq. 2.1.

However, FDM can also be used as a spectral estimator. Once the parameters are

available, one can easily construct the spectral representation I(w), formally defined

as the infinite time discrete Fourier Transform (DFT) summation,

I(ω) = τ
∞
∑

n=0

(

1 − δn0

2

)

C(n)eiωnτ , (2.26)

where the term
(

1 − δn0

2

)

multiplies c0 by 1
2

to correct the error introduced by the

discrete sum approximation of the continuous half-line Fourier integral (so called

“first point correction”). By substituting the damped sinusoids model Eq. 2.1 into

Eq. 2.26 and evaluating the geometric summation analytically, we can obtain the

corresponding spectral estimate, which we called the FDM ersatz spectrum,

Iτ (ω) = τ
K
∑

k=1

dk

(

1

1 − eiτ(ω−ωk)
− 1

2

)

. (2.27)

In FDM, some poles with extremely small imaginary part may occur (either due to

the present of noise or real peaks), which leads to high spikes in the ersatz spectrum

producing unfavorable results. Therefore, it is often useful to include a smoothing

parameter Γ > 0 to improve the appearance of the spectra,

Iτ (ω) = τ
K
∑

k=1

dk

(

1

1 − eiτ(ω−ωk+iΓ)
− 1

2

)

. (2.28)

The absorption mode ersatz spectrum then corresponds to,

Aτ (ω) = Re[Iτ (ω)] = τ
K
∑

k=1

Re
[

dk

(

1

1 − eiτ(ω−ωk+i Γ)
− 1

2

)]

. (2.29)
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In a single calculation, FDM can only obtain results for a small frequency window.

The construction of the spectral estimation for a larger spectral range requires com-

bining the results from multiple window calculations. To reduce the inaccuracies at

the window edges, the adjacent windows overlap with each other, typically by 50%.

We first construct segments of the spectrum for each windows, then sum them up

with appropriate weighting functions, such as cosine square functions, that add up to

one,

Iτ (ω) =
∑

c

gc(ω)Iτ
c (ω) , (2.30)

where the subscript c represents different spectral windows, and the weighting func-

tions gc(ω) satisfy
∑

c gc(ω) = 1. Figure 2.2 illustrates such a multi-window imple-

mentation of FDM. Cosine square functions (shown as dotted lines) are used to weight

the segments before they are concatenated together, so that the center parts of each

window segments will contribute more to final spectrum than the edges. Note that

for windows on the two edges the large spectral range of interest, only half of the

corresponding segments of the spectrum are retained.

Practical Issues on Spectral Estimation via FDM

There are several additional complications involved in constructing a stable spec-

tral representations using the spectral parameters computed by FDM.

1. Iτ (ω) or I(ω)?

For a very long time after the invention of FDM, a spectral representation I(w)

that corresponds to the infinite time Fourier integral had been used. Substituting

Eq. 2.1 into the infinite time FT integral (see Eq. 1.1) and evaluating the integration
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Fourier-Type Basis
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win. 5

win. 4
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win. 2

Figure 2.2: A multi-window implementation of FDM. Cosine-square functions, shown
as dotted lines, are used for weighting the segments of the spectrum before they are
concatenated together.

58



analytically yields,

I(ω) = i
K
∑

k=1

dk

ω − ωk
. (2.31)

Generally, for small τ we have I(ω) ≈ Iτ (ω), but unlike Iτ (ω), which is periodic in ω

with the period equal to the Nyquist width 2π/τ , I(ω) is not periodic. However, as we

are dealing with discrete time signals, the resulting spectra should be periodic. When

there are some broad poles such that γkτ << 1 is not satisfied, I(ω) becomes a bad

approximation to the DFT spectrum. The mutual interferences and cancellations of

the poles are not conserved, leading to some instabilities in the baseline. Numerical

experiments showed that broad poles occurred frequently when FDM was applied

to analyze noisy signals and/or signals with a strong background. For example,

Figure. 2.3 compares the FDM ersatz spectra obtained using Eq. 2.31, trace (b), and

Eq. 2.27, trance (c). While the Iτ (ω) spectrum is very stable, the I(ω) spectrum

shows significant baseline distortions. This demonstrates that Eq. 2.31 is dangerous

to use if there are interfering poles ωk ≡ νk − iγk with both large widths γk and large

amplitudes dk. With the slightly wrong formula (Eq. 2.31 rather than Eq. 2.27) the

negative contributions are not correctly canceled by the positive ones, leading to the

baseline distortions. Similar discussions were also independently given before in the

nonlinear least squares fitting literature [30]. In conclusion, Iτ (ω) should always be

constructed.

2. What should we do with unphysical poles with negative γk?

Due to the imperfections of the signals such as noise and lineshape distortions,

and certain limitations of FDM, poles with negative γk (or negative linewidth) often
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appear in the line list. This formally corresponds to unphysical exponential increasing

signals. Now we are faced with a dilemma on what to do with such kind of poles.

There are a few options.

a. Do nothing.

b. Simply flip the sign of all negative γk.

c. Throw the unphysical poles away.

This dilemma also occurs in linear prediction. In LP, the amplitudes dk are com-

puted by solving a least squares problem after the frequencies ωk are calculated by

rooting a polynomial. An ωk with negative γk can blow up all the amplitudes. Thus,

generally, a combination of (b) and (c) has to used: the ωk with small γk are retained

with the sign of γk flipped, while the ωk with large and negative γk values are re-

jected. Even when LP is only used to extrapolate the signal, it is always necessary

to first root the characteristic polynomial and then eliminate roots corresponding to

exponentially growing signals, in order to obtain a stable, meaningful extrapolation.

In FDM the situation is quite different as the amplitudes dk are computed simul-

taneously with the frequencies ωk using the eigenvectors and eigenvalues from the

same generalized eigenvalue problem. Therefore, γk < 0 does not necessarily lead to

any numerical instability in FDM. In the early applications of FDM [53, 67], I(ω)

was always constructed. A narrow peak with negative γk will appear upside-down in

the absorption spectrum, which can be easily fixed by flipping the sign of γk. How-

ever, because of the local nature of the Fourier basis, which is manifestly incomplete,

some computed pairs (ωk, dk) may have large and negative γk and large dk values.

When I(ω) is constructed, these entries would often result in a noticeable baseline
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distortion, as demonstrated by trace (b) of Figure. 2.3. Neither throwing away such

a “spurious” entry nor flipping the γk would fix the baseline.

2.12.22.32.42.52.62.7

a). I
(τ)

(ω)
     DFT

b). I(ω)
     FDM

c). I
(τ)

(ω)
     FDM

d). I(ω)
     Multi-Scale FDM

1
H Chemical Shift / ppm

Figure 2.3: 1D proton NMR absorption spectra of progesterone for a representative
spectral region of a noisy signal. The signal length is N = 2000 and spectral width
is SW = 4 ppm (2 KHz). All the entries returned by FDM were used to reconstruct
the ersatz spectrum without any attempt to identify and/or throw away any spurious
poles. From the top to the bottom, the traces are,
(a). DFT with appropriate apodization function.
(b). FDM ersatz spectrum computed using Eq. 2.31 with single-scale FDM.
(c). FDM ersatz spectrum computed with Eq. 2.27 with single scale FDM.
(d). FDM ersatz spectrum computed using Eq. 2.31 Eq. 2.31 with Multi-Scale FDM.

Trace (c) of Figure 2.3 was a little unexpected in that Iτ (ω) constructed with

the line list {ωk, dk} containing some “spurious” entries leads to the correct spectrum

with undistorted baseline. It can be explained by the fact that it is the Iτ (ω), not
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I(ω), which is invariant to the basis set representation. Due to the existence of

very delicate mutual interferences and cancellations of the contributions all poles in

Eq. 2.27, the instabilities do not occur if one keeps all the entries produced by FDM.

This also explains the stability of the RRT (see Section 2.5) which relies on the same

DFT based expression. Clearly, if Iτ (ω) gives the correct baseline in the presence

of such poles, I(ω) must fail as the two expressions are quite different for large γk.

Accordingly, when possible,

• All the poles with significant amplitudes dk must be retained in the sum.

• Only narrow poles with γk < 0 should be flipped: γk → −γk.

Note that even though the spectrum Iτ (ω) looks correct, the underlining broad

poles with negative γk and large dk do not correctly describe the time domain data.

Therefore, for obtaining a line list consistent with the decaying time signal, and with

minimized cancellation effects, the use of Multi-Scale FDM is advantageous, which

will be described in the next section.

A Numerical Example

To demonstrate the ability of FDM to identify and resolve Lorentzian lines with

a wide range range of linewidths and splittings, a model signal named “Jacob’s Lad-

der” [67] is constructed. The signal contains 50 triplets with progressively smaller

linewidths and splittings from high frequency to low frequency,

c(n) =
50
∑

k=0

e−i2π×(0.001n)×(500.0−1.0i) 0.9k

+

2 e−i2π×(0.001n)×(497.5−1.0i) 0.9k

+ e−i2π×(0.001n)×(495.0−1.0i) 0.9k

(2.32)
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A total of N = 64, 000 complex data points were produced. Figure 2.4 shows the

spectrum of the model signal. Due to the wide range of linewidths and splittings,

accumulation of lines at low frequency and large size of the signal make it a very chal-

0 100 200 300 400 500

~

Frequency (Hz)5

Frequency (Hz)

10

Figure 2.4: A total of 50 triplets: beginning with 1.0 Hz linewidth and 2.5 Hz coupling
centered at 497.5 Hz and finishing at 5.73 mHz linewidth and 14.3 mHz coupling
centered at 2.82 Hz. The spectral width is 1 KHz. The time signal contains 64,000
data points. The wide range of linewidth and splittings, accumulation of lines near
zero frequency, and large size make this signal challenging for non FT methods.

lenging signal for any other non-FT methods such as Linear Prediction and Maximum

Entropy Reconstruction.

Figure 2.5 compares the DFT and FDM on the densest part of the spectrum of the

test signal, using 32K and 64K data points. It demonstrates the ability of FDM to

fit both large and complicated time domain signals to the summation of Lorentzians,

63



and provide resolution beyond the FT uncertainty principle. Due to the local spectral

analysis, it took only a few seconds to obtain these results on a small PC workstation.

2.5 3 3.5 4 4.5 5

Nsig=64K

FDM

DFT

Nsig=32K

FDM

DFT

Frequency (Hz)

Exact
Spectrum

Figure 2.5: A comparison of FT and FDM on the densest part of the signal “Jacob’s
Ladder” (Figure 2.4). In FT calculations, the signal was first zero-filled to 128K data
points. FDM resolves all the multiplets with signal length of 32K points, while the
left most triplets are not resolved by FT even with 64K data points.

A Case Where FT Beats FDM

We have demonstrated that FDM is able to effectively use the information that

the signal contains purely Lorentzian lines to provide resolution beyond the FT uncer-

tainty principle. However, this does not mean that FDM will provide better resolution

for all Lorentzian signals. It is most advantageous for FDM when the distribution of
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the peaks is highly non-uniform, and highly disadvantageous for FDM when the peaks

are uniformly distributed. To demonstrate the point, a special model signal that con-

tains 21 peaks evenly distributed in the center part of the spectrum is constructed.

-2 -1 0 1 2

DFT

-2 -1 0 1 2

FDM

Frequency (Hz) Frequency (Hz)

N = 40

N = 60

N = 80

N = 100

N = 40

N = 60

N = 80

N = 100

Figure 2.6: A special case where DFT can beat FDM even though the signal contains
purely Lorentzian lines. The model signal is integerized with the first point c0 = 2048.

The signal is integerized to mimic ADC with the first point being c0 = 2048. Even

though this signal contains purely Lorentzian lines, it is optimal for DFT processing,

because DFT provides uniform resolution and thus works the best when the features

are uniformly distributed. Figure 2.6 compares the performance of DFT and FDM on

this signal. It shows that DFT is able to resolve all 21 peaks using as few as N = 60

data points, while FDM does not converge until N ≥ 100. However, note that even
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though DFT is able to resolve all 21 peaks for N ≥ 60, the linewidths converge very

slowly, while FDM is able recover all parameters very accurately once the size of the

signal is above certain threshold.

Summary of the FDM Algorithm

The practical numerical procedure for implementing the FDM algorithm can be

summarized as the following steps:

1. Choose a spectral window: specify a small enough frequency range of interest,

[ωmin, ωmax], inside the Nyquist range for a given time signal of length N , cn =

c(nτ), n = 0, 1, . . . , N − 1. “Small enough” is operationally defined by the resulting

size of the linear algebraic problem, which could depend on the type of the signal and

computational power available.

2. Set up the Fourier basis: set up an evenly spaced angular frequency grid inside

the specified window, ωmin < ϕj < ωmax, j = 1, 2, . . . , Kwin, where the basis size Kwin

is determined by Kwin = ρ M(ωmax − ωmin) τ/2π. M = N/2 is the maximum size of

basis. ρ ≥ 1 is the basis density, defined in Eq. 2.33. Typically ρ = 1.1 ∼ 1.2.

3. Compute the matrix elements using Eqs. 2.21 and 2.23. The resulting matrices,

Ũ
(1)

and Ũ
(0)

, are complex symmetric and of size Kwin × Kwin.

4. Solve the generalized eigenvalue problem of Eq. 2.11 using any standard eigen-

value solvers such as CG [83] and QZ [80] routines.

5. Compute the complex amplitudes according to Eq. 2.24.

6. Use the line list {ωk, dk} as an input for the spectral estimation (optional).

7. If of interest, go to step (1) choosing the next frequency window.
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Note that in the multi-window implementation, large spectral range can be spec-

ified, which is then automatically divided into multiple smaller windows.

Computational Cost of 1D FDM

The most time consuming steps are the matrix construction, step (3), and diago-

nalization, steps (4). Close inspection of Equations 2.21 and 2.23 shows that for an

arbitrary choice of 1D grid of size Kwin, the evaluation of all Ũ
(p)

elements scales as

Kwin × N : linear with respect to the size of the time signal and the basis size. The

cost of the diagonalization step scales as K3
win. Therefore the overall computational

cost of FDM is a Kwin × N + bK3
win, where a and b are scaling factors. In the case

of small spectral windows, K2
win << N , the speed determining step is the U matrices

evaluation step, which is often the case for 1D FDM. In order to process the whole

spectral range, approximately N/Kwin window calculations are needed. Thus, the

total cost of processing a 1D signal roughly scales as (N/Kwin) × (KwinN) = N2, if

small windows are used. Therefore, the computational cost of FDM is comparable

to that of Discrete FT, although still more expensive than N log(N) of FFT. For

example, for a signal of 10000 complex data points, FDM takes a few seconds to

analyze the whole spectral range using a basis size of 50 on single AMD XP 1800+

workstation, which cost less than $500 in May of 2002.

2.2.4 Multi-Scale Fourier-Type Basis

As mentioned above, unphysical poles with large and negative linewidths and

large amplitudes can occur in FDM, manifested as the baseline instabilities of the
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I(ω) spectrum. This can be due to the narrow band Fourier basis functions, Eq. 2.15,

which are highly localized in the frequency domain. On one hand, localization is a

big advantage of using the Fourier basis, on the other hand, in the presence of noise,

a narrow band basis is inadequate to represent a broad spectral feature that is not

localized in a single window, as each basis function |Ψj) is “locked” on the noise peaks

that appear close to ϕj and cannot “see” the peaks that are far away. For example, if

there exists a broad peak that centers outside of the current spectral window but tails

into the window, the narrow band Fourier basis would not be enough to accurately

represent the contribution of this broad peak. Thus, with the narrow band Fourier

basis only, there might be some ambiguity in reproducing the broad spectral features

or the baseline, and this is the source of the instability. Obviously, it can sometimes

be reduced by using larger windows. However, increasing the basis size does not

always work, and even when it does, it is impractical due to the unfavorable scaling

of the computational cost for an eigenvalue solver. In this section, we will introduce

a more sophisticated way of local spectral analysis using a Multi-Scale Fourier-type

basis. The improved algorithm, named Multi-Scale FDM, is more robust and reliable,

and at the same time computationally efficient.

The idea is illustrated in Figure 2.7. In addition to the narrow band Fourier basis

functions inside the window, we add some coarse (i.e., delocalized or broad band) basis

functions outside of the window, so that the global behaviour of the spectrum can

be captured, and its interference on the window calculations minimized. Since these

global features such as broad peaks and background do not require high resolution

we do not need many of such coarse basis functions. We also want to minimize the
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Figure 2.7: An example of a multi-scale basis set and the spectrum obtained using
this basis for the same signal used in Fig. 2.1. Kwin = 10 narrow band and Kc = 20
coarse basis functions (indicated by an impulse at each ϕj) were used. The coarse
functions are distributed non-uniformly according to the displacement from the edges
of the window (see text).

number of coarse basis functions with the condition that the non-localized features

that may affect the local spectral analysis are represented adequately, which can be

achieved by choosing the most efficient coarse basis distributions.

Given that the farther away from the current window, the less significant the effect

of a broad spectral feature to the local analysis, the coarse basis could be chosen such

that the spacing between the adjacent coarse basis functions and, accordingly, their

bandwidth, monotonically increase with respect to the distance between the center

of the basis function (ϕj) and the spectral window of interest. Thus only the features

which are broad enough to affect the current window will be captured by the coarse
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basis. Here the local density of the basis functions is defined as

ρj =
2∆ϕmin

|ϕj+1 − ϕj−1|
(2.33)

where ∆ϕmin = 2π/τMmax is determined by the spacing between the narrow band

Fourier basis functions. The Fourier length should be scaled accordingly to the local

density using Mj = ρjMmax, so that the bandwidth of the basis functions is consistent

with the basis density. For a given small spectral window we can construct a multi-

scale basis, which contains Kwin narrow band Fourier basis functions localized in the

window and Kc coarse basis functions spread over a wide spectral range:

|Ψj) =
Mj−1
∑

n=0

einτϕj |Φn), j = 1, 2, . . . , K = Kwin + Kc , (2.34)

with the Fourier length Mj depending on j: Mj = Mmax for the narrow band, and

Mj = Mmax ρj , for the coarse basis functions.

The elements of U matrices can be then evaluated in terms of the time signal.

Using the definition of multi-scale FT basis functions |Ψj) and |Ψj′), Eq. 2.34, and

the assumption of Eq. 2.2, we obtain,

[

U(p)
]

jj′
=

Mj−1
∑

n=0

Mj′−1
∑

n′=0

einτϕjein′τϕj′ c(n + n′ + p)

=
Mj−1
∑

n=0

Mj′−1
∑

n′=0

ei(n+n′)τϕjein′τ(ϕj′−ϕj)c(n + n′ + p) . (2.35)

Unlike previous case of single-scale Fourier basis, here Mj and Mj′ do not always

equal to each other, making the expression a little more complicated. However, using

a similar strategy used to derive the efficient expression of Eq. 2.21, we can still

reduce the numerically expensive double sum to several single summations. First, by
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substituting l = n + n′, and assuming Mj < Mj′, we break it into three terms,

Mj−1
∑

n=0

Mj′−1
∑

n′=0

=
Mj−1
∑

l=0

l
∑

n′=0

+

Mj′−1
∑

l=Mj

l
∑

n′=l−(Mj−1)

+

Mj′+Mj−2
∑

l=Mj′

Mj′−1
∑

n′=l−(Mj−1)

.

Then by evaluating analytically the summations over n′, we can replace each term by

single summations. After some manipulations, an efficient expression for off-diagonal

matrix elements results, which is given in a compact form here,

[

U(p)
]

jj′
= Ŝ

∑

σ=0,1

eiσ[Mj′τ(ϕj′−ϕj)+π]

1 − eiτ(ϕj′−ϕj)
×

σ(Mj′−1)+Mj−1
∑

n=σMj′

einτϕjc(n + p) , (2.36)

where Ŝ is the symmetrization operator over the subscripts j and j′, as defined in

Eq. 2.22. For the diagonal matrix elements, ϕj = ϕj′, we have,

[

U(p)
]

jj
=

2Mj−2
∑

n=0

(Mj − |Mj − n − 1|)einτϕjc(n + p) . (2.37)

Note that when Mj = Mj′, Eqs 2.36 and 2.37 boil down to the formulas previously

derived for the case of single-scale Fourier basis, Eqs 2.21 and 2.23.

Once the U-matrices are available in this new basis, the generalized eigenvalue

problem Eq. 2.11 can be solved. Due to Eqs. 2.13 and 2.34 the complex amplitudes

are computed as,

√

dk =
K
∑

j=1

[Bk]j

Mj−1
∑

n=0

einτϕjc(n) . (2.38)

Figure. 2.7 shows an example of such a multi-scale basis set for a particular win-

dow together with the FDM ersatz spectrum obtained using this basis and plotted,

intentionally, in a wide spectral range. As expected, fine features are captured inside

the window where dense and narrow band basis functions are used, and only coarsely

resolved features appear outside this window. Furthermore, the spectral resolution
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decreases smoothly in the directions away from the window, so there are no edge

effects associated with the local spectral analysis. This makes it easier to combine

the results of different windows to construct the overall spectrum. More importantly,

with the presence of coarse basis, the line list is free from unphysical poles with large

and negative γk and large amplitudes, although poles with small and negative γk

might still occur. The latter can be easily fixed simply by flipping the sign. With

Multi-Scale basis, the spectral representation I(ω), defined in Eq. 2.31, will also be

stable and baseline distortion free. An example is shown in Figure 2.3, trace (d).

However, Iτ (ω) is still preferred and should be used.

Some Aspects of Numerical Implementations

A comment must be made on how to compute the discrete Fourier sums for all j

and j′ in Eq. 2.36 efficiently. The first two sums need to be computed only once for

every j. The other two sums depend on both indices j and j′, and might seem expen-

sive. Here we describe an algorithm which scales as Mmax × Kwin for all the matrix

elements of U(p) rather than MmaxK
2
win as one might think. Thus the computational

cost of evaluating the U-matrices in a multi-scale Fourier basis is similar to that of

the original version of FDM.

For convenience, we introduce the notation:

g
(p)
j (M) ≡

M+Mj−1
∑

n=M+1

einτϕjc(n + p) .

Since g
(p)
j (Mmax − 1) only depends on ϕj , it can be evaluated once and stored in an

array for later use. Now given g
(p)
j (Mmax), one can obtain g

(p)
j (Mj′) recursively for all
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Mj′ < Mmax according to

g
(p)
j (M − 1) = g

(p)
j (M) + eiMτϕjc(M + p)

− ei(M+Mj−1)τϕj c(M + Mj − 1 + p) .

Finally, note that there is no need to re-evaluate the Fourier sums in Eq. 2.36

for p = 1, once they have been computed for p = 0. There exists a simple recursive

relation between these two,

M
∑

n=0

einτϕc(n + 1) = e−iτϕ

[

M
∑

n=0

einτϕc(n) − c(0)

]

eiMτϕc(M + 1) .

A Double-Scale Fourier Basis

We would also like to find out the most efficient coarse basis distribution that re-

quires minimum computational efforts to obtain similarly reliable results. We found,

again by numerical experiment, that for the simplest realization of a multi-scale

Fourier basis, one can consider just two scales with Mj = Mmax, for the narrow

band window basis, and Mj = Mc � Mmax, for the coarse basis. This corresponds to

having two equidistant grids with spacings, ∆ϕmin = 2π/τMmax and ∆ϕc = 2π/τMc,

respectively. At first look, the double scale distribution may not sound as effective as

the real “multi-scale” basis with smoothly decaying basis density. However, numer-

ical experiments showed that such a basis distribution is sufficient to obtain “good”

results for most circumstances, while there may always exist some cases that require

more complicated basis distributions.

Unlike the example shown in Figure. 2.7 which might seem a little complicated,

the double-scale basis implementation simplifies the calculation of the U-matrix ele-
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ments. Furthermore, the size of coarse basis can be further reduced by putting coarse

basis functions |Ψj) only in the regions with significant peaks in a low resolution pic-

ture. Numerical implementation of this “adaptive coarse basis” requires pre-applying

DFT or FDM to a short signal to obtain a low resolution picture in order to decide

where the coarse basis functions should be placed. The examples shown the next sec-

tion were all obtained using the double-scale FDM (but without the adaptive basis

implementation).

Multi-Scale Fourier Basis Using Complex Frequency Grid

There is an even simpler implementation of the multi-scale FDM which does not

require any of the new formulas derived earlier in this section. Instead of using a real

frequency grid {ϕj}, a list of complex values ϕ
(c)
j = ϕj + iγj is used,

|Ψj) =
Mmax−1
∑

n=0

einτϕj e−nτ γj |Φn) , (2.39)

Note that if γj = 0 this new definition is the same as Eq. 2.15. When γj > 0, the

exponential e−nτ γj acts as a FT weighting function, and changes the effective FT

length. Adjusting the imaginary part of the complex grid points ϕ
(c)
j will have the

same effect as directly adjusting the FT length, Mj in Eq. 2.34. The relation between

γj and Mj is given as,

Mmax−1
∑

n=0

e−nτ Im[ϕ
(c)
j

] = Mj . (2.40)

This equation can be solved analytically by replacing the summation with a integral

and solving the resulting simplified equation. The solution can then be expanded in

Taylor series and approximated by,
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τ Im[ϕ
(c)
j ] =



















1
t
+ x − x2 + 3

2
x3 − 8

3
x4 + 125

24
x5 + O(x6) , if t < 0.685

2.82(1 − t) , if t > 0.685

, (2.41)

where t = Mj/Mmax, x = − exp(−1/t)/t. Note that Mj has the same dependence on

basis distribution as previously described. A plot of γj vs. t is shown in Figure. 2.8.

With the complex definition of the multi-scale FT basis, the formulas of the single

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

M
j
 / M

max

τ 
Im

[ϕ
j]

Figure 2.8: A plot of τ Im[ϕ
(c)
j ] vs. Mj/Mmax for complex frequency grid implemen-

tation of Multi-Scale Fourier basis.

scale FDM by used by simply replacing the real grid ϕj by the complex one. This

can greatly simplify the implementation of multi-scale Fourier basis in 2D or higher.

Numerical experiments showed that the performance of the multi-scale FDM with

complex grid is similar to that of the original implementation.
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Numerical Examples

The example of Fig. 2.9 demonstrates the reliability and robustness of the multi-

4.0 3.5 3.0 ppm

FT spectrum

x8

x8

x8

Kwin=4, Kc=10

x8

Multi−Scale

FDM

FDM  (1) Kwin=200, Kc=0

FDM  (2)

Kwin=200, Kc=0

Figure 2.9: This example shows the spectra of an artificially made signal (see text),
processed by three different methods: single-scale FDM, multi-scale FDM and DFT.
The spectrum marked with FDM (2) was obtained with the same parameters as
FDM (1) but the position of the windows was slightly shifted. The instability in both
representing the background spectrum and resolving the fine features (the doublet)
occurs even with Kwin as large as 200 basis functions (corresponding to 0.88 ppm
spectral window). The doublet is not resolved in the FT spectrum either due to
the FT uncertainty principle, although the spectrum envelop is reproduced correctly.
The result obtained by the multi-scale FDM with just Kwin + Kc = 4 + 10 = 14 basis
functions is superb in all respects and requires minimal computational effort.

scale FDM. Even under extreme conditions it is still as stable as the Fourier spectrum

but can deliver higher resolution than both the Fourier spectrum and the previous

single-scale version of FDM. We considered the same NMR signal as that used in
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Figure. 2.1 and 2.7 to which, in the region with no genuine NMR lines, we added

artificially some very broad Lorentzian lines to simulate a huge background, and

some very narrow lines. I(ω) instead of τ (ω) was used to reveal the instabilities due to

unphysical poles. For this extreme case, the single-scale FDM does not work well even

when a quite big window basis is implemented. For example, for signal length N ∼

2000 and Kwin ∼ 200 window basis functions the spectrum envelop is not reproduced

correctly. Moreover, in this case the results appeared to be quite sensitive to the

input parameters, such as a slight shift in the window position. While reproducing

the background spectrum is not a problem for the Fourier spectrum, it cannot resolve

the doublet made out of two narrow, equal in height and closely spaced Lorentzian

lines. Quite surprisingly, the multi-scale FDM with just Kwin+Kc = 4+10 = 14 basis

functions per window reproduces all the relevant spectral features quite accurately.

Moreover, the doublet is now much better resolved than in both the single-scale FDM

and FT spectra.

Finally, Fig. 2.10 presents an IR spectrum. The interferogram contained 4744 data

points that were processed by both FT and multi-scale FDM to generate the absolute

value spectra |I(ω)|. The FT spectrum is very hard to interpret and, probably, hard

to quantify by conventional means, as the peaks are not quite narrow and both the

overlapping effects and the interference with the background are significant. Unlike

the FT case, the FDM peaks are generally much sharper. Notably and most impor-

tantly, the FDM spectrum is fit by the form of Eq. 2.1, so the parameters of the peaks

(such as the positions, widths and amplitudes) are known, while fitting the absolute

spectrum |I(ω)| by Lorentzians would be a very challenging project. Also note that
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the overall shape of the spectrum is reproduced well by the multi-scale FDM, while

the single-scale version would be very unstable for this signal because of the strong

background.

1430.0 1530.0 1630.0 cm−1

(a)

−
−

>−

200.0 2200.0 4200.0

(c)  FT spectrum

(b)  Multi−Scale FDM

Kwin=20, Kc=30

Figure 2.10: FT-IR spectrum (a) and an interesting part of the same spectrum pro-
cessed by the Multi-Scale FDM with Kwin + Kc = 20 + 30 = 50 (b) and by FT (c).
The interferogram contained 4744 data points.

2.2.5 Summary

1D FDM is an efficient and stable algorithm for fitting both large and compli-

cated time domain signals to the summation of Lorentzian lines. It solves the highly

nonlinear fitting problem by recasting it into pure linear algebraic problems of diag-

onalizing some small data matrices. FDM can be used as a parametric estimator as

well as a spectral estimator. Provided that signal sufficiently satisfies the Lorentzian
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model, FDM can deliver resolution beyond the FT time-frequency uncertainty prin-

ciple. While the spectral estimation, Iτ (ω), given by FDM is always very stable,

unphysical poles with large and negative linewidths and large amplitudes can occur

when the signal is very noisy and/or contains nonlocalized features such as strong

background and broad peaks. A multi-scale Fourier-type basis is introduced to im-

prove the efficiency of local spectral analysis and suppress these unphysical poles.

With a Multi-Scale Fourier basis, it is possible to use much smaller spectral windows

and still obtain reliable results even for very noisy signals.

Currently the 1D FDM algorithm is already a well-developed method which is very

stable, sufficiently fast, and can provide reliable high-resolution spectral estimations,

given that the signals sufficiently satisfy the Lorentzian model. However, obtaining

a compact true line list is still problematic. In the case of heavy overlapped features

and/or very noisy data, the lines obtained by FDM do not necessarily all represent

the true resonances in the time signal, even though the spectrum computed from

such a line list is a reliable estimate of the true infinite DFT spectrum. Any attempt

for non-trivial use of the line list, such as large linear phase corrections and line

narrowing, might break the mutual interference and cancellation of the lines and

result in unstable spectral estimations.
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2.3 Multi-Dimensional Extensions of FDM

In this section, we describe multi-dimensional extensions of the FDM algorithm

(MD-FDM). As we discussed in Chapter 1, multi-dimensional spectral analysis is

much more challenging, and conventional FT spectral analysis has major limitations.

Interestingly, the true power of FDM actually lies in its multi-dimensional extensions,

in the ability to process the whole multidimensional data set together to obtain the

maximum possible resolution in all dimensions. We will start from explaining the

concept of true multi-dimensional spectral analysis in Section 2.3.1, then describe a

“naive” version of multi-dimensional FDM, which requires simultaneous diagonaliza-

tion of multiple matrices, in Section 2.3.3. In Section 2.3.4, we will describe a more

robust approach that uses the Green’s functions to compute the multi-dimensional

spectral estimations directly using the results of solving several generalized eigenvalue

problems. However, due to the ill-conditioning of the problem, spectra obtained from

single FDM calculations are often contaminated with artifacts that are sensitive to

any change of the FDM parameters and/or input signal. Several primary averaging

procedures which make use of this sensitivity to suppress these artifacts will then be

described in Section 2.3.5. Finally, a summary will be given in Section 2.3.6.

For the sake of simplicity, only 2D FDM will be explicitly discussed. Extension

of 2D FDM to higher dimensionality is straightforward and does not involve any new

fundamental difficulty.
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2.3.1 What Is a True Multi-Dimensional Method?

Before we describe the theory of multi-dimensional FDM, let’s first define the

concept of true multi-dimensional spectral analysis. As we discussed in Chapter 1,

multi-dimensional FT is essentially a 1D spectral analysis method. The FT time-

frequency principle applies to all dimensions independently. In order to obtain high

resolution in all dimensions, FT requires long signals in all dimensions. Due to many

practical limitations such as limited experimental time and limited long-term instru-

mental stability, the multi-dimensional NMR signals are typically truncated in the

indirect dimensions, leading to poor FT resolution in the corresponding dimensions.

This is one of the major limitations of multi-dimensional FT-NMR.

On the contrary, for a true multi-dimensional method, the obtainable resolution in

all dimensions is determined together by the total information content of the signal,

which can be roughly measured by the total size of the signal, N1 × N2 × . . . × ND,

where Nl is the number of data points along the lth dimension. Figure 2.11 shows

a schematic illustration of a true two-dimensional spectral analysis method. As long

as the total size of the 2D signal is sufficiently large, whether the signal is long or

short in a particular dimension has little effect on the obtainable resolution for a

true 2D spectral analysis method. In other words, a long time dimension can be

used to enhance the resolution along an orthogonal dimension for which it may be

time-consuming, or impossible, to obtain a long signal. This property is particularly

useful for NMR data processing. In multidimensional NMR experiments, acquisition

dimension is cheap and long signals are always available, while the indirect dimensions
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are expensive and typically truncated. Therefore a multi-dimensional NMR signal

is almost always very large and might contain enough information to pin down all

the multi-dimensional features, if we have a true-multidimensional spectral analysis

method capable of using the information effectively. Multi-dimensional FDM is such

a method, as it will become clear later in this section.

N1

N2

N2

N1

2D Signal

2D
Signal

True 2D 
Spectral 
Analysis

ω2

ω1

ω2

ω1

Figure 2.11: A schematic illustration of a true two-dimensional spectral analysis
method. As long as the total area of the signal, defined as N1 × N2, is sufficiently
large, a true 2D spectral analysis method should be able to obtain similar 2D spectral
estimations no matter whether one dimension is longer or shorter than the other.
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2.3.2 2D Harmonic Inversion Problem

Given a 2D complex valued time signal c(~n) ≡ c(n1τ1, n2τ2), with n1 = 0, 1, ..., N1−

1, n2 = 0, 1, ..., N2 − 1, where ~n is the time vector5 defined on a 2D equidistant time

grid, we want to fit it to the summation of 2D Lorentzian lines,

c~n =
K
∑

k=1

dke
−i~n~ωk ≡

K
∑

k=1

dk exp (−in1τ1ω1k − in2τ2ω2k) , (2.42)

where ~ωk ≡ (ω1k, ω2k) are vectors of unknown complex frequencies, ωlk = 2πflk − iγlk,

and dk are unknown complex amplitudes. This is a 2D Harmonic Inversion Prob-

lem (2D HIP). The total number of unknown complex parameters in the 2D line list

{~ωk, dk} with K entries is 3K. Note that this formalism of 2D HIP is similar to but

different from those used in 2D LP [16] and the 2D matrix pencil method [22]. In

the latter cases, models with a direct product set of frequencies, {ω1k, ω2k′, dkk′}, k =

1, 2, . . . , K1, k′ = 1, 2, . . . , K2, are used, so that the total number of unknowns is

K1 +K2 +K1 ×K2. However, a typical 2D NMR spectrum does not have completely

direct product pattern. Even for spectra that occur in COSY [85], NOESY [86]

and TOCSY [87] types of experiments, the direct product patterns are more or less

localized. The non-direct product model of Eq. 2.42 is actually a more general for-

malism that allows a direct-product output, while leading to a much more compact

representation for spectra without direct-product patterns.

It should also be pointed out that a true multi-dimensional method will have

the maximal advantage over 1D spectral analysis when the spectra contain minimal

direct product patterns. For spectra with a lot of direct product peak patterns such as

5Even though only the 2D case is considered, the vector notations make the extension to the case
of more than 2D straightforward.
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COSY, NOESY, and TOCSY spectra, processing the whole data set together does not

lead to a big advantage compared to trace-by-trace 1D processing. In these cases, MD

FDM could only help to improve resolution by being an efficient and stable nonlinear

parametric method. Therefore, the most interesting applications of MD FDM in

NMR are the multi-dimensional experiments that are routinely used to obtain the

chemical shift assignment such as HSQC, HNCO(A) and others. Several examples

will be given in Chapter 3.

2.3.3 A “Naive” Version of 2D FDM

Here we describe a straightforward 2D extension of FDM that was used in Ref. [68,

69, 70]. The object of 2D FDM is to fit a given 2D discrete time signal, defined on a 2D

equidistant time grid, to the summation of Lorentzian lines, i.e., solve the 2D HIP of

Eq. 2.42. starting point. Similar to the 1D case, this highly nonlinear fitting problem

can be cast into a linear algebraic problem, or more precisely, a family of generalized

eigenvalue problems, by associating the 2D time signal to a double-time correlation

function of a fictitious dynamic system with two commuting non-Hermitian symmetric

Hamiltonians Ω̂1 and Ω̂2 [68, 70],

c(~n) =
(

Φ0

∣

∣

∣e−i~n~ΩΦ0

)

≡
(

Φ0

∣

∣

∣e−in1τ1Ω̂1−in2τ2Ω̂2Φ0

)

. (2.43)

The Hamiltonians are diagonalizable by the same set of eigenvectors,

Ω̂l |Υk) = ωlk |Υk) , l = 1, 2 , (2.44)

where the eigenvectors are orthonormal according to the symmetric complex inner

product, (Υk|Υk′) = δk,k′. Inserting their spectral representations
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Ω̂l =
∑

k

ωlk |Υk) (Υk| (2.45)

into Eq. 2.43, we can recover the 2D HIP equation 2.42 with

dk = (Φ0|Υk)
2 . (2.46)

Therefore, the nonlinear fitting problem of Eq. 2.42 is recast into a pure linear alge-

braic problem of diagonalizing the Hamiltonian operators, or equivalently, the evolu-

tion operators, Ûl ≡ e−iτl
~Ωl,

Ûl |Υk) = ulk |Υk) , l = 1, 2 . (2.47)

The matrix representations of the evolution operators in an appropriate basis can

be computed from the 2D time signal. The simplest choice is a set of time like

Krylov basis functions created by propagating the “initial” state using the evolution

operators,

|Φ~n) ≡ Û(~n)|Φ0) = Ûn1
1 Ûn2

2 |Φ0) . (2.48)

The elements of the evolution matrices in Krylov basis are simply given by the 2D

signal points,

[U(~p)]~n,~n′ = (Φ~n|Û (~p)Φ~n′) = c(~n + ~n′ + ~p) , (2.49)

for any time vector ~p = (p1, p2), among which for ~p = (0, 0), (1, 0), and (0, 1) U(~p)

corresponds to the overlap matrix U0 and evolution matrices in two time dimensions,

U1 and U2, respectively. The requirement of no missing entries in these matrices

limits the size of the Krylov basis to M1 × M2 = N1/2 × N2/2. Similar to 1D FDM,

the maximum basis size is always used to avoid the problem of estimating the number
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of poles and to maximize the information content of the U matrices. As a result, in

the Krylov basis, one has to diagonalize potentially both large and ill-conditioned

matrices, which is not feasible in practice. For example, a normal 2D NMR signal

with 1024 × 256 complex data points will lead to U matrices of dimension 65536 by

65536, which can hardly be handled even by modern supercomputers.

Instead of trying the solve the 2D HIP in the full space, a more efficient approach

is to break it into many small problems in the subspace. This can be achieved by

using a 2D Fourier-type localized basis, among which the rectangular-window Fourier

basis6 is particularly efficient [68],

|Ψj) =
M1−1
∑

n1=0

M2−1
∑

n2=0

ei~n(~ϕj−~Ω)|Φ0) , (2.50)

where ~ϕj ≡ (ϕ1j, ϕ2j), j = 1, 2, . . . , Kwin, is a 2D frequency grid within a small pre-

specified 2D spectral window [ωmin1, ωmax1] × [ωmin2, ωmax2]. The 2D Fourier basis is

locally complete, so that small data matrices can be constructed and then diago-

nalized to obtain accurate spectral estimations within the local spectral window. In

principle, any type of 2D frequency grid can be used as long as the basis distribution

is sufficiently uniform and the total number of basis functions Kwin satisfies,

Kwin = ρ
∆ω1τ1 × ∆ω2τ2

4π2
M1M2 , (2.51)

with ρ ≥ 1.0 being the density of basis functions, and ∆ωl = ωmaxl − ωminl, l =

1, 2. A particularly efficient setup corresponds to having a uniform direct-product

2D grids: ~ϕj = (ϕj1, ϕj2), j1 = 1, 2, . . . , Kwin1, j2 = 1, 2, . . . , Kwin2, where Kwin1 =

6In principle, a 2D multi-scale Fourier basis can be used [79]. However, as it will become clear
later, there are other problems in MD-FDM, making the necessity of using such a sophisticated local
basis less obvious.
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ρ1∆ω1τ1M1/2π and Kwin2 = ρ2∆ω2τ2M2/2π. Thus total basis size Kwin = Kwin1 ×

Kwin2, and overall basis density ρ = ρ1ρ2. The U matrix elements in such a 2D

Fourier basis can be efficiently computed using a procedure similar to the 1D case

(see Section 2.2). The final expressions in a compact form can be directly deduced

from Eq. 2.21 and Eq. 2.23. They are given here7,

[

Ũ
(~p)
]

jj′
= Ŝ1Ŝ2

∑

σ1=0,1

eiσ1[M1τ1(ϕ1j′−ϕ1j)+π]

1 − eiτ1(ϕ1j′−ϕ1j)

(σ1+1)(M1−1)
∑

n1=σ1M1

(2.52)

×
∑

σ2=0,1

eiσ2[M2τ2(ϕ2j′−ϕ2j)+π]

1 − eiτ2(ϕ2j′−ϕ2j)

(σ2+1)(M2−1)
∑

n2=σ2M2

ei~n~ϕjc(~n + ~p) ,

where Ŝl defines the symmetrization operator over the subscripts lj and lj′ as in

Eq. 2.22. When ϕlj = ϕlj′ Eq. 2.52 is rewritten according to Eq. 2.23. For example,

for ϕ1j = ϕ1j′ we have

[

Ũ
(~p)
]

jj′
= Ŝ2

∑

σ2=0,1

eiσ2M2τ2(ϕ2j′−ϕ2j)+π]

1 − eiτ2(ϕ2j′−ϕ2j)

(σ2+1)(M2−1)
∑

n2=σ2M2

(2.53)

×
2(M1−1)
∑

n1=0

(M1 − |M1 − 1 − n1|) ei~n~ϕjc(~n + ~p)

which can be trivially rewritten for the symmetric case of ϕ2j = ϕ2j′. For the case

~ϕj = ~ϕj′,

[

Ũ
(~p)
]

jj
=

2(M1−1)
∑

n1=0

2(M2−1)
∑

n2=0

ei~n~ϕjc(~n + ~p) (2.54)

× (M1 − |M1 − 1 − n1|)(M2 − |M2 − 1 − n2|) .

Once the U matrices are computed, one then needs to solve the 2D generalization

of the 1D generalized eigenvalue problem,

ŨlB̃k = ulkŨ0B̃k , l = 1, 2 . (2.55)

7Similar to the 1D case, tilde ∼ is added the notations B, U and others to indicate the use of
the Fourier basis.
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The amplitudes dk are then obtained from the eigenvectors as

d
1/2
k = B̃

T

k C̃ , (2.56)

where the coefficients of the 1×Kwin column vector C̃ are computed using the following

2D FT of the original signal array c(~n):

[

C̃
]

j
=

M1−1
∑

n1=0

M2−1
∑

n2=0

ei~n~ϕjc(~n) , j = 1, 2, ..., Kwin . (2.57)

After the parameter list {ω1k, ω2k, dk} is computed, 2D spectral estimations can be

constructed. The 2D complex spectrum that corresponds to infinite time 2D discrete

Fourier summation,

I(ω1, ω2) = τ1τ2

∞
∑

n1=0

∞
∑

n2=0

ein1τ1ω1ein2τ2ω2

(

1 − δn10

2

)(

1 − δn20

2

)

c(n1τ1, n2τ2) , (2.58)

can be obtained by substituting Eq. 2.42 into Eq. 2.58 and evaluating the summations

analytically:

I(ω1, ω2) = τ1τ2

∑

k

dk

[

1

1 − eiτ1(ω1−ω1k)
− 1

2

] [

1

1 − eiτ2(ω2−ω2k)
− 1

2

]

. (2.59)

In many applications, a double absorption spectrum is desirable. 2D FT of purely

phase modulated signals gives rise to “phase-twisted” lineshape [88]. Neither the real

nor the imaginary part of I(ω1, ω2) yields double absorption line shape. A double

absorption spectrum can only be obtained by using both cosine- and sine-modulated

or N- and P-type data sets (see Section 1.2.3). However, in FDM, the parametric

representation {ω1k, ω2k, dk} is computed using a single purely phase-modulated data

set, thus a double absorption type of spectrum can be constructed, for example, using,

A(ω1, ω2) ≈ τ1τ2

∑

k

Re[dk] Re
[

1

1 − eiτ1(ω1−ω1k)
− 1

2

]

Re
[

1

1 − eiτ2(ω2−ω2k)
− 1

2

]

,

(2.60)
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where we assume that the signal is correctly phased. However, this expression is

not a unique representation, and is meaningful only when the different peaks with

absorption shape are not overlapping too much, i.e., the interference effects are not

significant. Alternatively, one can use use an expression where the interference effects

in the second dimension are conserved,

A(ω1, ω2) ≈ τ1τ2

∑

k

Re
[

1

1 − eiτ1(ω1−ω1k)
− 1

2

]

Re
[

dk

(

1

1 − eiτ2(ω2−ω2k)
− 1

2

)]

. (2.61)

Equations 2.52 through 2.57 outline an efficient way of solving the 2D HIP of

Eq. 2.42 using pure linear algebra in the frequency subspace. The two most important

properties of 1D FDM are preserved. Therefore, 2D FDM is also intrinsically superior

in efficiency and numerical stability. However, there is a new problem. The essential

step of 2D FDM is solving the 2D generalized eigenvalue problem of Eq. 2.55, which

requires finding a unique set of eigenvectors that simultaneously diagonalizes both

evolution matrices. As there is no existing 2D generalized eigenvalue problem solver,

in practice 1D generalized eigenvalue solver is used twice to diagonalize Ũ1 and Ũ2

separately,

ŨlB̃lk = ulkŨ0B̃lk , l = 1, 2 . (2.62)

Two sets of eigenvectors B̃lk, l = 1, 2 are obtained and then need to be matched.

The matching step is typically problematic due to several factors: (i) the presence

of noise and other imperfections; (ii) use of the Fourier subspace; (iii) degeneracy of

eigenvalues. As a result, even though the Hamiltonians Ω1 and Ω2 are assumed to

commute with each other, the U matrices constructed in the Fourier basis for noisy

signals typically do not commute anymore. Therefore, an unique set of eigenvectors
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does not necessarily exist. There are various attempts at trying to find some unique set

of eigenvectors by reformulating the 2D generalized eigenvalue problems [66, 68, 69] or

by “simultaneous diagonalization” [70]. However, they are only applicable to signals

with very high SNR and fail for realistic signals.

Nevertheless, applied to model signals, even such a “naive” version of FDM al-

ready shows the power of true multi-dimensional data processing. Figure 2.12 is an

interesting demonstration of 2D FDM using a nearly noiseless model signal. The

signal consists of 32 non-degenerate 2D Lorentzian lines with frequency coordinates

created by a random number generator. The average line width in both dimension is

0.02 Hz and all the peaks have the same integral. The spectral width is 2 Hz in both

dimensions. The complete data set contains 128 × 128 complex data points. In the

2D DFT calculations, cosine weighting function was always used in both dimensions.

Double absorption FT spectra were obtained using both N-type and P-type signals.

The FDM calculation only used the N-type signal as double-absorption type of spec-

tra can be computed from a single purely phase-modulated signal. The left column

shows the 2D DFT spectra obtained by using different number of data points. We can

clearly see the effects of the FT uncertainty principle. Whenever the signal is short in

a time dimensions, the FT resolution is low in the corresponding frequency dimension

(panel a and b). It is only when the signal is long in both time dimensions that FT

can obtain high resolution in both frequency dimensions (panel c). The 2D FDM

spectra shown in the right column tell a totally different story. As long as the total

size of the signal is sufficiently large, whether it is 32 × 8 (panel d) or 8 × 32 (panel

e) has little effect on the final results: FDM can always provide a fully resolved 2D
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Figure 2.12: A demonstration of FDM using a nearly noiseless model signal that con-
tains 32 2D Lorentzian lines. 2D DFT can provide high resolution in both dimensions
only when the signal is long both ways. However, for FDM, as long as the area of the
2D signal is sufficiently large, fully resolved spectra can always be obtained, even in
the extreme case where the signal has only 2 increments in one dimension.
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spectrum. This is exactly what we expect from a true 2D spectral analysis method, as

illustrated in Figure 2.11. Even in the extreme case where there are 128 data points

in the first dimension and only 2 increments in the second dimension (panel f), FDM

still fully resolves all 32 peaks, since the total size is sufficiently large.

Computational Cost of 2D FDM

There are two steps that are time consuming in 2D FDM: construction of the U

matrices and diagonalization of these matrices. By using a direct product frequency

grid, one can use the efficient expressions of Eqs. 2.52, 2.53 and 2.54. The computa-

tional cost of the double summations in Eq. 2.52 scales as N1 ×N2. We only need to

evaluate these double summations once for each of Kwin basis functions. Accordingly,

the total cost of computing the U matrices scales as Kwin × N1 × N2. The cost of

diagonalization step is of the order of K3
win. Thus the total computational cost of

each FDM single window calculation is Kwin(a K2
win + bN1N2), with a and b being

scaling factors (a > b in our case).

To analyze the whole spectral range, one needs to carry out the order of N1N2/Kwin

window calculations, leading to a total cost of N1N2(a K2
win + bN1N2). In the limit

of small windows, where K2
win � N1N2, the total numerical effort of analyzing the

whole spectral range using FDM scales as N2
1 × N2

2 , which is of the same order as

that of 2D DFT. In the case of short signals, where K2
win is comparable to or greater

than N1 × N2, the computational cost will have a strong dependence on the window

size. For example, to compute the 2D spectral estimation over the whole spectral

range for a 2D signal with 1024×256 complex data point using basis size Kwin = 400,
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the total processing time is about 10 hours on a small AMD XP 1800+ CPU Linux

workstation. In most cases, only a small portion of the spectral range is of interest.

Therefore the actual processing time is often less than one hour for most 2D NMR

applications.

2.3.4 Green’s Function Approach

When the signal is noisy and/or contains degenerate poles, the “naive” version of

2D FDM simply fails due to the difficulty of finding an unique set of eigenvectors that

simultaneously diagonalizes both Hamiltonians. In this subsection, we are going to

show that there is a way to avoid this problem and construct 2D spectral estimations

directly from the results of two 1D generalized eigenvalue problems in terms of Green’s

functions [71]. A new derivation that is very similar to that of the Regularized

Resolvent Transform [77] is given here.

First, let’s redefine the object of 2D FDM. Given a finite 2D signal c(~n) ≡

c(n1τ1, n2τ2) defined on an equidistant 2D time grid, instead of trying to obtain a

compact parametric representation {ω1k, ω2k, dk}, the new object is to estimate the

infinite time 2D DFT spectrum, defined in Eq. 2.58, using the finite signal. Inserting

the quantum ansatz of Eq. 2.43 into Eq. 2.58 and evaluating the geometric summa-

tions analytically gives

I(ω1, ω2) =
(

Φ0

∣

∣

∣ Ĝ1(ω1) Ĝ2(ω2)
∣

∣

∣Φ0

)

(2.63)

=

(

Φ0

∣

∣

∣

∣

∣

{

1

1 − eiτ1ω1Û1

− 1

2

} {

1

1 − eiτ2ω2Û2

− 1

2

}∣

∣

∣

∣

∣

Φ0

)

,

where Ĝl are resolvent operators given in terms of Green’s functions. Substituting
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the spectral representation of the evolution operators,

Ûl =
∑

k

ulk |Υlk) (Υlk| , l = 1, 2 , (2.64)

into Eq. 2.63, we can obtain an expression for computing the 2D complex spectrum

directly from the eigenvectors and eigenvalues,

I(ω1, ω2) = τ1τ2

∑

k,k′

Dk,k′

[

1

1 − eiτ1(ω1−ω1k)
− 1

2

] [

1

1 − eiτ2(ω2−ω2k′)
− 1

2

]

, (2.65)

with cross-amplitudes Dk,k′ defined as,

Dk,k′ = b1kTk,k′b2k′ = (Φ0|Υ1k)(Υ1k|Υ2k′)(Υ2k′|Φ0) . (2.66)

In addition, one can easily calculate the 1D projections in both dimensions,

Il(ωl) =
(

Φ0

∣

∣

∣ Ĝl(ωl) Φ0

)

=
∑

lk

b2
lk

[

1

1 − eiτ2(ω2−ω2k′ )
− 1

2

]

, (2.67)

where blk ≡ (Υlk|Φ0) as defined in Eq. 2.66. Finally, a double-absorption type of

spectral estimation can be computed as,

A(ω1, ω2) ≈ τ1τ2

∑

k,k′

Re[Dk,k′]Re
[

1

1 − eiτ1(ω1−ω1k)
− 1

2

]

Re
[

1

1 − eiτ2(ω2−ω2k′ )
− 1

2

]

,

(2.68)

where we assume that the signal is correctly phased and that different peaks with

absorption shape are not overlapping too much so that the interference effects are

not significant.

Evaluated in the 2D Fourier basis, defined in Eq. 2.50, the operator expressions

of Eqs. 2.65, 2.67 and 2.68 become working formula for computing corresponding

spectral estimations with,

blk = B̃
T

lkC̃ , (2.69)

Tk,k′ = B̃
T

1kŨ0B̃2k′ , (2.70)
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where the vector C̃ is defined in Eq. 2.57, and eigenvectors B̃ are obtained from

solving the two 1D GEPs of Eq. 2.62.

Note that cross matrix Tk,k′ = (Υ1k|Υ2k′) is not necessarily diagonal; nor can

it necessarily be reduced to diagonal form by permutations. However, if we let

(Υ1k|Υ2k′) = δk,k′, Eq. 2.65 boils down to the ideal representation of Eq. 2.59. Thus

adopting representation of Eq. 2.65 covers the ideal case when two evolution opera-

tors can be simultaneously diagonalized, and at the same time avoids the necessity

of generating a unique set of eigenvectors {Υk}. As a result, it more robust and

applicable to processing general noisy experimental signals.

2.3.5 Averaging Approaches to Suppress the Artifacts

In principle, most entries in Tk,k′ should be nearly zero for signals that give rise

to spectra without excessive direct-product patterns. Unfortunately, in practice, this

is not necessary the case, which manifest itself as the spurious spikes in the 2D

spectral estimations, even for the signals with a reasonable signal to noise ratio.

For example, Figure 2.13 shows several double absorption type of 2D FT and FDM

spectra, computed from a 1H-15N chemical shift correlation NMR signal of 15N labeled

metalloprotein rubredoxin [89]. Only 8 increments have been used in 15N dimension

with 300 complex data points along the proton dimension. Even though the FDM

spectra seem to show some high-resolution characters, they are contaminated by

various artifacts such as spurious spikes randomly distributed all over the spectrum

and poorly converged genuine poles. Moreover, the artifacts are very sensitive to both
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Figure 2.13: 2D FDM and 2D FT double absorption spectra of a 1H-15N chemical shift
correlation 2D NMR experiment of a 15N labeled metalloprotein, rubredoxin. The 2D
time signal contains 300×8 complex points. While showing some high-resolution fea-
tures, the spectra obtained from a single FDM calculation are contaminated with
artifacts such as various spurious spikes randomly distributed throughout the whole
spectral window and lineshape distortions of genuine peaks. These artifacts are highly
sensitive to any change of the input signal and FDM parameters (e.g, compare the
two 2D FDM spectra computed using same data set but with slightly different pa-
rameters). Using a Multi-Scale Fourier basis does not help to suppress the artifacts
(lower right panel).
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the small variations in the input data and the parameters of the FDM calculation.

Multi-Scale Fourier basis does not help to suppress these artifacts (see lower right

panel), indicating that this is a different kind of instability. One might suspect that

this is due to the fact that the eigenvectors are computed in a non-variational way

and therefore less accurate than the eigenvalues. However, there are more essential

reasons for it. How to improve the structure of Tk,k′ is one of most important problems

in 2D FDM. These will be discussed in details next section.

Despite the complexity of the problem, there are several straightforward averaging

procedures for suppressing the artifacts, which simply make use of their high sensitiv-

ity to any change of input data and FDM processing parameters. These procedures

were successfully used in early applications of multi-dimensional FDM [69, 72, 73, 90].

The first averaging procedure is signal-length averaging. It is based on multi-

ple applications of FDM, applied to the nested subsets of the same signal, using a

progressively larger total size in successive calculations. As most artifacts are very

sensitive to any change of FDM parameters (while the true features are more stable),

they can be averaged out by summing many ersatz spectra computed from different

sizes of subsets of the signal. In principle, any FDM parameters such as basis size,

basis density and window positions can be used in the same context. However, it was

found that varying the signal size is particularly robust. In addition, typical 2D NMR

signals have many data points in acquisition dimension, providing a large range for

changing the signal size to achieve sufficient averaging. Examples of the signal-length

averaging procedure can be found in Ref. [69, 72].

The second procedure, pseudo-noise averaging, is a little more elegant and does
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not require a long dimension to provide sufficiently large room for varying the signal

length. In stead, it exploits the great sensitivity of FDM ersatz spectrum to small

perturbations of the time signal. A small change δ(~n) in the time signal call lead

to a large variation of the ersatz spectrum. Similar to the case of varying the signal

length, the artifacts are more sensitive than the true features. Therefore, by averaging

over sufficiently many realizations of pseudo-noise perturbation one can suppress the

artifacts in the ersatz spectrum. Interestingly, the pseudo-noise perturbation can be

implemented right before solving the generalized eigenvalue problems of Eq. 2.62: by

adding pseudo-random noise to the U matrices computed from the original signal,

one can save the computation time spent on re-computing the U matrices for each

perturbation. The qualitative justification is that U matrices are linear functions of

the input time signal and therefore a variation of the time signal transfers linearly

into the variation of the U matrices [91]:

Ũl → Ũl + rỸ , (2.71)

where Ỹ is a complex symmetric matrix with independent random elements satisfying

〈[Ỹ]jj′〉 = 0, 〈|[Ỹ]jj′|2〉 = 1. r is a real number and defines the level of perturbation,

which, in practice, can be calculated as,

r =
q

K2
win

Kwin
∑

j=1

Kwin
∑

j′=1

∣

∣

∣[Ũl]j,j′
∣

∣

∣ , (2.72)

where q is a real number. Typical value of q ranges from 0.01 to 0.05 depending

on how persistent’ the artifacts are with respect to the perturbations. 20 to 100

perturbations are usually sufficient to provide stable averaged 2D spectra that are

free from most artifacts. Figure 2.14 shows a stable, clean and high-resolution 2D
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double absorption spectrum obtained by FDM pseudo-noise averaging, applied to the

same signal used to in Figure 2.13.
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Figure 2.14: 2D FDM double absorption spectrum computed from the same signal
used in Fig.2.13. Only 300×8 complex points were used for the purpose of demonstrat-
ing the high-resolution nature of FDM. Results of 50 FDM calculations were co-added
and averaged with the pseudo-noise perturbation level of q = 0.02 (see text). The
final spectrum is well resolved (see Fig. 2.13 and Fig.2.17 for 2D FT spectra using
300 × 8 and 300 × 128 data points respectively), and free of most artifacts.

An efficient implementation of the pseudo-noise averaging was given in Ref. [91].

The expression for computing a 2D double-absorption spectral estimation with pseudo-

noise averaging is given here. We simply rewrite Eq. 2.68 as

Aτ (ω1, ω2) = X̃1q(ω1)
TŨ0X̃2q(ω2) , (2.73)

99



where the absorption-mode vectors X̃lq(ωl) are computed independently for each

l = 1, 2 using the eigenfrequencies and eigenvectors of the corresponding perturbed

generalized eigenvalue problems,

(

Ũl + rỸ
)

B̃lk = ulkŨ0B̃lk , (2.74)

and then averaged over a sufficient number, NFDM, of realizations of the random

perturbation Ỹ as

X̃lq(ωl) = τl

〈

∑

k

Re
[

1

1 − eiτl(ωl−ωlk)
− 1

2

]

B̃lkB̃
T

lkC̃

〉

Ỹ

. (2.75)

The obvious drawback of both averaging procedures is that the computational

cost is multiplied the number of FDM averaging, NFDM. The result improves roughly

as
√

NFDM, assuming the artifacts are completely random for different calculations.

It was realized later that the averaging procedure was actually a general but primi-

tive realization of regularization for solving ill-conditioned problems. More efficient

regularization techniques such as Singular Value Decomposition (SVD) [9, 92] and

Tikhonov Regularization [93] were then introduced to FDM, where only a single

FDM calculation is required for obtaining stable and clean 2D spectral estimations.

They will be discussed in the next section.

2.3.6 Summary

The 1D FDM algorithm was successfully extended to processing multi-dimensional

signals. The two most important properties of 1D FDM, namely, solving the non-

linear fitting problem by pure linear algebra and local spectral analysis by using a
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Fourier-type localized basis, both apply to MD-FDM. Thus MD-FDM is intrinsically

efficient and stable method for fitting the time signal to the summation of multi-

dimensional Lorentzian lines.

One of the most interesting properties of MD-FDM is that it is a true multi-

dimensional spectral analysis method, where the obtainable resolution in all dimen-

sions is determined together by the total information content of the signal. MD-FDM

is able to process the whole data set to characterize the intrinsically multi-dimensional

features and provide high-resolution in all dimensions, given that the signal sufficiently

satisfies the Lorentzian model and is sufficiently long.

There are also some new problems associated with processing multi-dimensional

time signals. Straightforward MD extensions of FDM require finding a unique set of

eigenvectors to simultaneously diagonalize multiple data matrices. Such a solution

might not exist at all in the cases of noisy signals with potential degeneracies. It can

be avoided by using a Green’s function approach, in which 2D spectral estimations

can be directly computed from the results of solving several 1D generalized eigenvalue

problems. With Green’s function formalism, FDM can be applied to analyzing general

noisy time signals. However a meaningful, compact parametric representation is

typically no longer available.

Finally, spectra obtained by a single FDM calculation are still contaminated with

artifacts which are very sensitive to any change of input signal and FDM processing

parameters. This problem is very different from what we have seen in 1D case, and

can not be solved by using a multi-scale Fourier basis. Some primitive averaging

procedures that simply make use of high sensitivity are introduced to suppress the
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artifacts. While stable high-resolution spectra can be obtained, the averaging signifi-

cantly increases the computational cost of MD-FDM and therefore is not the optimal

solution. More efficient methods for suppressing the artifacts will be discussed in the

next section.

2.4 Regularization of Multi-Dimensional FDM

In this section, we will further address the problem of ill-conditioning in multi-

dimensional FDM. The averaging procedures we discussed in the previous section are

effective but computationally expensive and converge slowly. Further study of the

problems helps us to understand the sources of the instability better and makes it

possible for us to develop more efficient methods of regularizing FDM. Again, we use

2D FDM as an example to illustrate the principles.

2.4.1 Ill-conditioning of 2D FDM

The source of the instability can be traced back to the 2D HIP. In the 1D case,

given N = 2M complex data points in the time domain, there exists an exact and

unique set of M pairs {ωk, dk} that satisfies the 1D HIP equation Eq. 2.1, if there

is a solution8, even though there is no guarantee that such a fit is a “good” fit in

the sense of all poles being physical and truly present in the time signal. However,

the 2D HIP is ill-posed. Given a 2D signal of the size of N1 × N2, the maximum

number of unknowns that we can obtain from solving the 2D HIP of Eq. 2.42 is only

8In the case of degeneracy, there might be no solution to the 1D HIP.
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3K = 3M1M2 = 3N1N2/4 < N1 × N2. Therefore, the 2D HIP is posed as an over-

determined problem9. For a general 2D signal, there is no exact solution unless the

Lorentzian assumption is strictly satisfied and the size the signal is sufficiently large

to recover all the poles. In practice, we almost always end up with ill-conditioned

generalized eigenvalue problems due to the following reasons:

i) Realistic signals always contain noise which does not satisfy the 2D Lorentzian

model. In particular, multi-dimensional NMR signals are especially noisy due to lower

sensitivity, t1 noise, and limited long term instrumental stability.

ii) The peaks do not have perfect Lorentzian lineshapes due to many experimen-

tal limitations, such as imperfect decoupling, long range couplings, inhomogeneity

of magnetic field and many other factors. However, in some special cases such as

Constant-Time experiments [75, 76], it is possible to enforce the Lorentzian lineshape

in the indirect dimensions and thus improve the performance of FDM significantly.

iii) A Fourier-type localized basis has to be used to avoid the problem of solving

huge and ill-conditioned systems. However, the Fourier filter is not perfect. Interfer-

ences from nearby features and nonlocalized features (such as very broad poles that

define the baseline) act effectively as some additional “noise” to the local spectral

analysis. One might try to use a more sophisticated basis such as a 2D Multi-Scale

Fourier basis to minimize the window effects. However, numerical experiments seem

to suggest that the 2D multi-scale Fourier basis does not make a significant differ-

ence. This could indicate that 2D Mulit-Scale Fourier basis is not as efficient as the

9The 2D HIP can be also formulated using direct product poles {ω1k, ω2k′ , dkk′} with 2K +K2 =
N1N2/2 + N2

1
N2

2
/16 unknowns. It is then posed as an under-determined problem except for the

case of very small signals (N1N2 ≤ 8), which in general, has infinite number of solutions and are
thus very unstable numerically.
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1D version and that there are still other limiting factors.

iv) The total size of the 2D signal is typically much greater than the total number

of peaks present. For example, let’s consider a 1H-13N chemical shift correlation

experiment of a medium-size protein of 200 residues. A typical signal could contain

1024× 256 data points or even more, from which a maximum number of 512× 128 =

65536 peaks could be determined, much greater than the number of possible peaks,

which is of the order of a few hundred. Therefore, in practice, the 2D HIP problem

is even more over-determined.

As a result, the data matrices that occur in 2D FDM are almost always nearly

singular. The condition numbers10 of the U matrices are typically greater than 1010

in 2D FDM, while in 1D FDM the condition number rarely exceeds 105. Exact solu-

tion to such an ill-conditioned problem is very unstable and often meaningless. This

is exactly what we have seen previously in Figure 2.13. So called regularization tech-

niques are required in order to obtain a stable and meaningful solution. Simply put,

regularization is the numerical procedure of removing the ill-conditioning of the prob-

lem. For example, regularization can be implemented by adding some “smoothness”

constraint [94],

||R X − C|| + q ||X|| = min. , (2.76)

with q being the regularization parameter, when solving an ill-posed linear system

R X = C. However, unlike the case of solving a linear system, it is not obvious how

the conventional regularization techniques, such as SVD and Tikhonov regularization,

10The condition number is a numerical measurement of the conditioning of a matrix. It can be
defined as the ratio of largest and smallest singular values of the matrix.
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can be applied to the generalized eigenvalue problems encountered in FDM. Further

complications include the lack of 2D generalized eigenvalue solvers and the difficulty

of finding a unique set of eigenvectors that simultaneously diagonalizes both evolution

matrices. We have to use the Green’s function approach, where two 1D generalized

eigenvalue problems are solved independently. It is not clear how we can regularize

both eigenvalue problems in a systematic, consistent fashion. Further more, as the

eigenvectors are obtained in a nonvariational way for typical eigenvalue solvers, the

numerical errors in each set of the eigenvectors are larger (compared to the eigen-

values), which is another source of many non-zero entries in the cross matrix Tk,k′,

defined in Eq. 2.69.

In the rest of this section, we will discuss three regularization methods that have

been applied to 2D FDM. Of these, the FDM2K algorithm [74] is particularly efficient

and is used currently as the method of regularization for FDM.

2.4.2 Singular Value Decomposition

Singular Value Decomposition, or, SVD, is a very powerful technique for diagnos-

ing the matrices that are either singular or numerically close to singular. In certain

cases, SVD can also help to solve the problem by isolating the sources of instability,

even though one should be careful in analyzing the “answer” from SVD. Any N ×N

square11 matrix R can be decomposed into the product of three unique matrices,

R = WΛV†, (2.77)

11Note that SVD can also be applied to a rectangular matrix.
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where W and V are N × N unitary matrices, and Λ = diag{λi}, a real diagonal

matrix with λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0 being singular values. The superscript † denotes

“conjugate transpose”. The columns of matrix W, or equivalently, those of matrix

V, form an orthonormal set of basis vectors which covers both the nullspace12 (if any)

and range of matrix R. All the singularity or ill-conditioning of R is contained in the

diagonal matrix Λ. By examining the singular values, it is possible to determine the

rank and separate the nullspace of R. Specifically, the columns of W, whose same-

numbered singular values λi are nonzero, form an orthonormal set of basis vectors

that span the range; the columns of V, whose same-numbered singular values λi are

zero, form an orthonormal basis for the nullspace [9]. Unfortunately, reals situations

are more complicated than this ideal assumption. SVD of the U matrices computed

from a real signal with noise will contain only nonzero singular values. There are

only ’large’ and ’small’ singular values. One can then hope that plotting λj vs. j

shows some abrupt magnitude change so that a zero threshold can be unambiguously

picked. This might be true in some cases but often not in NMR applications, making

choosing a zero threshold problematic.

There are several ways SVD can be used to regularize FDM. They can be divided

into two categories: hard and soft regularization.

1. Hard Regularization: truncated SVD.

In this implementation, we apply SVD to Ũ0 and assume that it is possible to

determine the rank by choosing some zero threshold. Once the rank is identified, we

12For a singular matrix R, there exists some vectors x in some subspace, called nullspace, that
satisfy R · x = 0. The dimension of the nullspace, defined by the number of linearly independent
vectors x, is called the nullity of R.
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can re-evaluate the U matrices in the reduced basis formed by columns of W that

correspond to the singular values greater than the zero threshold,

[Ũ
red

l ]ij = WT
i ŨlWj . (2.78)

The column vector C̃ defined in Eq. 2.57 should be also re-evaluated in the new basis,

[C̃
red

]i = WT
i C̃ . (2.79)

Note that SVD of Ũ
(1)

and Ũ
(2)

should give similar results. However, Ũ0 is the

least noisy and thus preferred. Also note that the transpose instead of the conjugate

transpose of Wi is used, as the complex inner product instead of the Hermitian inner

product is always used in FDM for describing dissipative systems.

As pointed out by Moler and Stewart [80], even when the matrices on both sides

of the GEP have a common null space (as is the case in FDM), it is not recommended

to use SVD to get rid of the null subspace. The reason is that the eigenvalues and

eigenvectors become very sensitive to the assumed rank of range subspace. On the

other hand, it was argued that the QZ algorithm [80] provided accurate eigenvalues

and eigenvectors in terms of two numbers, uk = αk/βk, the accuracy of which was

not affected by ill-conditioning of the matrices. It was also argued that “unreliable”

eigenvalues could be identified by smallness of both αk and βk. Our experience with

2D FDM is somewhat contradictory to these recommendations. Spectra constructed

from the accurate eigenvalues and eigenvectors computed by QZ, applied to the orig-

inal U matrices, are contaminated by artifacts, while the truncated SVD of U0 can

help in removing the artifacts, as demonstrated in Figure 2.15. Despite this, the

ambiguity in deciding how many basis vectors to retain remains a major problem.
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Figure 2.15 shows four 2D 15N − 1H chemical shift correlation spectra obtained

from a sample of 15N labeled rubredoxin, a small metalloprotein [89]. Only 16 incre-

ments are used in the 15N dimension, with 200 complex points along the 1H dimension.

The initial basis size is then 50 × 8 = 400. Plotting the singular values (top panel)

clearly shows an abrupt magnitude change at around i ∼ 30. Setting a cutoff at this

point will give a very clean, well converged spectrum, panel (c). We do not actually

need to throw away so many basis vectors. Panel (b) shows that even throwing away

only 23 basis vectors corresponding to the smallest 23 singular values already reduces

most of the artifacts. Further reduction of the basis size to around 150 will basically

yield the same spectrum as shown in panel (c) (data not shown). While it is safer to

keep a few more basis vectors,it is extremely dangerous to throw away more vectors

than necessary, which could lead to missing genuine peaks, e.g., panel (d). This is a

big disadvantage of such an aggressive procedure. Even worse, typical NMR data may

not have such a clean break in singular values. Then choosing any cutoff can be very

risky and give the operator a chance to bias the experimental results to support some

particular viewpoints. Therefore, such a procedure is not generally applicable. It is

better to be more conservative, applying “soft cutoff” instead of the “hard cutoff”.

2. Soft Regularization: Pseudo-Inverse of U0: 1/λj → λj/(λ2
j + q2)

In this implementation, we solve the GEP of equation Eq. 2.62 in two steps: first

we apply SVD to Ũ0 and compute a pseudo inverse,

Ũ
−1

0 (q) = V [diag(1/λj)]q W†, (2.80)

which is dependent on a real regularization parameter q. Then, we solve the normal
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Figure 2.15: Chemical shift correlation spectra obtained by FDM with hard reg-
ularization via truncated SVD (see text). The total size of the signal used is
N1 × N2 = 200 × 16, leading to a total basis size is Nbtotal = 50 × 8 = 400 (a
single window was used). The top panel shows the distribution of singular values
of the overlap matrix U0. The four spectra (a,b,c,d) at the bottom are obtained by
retaining various numbers of basis vectors.
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eigenvalue problems,

Ũ
−1

0 (q) Ũl B̃lk = ulkB̃lk l = 1, 2 . (2.81)

There are several possible ways of evaluating the pseudo-inverse matrix Ũ
−1

0 (q).

One can simply use the conventional truncated SVD fashion pseudo inverse: replace

all the 1/λj by zero if λj is smaller than some zero threshold q. Then the results

will be also sensitive to the choice of zero threshold just like the hard regularization.

A less aggressive way is to replace all 1/λj with λj/(λ2
j + q2) with q being a real

regularization parameter. The advantage of this approach is that the regularization

is “softer” and small deviation of q from the optimal value will not lead to dramatic

deterioration of the results. There is usually a stable region where changing q2 up to

one order of magnitude leads to little change in the 2D spectral estimation, provided

that the signal contains enough information for FDM to obtain a stable estimation.

In practice, the optimal level of regularization can by found by carrying out multiple

calculations with different values of q2.

Shown in Figure 2.16 are several 2D double absorption spectra obtained by single

FDM calculations with different levels of regularization, applied to the same signal

as that used in Figure 2.15. When the regularization is too small, the spectra is still

contaminated with artifacts, e.g., panel (a); further increasing the regularization to

a sufficiently large level results in a stable and high-resolution 2D spectra, shown in

panel (b). There is a region where the spectra obtained are relatively stable according

to the change of q. Finally, when the regularization is too large, the FDM spectrum

is furthered smoothed and small features are suppressed down to the baseline, e.g.,
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Figure 2.16: Chemical shift correlation spectra obtained by FDM using soft regu-
larization via SVD (see text). The signal used is the same as that used in Figure
2.15. The signal length processed is N1 × N2 = 200 × 16 and total basis size is
Nbtotal = 50 × 8 = 400. It shows that with appropriate level of regularization, stable
and high-resolution spectra can be obtained using single FDM calculation (panel b:
q = 0.01). In addition, the appearance of the spectra has a smooth dependence on
the regularization parameter (panel b, c and d). When the regularization is too large,
small features are suppressed to baseline (panel d). Note that the overall spectrum
is smoothed in a very non-uniform way. The values of q shown are ratios of real q to
the largest singular value (λ1).
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panel (d). Moreover, the spectrum is smoothed in a non-uniform way. We can

pretend to understand the effect of the regularization simply by saying that increasing

q de-emphasizes the contribution of small singular values, which are responsible for

describing the noise, small features and fine structures. However, exactly how a

particular peak might be affected by the regularization is not totally clear.

2.4.3 FDM2K

The soft regularization via pseudo inverse of U0 is a very efficient method in

suppressing the artifacts. However, SVD is expensive and therefore suboptimal com-

putationally. There is another very effective but cheaper way of regularizing FDM,

which was invented in the year of 2000 and therefore named FDM2K. In FDM2K, we

simply rewrite the original GEP of Eq. 2.62 as,

U†
0UlBlk = ulk

(

U†
0U0 + q2

)

Blk , (2.82)

by introducing a real, positive regularization parameter q. The new generalized eigen-

value problem now has a positive definite Hermitian matrix on the right hand side.

It can be proven that q imposes minimum singular value for the new right matrix

and therefore effectively controls its condition number. Similar to the case of soft

regularization, the resulting spectra will have a relatively smooth dependence on the

regularization level. Figure 2.17 demonstrate the FDM2K algorithm using the same

15N-1H HSQC signal of rubredoxin used in previous examples. When signals are suf-

ficiently long and have reasonably high SNR13, there will be a stable region where the

13This qualitative statement will become more quantitative in Chapter3, where we will study the
dependence of performance of FDM2K on SNR and signal sizes.
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spectra obtained change very little while the regularization changes by up to an order

of magnitude. When the regularization is too high, small features are smoothed out

first while the strong peaks are almost unaffected, and the overall smoothing effect is

non-uniform.

It is very tempting to treat q as the “noise power”, just like in the Maximum

Entropy applications [8]. Indeed, it can be proved semiquantitatively [74], that the

spectral features with amplitudes dk of order of q and below are smoothed out, while

the stronger peaks remain essentially unaffected. Based on these observations, the ac-

tual procedure implemented for computing the regularization level in current version

of FDM2K is as following,

q2
Act. = q2 M2

1 M2
2

∑

~n

|c(~n)|2 , (2.83)

where q2
Act. is the actual value of regularization used in Eq. 2.82 and q2 is the relative

scale value specified by the user. Implemented this way, the optimal q2 for typical

experimental signals falls into a small range of from 10−5 to 10−3 with 10−4 being

optimal for most NMR experimental signals acquired under normal conditions: ≥

1mM sample concentration, normal probe, 500 MHz Spectrometer, 2 − 16 scans per

increment, room temperature, reasonably long T1 and T2, etc. Optimal q2 might be

lower for signals acquired under better conditions with higher SNR, and vice versa.

Several important aspects of FDM2K need to be discussed here. First, exactly

how particularly peaks are regularized by q is still not fully understood, due to the

highly nonlinear property of Eq. 2.82. In the original reference of FDM2K [74], we

demonstrated that in the simple case of a single peak, the peak position, intensity

113



-800-600-400-2000200400600800

-800

-600

-400

-200

0

200

400

600

800

-800

-600

-400

-200

0

200

400

600

800

-800-600-400-2000200400600800
1H / Hz 1H / Hz

1
5N

 / H
z

1
5N

 / H
z

2D FT, N1xN2=300 x128 2D FDM2K, N1xN2=300 x8 

b) q = 0.01

d) q = 0.16c) q = 0.04

a) 

2D FDM2K, N1xN2=300 x8 2D FDM2K, N1xN2=300 x8 

Figure 2.17: Chemical shift correlation spectra obtained by 2D FT and FDM2K (see
text). The signal used is the same as that used in Figure 2.15. The 2D FT spectrum
was obtained by using both N- and P-type data sets, each with N1 ×N2 = 300× 128
complex data points. Cosine apodization functions were used in both dimensions.
The signal length used in FDM2K calculations is N1 × N2 = 300 × 8. It shows that
with appropriate level of regularization, stable and high-resolution spectra can be
obtained using single FDM calculation (panel b). In addition, the behaviour of the
spectra does have a smooth dependence on the regularization parameter (panel b, c
and d). When the regularization is too large, the whole spectrum is further smoothed
and small features are suppressed to baseline (panel d). However note that it also
happens in a very non-uniform way. Also note that the values of q shown are relative
values (see text).
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and phase were not affected by the regularization while the regularized linewidth was

bigger than the true value. The change of linewidth is determined by the relative

amplitude of peak intensity dk and regularization level q: in the limit of q2 � |d2
k|,

the change is insignificant; in the other limit, the peak will be significantly broad-

ened. In the general cases of many resonances, how a particular peak is regularized

seems to depend not only on the peak intensity, but also on its environment such as

close-by peaks, degeneracy/near degeneracy with other peaks, and others. Second,

there is definitely some similarity between FDM2K and the conventional Tikhonov

Regularization. However, the regularization in FDM2K is efficient only when matri-

ces U1 and U2 are “bigger” than U0
14 . This is usually true as signals decay in the

time domain. However, in the case of noisy signals, some components of U1 or U2

may be larger than corresponding counterparts of U0 so that large q must be used in

order to suppress all artifacts, resulting in lower resolution. Figure 2.18 compares the

effects of Tikhonov regularization (implemented as RRT; see Section 2.5 for details)

and FDM2K using a 1D model signal. While the RRT spectra are regularized in

a smooth and predictable fashion, the FDM2K spectra show some unfavorable non-

uniform distortions. Third, matrices involved in Eq. 2.82 is asymmetric when q 6= 0.

To solve it exactly, both left and right eigenvectors should be computed. It is usually

accurate enough to calculate the right eigenvectors only, when q is small compared

14To understand this statement, one needs to write out the corresponding resolvent for Eq. 2.82
for 2D spectral estimation, which is

R(ωl) ∼ (U†
0
U0 + q2) − eiτlωlU

†
0
Ul.

Therefore, q2 can guarantee that the resolvent is non-singular only when all eigen-components of U0

are greater than corresponding counterparts of Ul.
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Figure 2.18: Comparison of Tikhonov Regularization (implemented as RRT) and
FDM2K using a “Jacob’s Ladder” model signal.

to the norm of the matrices and the eigenvectors are used only for calculating the

amplitudes. However, in other cases such as using the eigenvectors to construct some

nontrivial projection operators (e.g., J-projections; see Section 3.3), one might need

to compute both eigenvectors to avoid introducing extra artifacts.

2.4.4 Snap-Shot FDM: Self-Regularization.

There is another very interesting way of regularizing FDM where no additional

regularization parameters such as q is necessary. Instead, it requires experimentally

acquire multiple signals that consist of the same genuine peaks but uncorrelated noise.

In NMR experiment, multiple scans, c(i)(n), i = 1, 2, . . . , Ns, are routinely acquired
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and then co-added to obtain an averaged signal, c̄(n) = 1
Ns

∑Ns

i=1 c(i)(n), which has a

better signal to noise ratio. These scans can be conveniently stored separately before

they are co-added, even though this requires more disk space for data storage. The

second approach leads to little benefit if the Fourier transform is to be used. The

reason is that FT is a linear method. Whether FT is applied to each scan separately

and then the results are averaged or the signals are averaged before being transformed

does not change the resulting spectrum. However, when a nonlinear method like

FDM is used, storing each scan separately might be advantageous. It is possible to

co-process all scans together to distinguish “signal” and “noise” components, based

on the assumption that “signal” should be consistent from scan to scan while “noise”

is random and uncorrelated. The FDM algorithm can be modified to use the addition

information encoded in multiple scans, or “Snap-Shots”. This idea discussed below

was first suggested by Neumaier [95] and then exploited by Curtis [96]. We will use

1D as an example for the sake of clarity. 2D or higher dimensional cases are more

complicated but the basic idea is the same.

In the normal FDM, the problem of identifying the spectral parameters is re-

formulated as a generalized eigenvalue problem of Eq. 2.11 where the right and left

matrices are computed using the averaged signal. To process Ns signals that consist

of same set of genuine damped sinusoids, a super generalized eigenvalue problem can

be solved,




















U
(1)
1

...
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








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




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
















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


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


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



Bk (2.84)
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where U
(i)
l , l = 0, 1 are the evolution and overlap matrices constructed using ith

scan, c(i)(n). By solving all Ns GEPs in parallel for a single common set of eigen-

values and eigenvectors, components present in all data sets are emphasized while

the random (noise) components are suppressed. This technique has also been used

in radar imaging and acoustic signal processing [22, 3]. Similar techniques have also

been used to extract quantum tunneling splittings from semi-classical real-time cross-

correlation functions [97], or multiple excited vibrational states from imaginary-time

cross-correlation functions [78, 98].

The dimension of the rectangular matrices on both sides is NsKwin × Kwin, but

there will be only Kwin eigenvalues and corresponding eigenvectors. It is reasonable

and efficient to first reduce both matrices to Kwin × Kwin square matrices. There

are quite a few choices here. For example, one can simply apply SVD to right (or

left) matrix, then re-evaluate both matrices in the reduced space formed by Kwin

basis vectors that correspond to the Kwin largest singular values (see Section 2.4.2 for

details). Alternatively, one can use the FDM2K approach and recast Eq. 2.84 into a

normal GEP that only involves square matrices,

U †
r Ul Bk = uk U †

r Ur Bk (2.85)

where Ur and Ul denote right and left rectangular matrices respectively. The second

procedure is numerically more efficient and generally yields similar results to the

truncated SVD approach.

By recasting the super GEP into a normal GEP, we can compute both eigenvalues

and eigenvectors using standard routines such as QZ or CG. The eigenvalues can be

118



more accurate than those computed either by using a single scan signal ci(n) or by

using the averaged signal. In particular, the complex frequencies that correspond to

“noise” tend to have a large and positive imaginary part, which means that the noise

spikes are effectively suppressed. However, it is less obvious how we can compute

the complex amplitudes as accurately. Remember that we first need to normalize the

eigenvectors with respect to BT
k U0Bk′ = δkk′, where U0 is the overlap matrix, then

compute the amplitudes as
√

dk = BT
k C̃. It is not clear how we can use Ns copies

of overlap matrices U
(i)
0 and FT vectors C̃

(i)
jointly in the most efficient way. There

are several formulas proposed and tested [96]. An expression that corresponds to the

average of all d
(i)
k was found to be optimal by numerical experiments,

√

dk =
1

Ns

Ns
∑

i=1

d
(i)
k =

1

Ns

Ns
∑

i=1











Kwin
∑

n=1
[Bk]n C̃

(i)

n

√

B>
k U

(i)
0 Bk











(2.86)

There is another potential problem here. Compared to the averaged signal, the

SNR of each individual scan is
√

Ns lower. Thus the matrices in the super GEP are

noisier, making the Snap-Shot FDM approach less attractive. Unlike the problem

of the ambiguity of computing the amplitudes, here we have a good solution, which

was also suggested by Neumaier [95]. Instead of using the noisy snap-shots c(i)(n)

directly, we first reconstruct a new set of snap-shots according to,

c(i)
new(n) = c̄(n) +

1

Ns

(

c(i)(n) − c̄(n)
)

. (2.87)

The new signals have similar SNR to the average signal, while the random and un-

correlated noise is preserved. It has been shown by numerical experiments that this

procedure does improve the results [96].
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Tested with simple 1D experimental NMR signals, Snap-Shot FDM seems to be

capable of separating “signal” from “noise”. The complex frequencies computed typ-

ically consist of certain number of genuine poles with relative small (true) line width

and a bunch of “noise” poles with much larger linewidth. The FDM ersatz spectrum

constructed tends to show a clean “signal” spectrum with a fat baseline (no noise).

Thus, the idea of “self-regularization” seems to work in these cases. However, when

the signal gets more complicated and requires local spectral analysis, the results were

less satisfactory. The self-regularization seems to be insufficient. When extended to

the most interesting and most demanding case of multi-dimensional spectral analysis,

the self-regularization seems to over-regularize the problem. Even genuine peaks are

significantly broadened. Amplitudes are also quite inaccurate due to the ambiguity

of the optimal formula. Nevertheless, the self-regularization is a very interesting idea,

deserving of further studies, which might have profound impact on deepening our

understanding of the optimal way of acquiring and processing time signals.

2.4.5 Summary

In this section, we discussed the ill-conditioning of multi-dimensional FDM and in-

vestigate various regularization techniques for suppressing the artifacts, among which

the FDM2K algorithm seems to be particularly efficient and effective, even though

by no means perfect or the best method for regularizing FDM. With regularization

implemented, it is possible to obtain stable, high-resolution spectral estimations in

a single FDM calculation, given that the signal sufficiently satisfies the Lorentzian
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model and is long enough. The resulting spectrum has a smooth dependence on the

regularization level. The noise and small features are suppressed first. There is a

range of regularization level where the spectrum changes very little while the regular-

ization parameter q2 is changed by an order of magnitude. When the regularization

is too large, all features are significantly broadened but in a non-uniform way. How

a particular peak is affected by the regularization depends on its intensity as well as

it environments such as nearby peaks and (near) degeneracy with other peaks. The

problem of regularization of FDM is only partially solved at present. More studies

are needed for developing the ultimate method for regularizing FDM.
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2.5 Regularized Resolvent Transform

There is a certain attraction to the idea of a transform: converting data from one

representation to another, often more useful, representation. For example, Fourier

Transformation converts a continuous function of time c(t) to a function of frequency

I(ω) by Fourier integration. For each frequency ω, we can obtain a complex number

that gives the local spectral amplitude I(ω). The simplicity and transparency of the

transform make it appealing even when, as in the discrete Fourier transform, the

digital spectrum may deviate appreciably from the true integral representation [7].

By contrast, parametric methods that rely on fitting the data to a functional form

are rather more complex in nature. There are typically adjustable parameters which

need to be tuned to obtain satisfactory results. In section, we bridge the parameter

estimation approach to the transform approach by introducing a new transform, the

Regularized Resolvent Transform (RRT): spectral representations are computed di-

rectly using the same data matrices as those in FDM without the intermediate step

of computing the spectral parameters. RRT maintains the spirit of local spectral

analysis and can be implemented efficiently.

2.5.1 One-Dimensional RRT

In this section we consider a 1D spectral analysis problem which has been pre-

viously treated by a variety of methods. However, the expressions derived here are

generalized to the much less explored multidimensional cases in the next section.

Given a discrete equidistant time signal c(n) ≡ c(nτ), the goal is to estimate its
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infinite time DFT, defined in Eq. 2.26, but using only a finite portion of the data

with n = 0, 1, ..., N − 1. The assumption used here to derive the linear algebraic

expressions is the same as the quantum ansatz used in FDM: c(n) is associated with

a time autocorrelation function of a fictitious dissipative quantum system defined by

an effective evolution operator Û and some initial state Φ0 [24],

c(n) =
(

Φ0|ÛnΦ0

)

. (2.88)

The assumption that the evolution operator Û has a finite rank is equivalent to as-

suming that the signal of question can be represented as a sum of damped sinusoids.

Substituting Eq. 2.88 into Eq. 2.26 and evaluating the geometric summation analyt-

ically, we obtain:

I(ω) = τ

(

Φ0

∣

∣

∣

{

∞
∑

n=0

einτωÛn − 1

2

}

Φ0

)

= τ

(

Φ0

∣

∣

∣

{

1

1 − eiτωÛ
− 1

2

}

Φ0

)

. (2.89)

Note that Û∞ vanishes as the system is assumed to be dissipative.

Evaluated in an appropriate basis {|Ψj)}, the operator expression of Eq. 2.89

becomes a working formula for directly calculating I(ω),

I(ω) = τ

[

CTR(ω)−1C − c(0)

2

]

, (2.90)

with resolvent matrix R(ω) = U0−eiτωU1. The elements of the evolution and overlap

matrices are defined respectively as, [U1]jj′ = (Ψj|ÛΨj′) , [U0]jj′ = (Ψj |Ψj′) , and the

coefficients of the column vector C are [C]j = (Ψj|Φ0). In particular, when a Fourier-

type basis defined in Eq. 2.15 is used, the spectral properties around some frequency

ω are completely defined by a very small subspace {|Ψj)} of size Kwin with ϕj ∼ ω.
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Therefore, only a small Kwin × Kwin matrix R̃(ω) has to be inverted in Eq. 2.90 to

yield an accurate spectral estimation, I(ω). The expressions for computing matrix

elements are already given in Section 2.2 (Eq. 2.36 and Eq. 2.37). The column vector

C̃ is FT of the original signal array c(n),

[C̃]j =
M−1
∑

n=0

einτϕjc(n) . (2.91)

Clearly, evaluation of Eq. 2.90 can be done for all values of ω within a chosen

frequency window by solving the corresponding generalized eigenvalue problem to

obtain the eigenvalues uk and eigenvectors B̃k, which is the approach used in FDM.

Although, this method might seem preferable to any other alternative, we note that

Eq. 2.90 can also be evaluated directly, for example, by solving the associated linear

system,

R̃(ω)X̃(ω) = C̃ , (2.92)

and then using

I(ω) ≈ τ

[

C̃
T
X̃(ω) − c(0)

2

]

. (2.93)

Mathematically, both approaches should provide exactly the same results. However,

numerically, the second approach might have advantages due to its simplicity and

transparency. In addition, Eqs. 2.92 and 2.93, may actually appear computationally

efficient if the spectrum is to be evaluated at relatively few values of ω. This will be

even more the case for the multi-dimensional spectral estimation.

A less obvious issue is how stable and robust the algorithm is. Apparently, the

matrix R̃(ω) may be very ill-conditioned, so its inversion or use in Eq. 2.92 requires

some kind of regularization. One possibility is to use SVD of R̃(ω) to calculate a
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pseudo inverse (see Section 2.4.2: soft regularization). However, SVD, if applied for

each value of ω, would be quite expensive. A much less expensive regularization of

the resolvent can be obtained using the Tikhonov Regularization [93, 99],

I(ω) ≈ τ

[

C̃
T (

R̃(ω)†R̃(ω) + q2
)−1

R̃(ω)†C̃ − c(0)

2

]

, (2.94)

where the dagger † means Hermitian conjugate and q is a real regularization param-

eter. With such a regularization the singularity in the denominator is removed as
(

R̃
†
R̃ + q2

)

is a Hermitian and positive definite matrix.

Eq. 2.94 can be evaluated by solving the regularized Hermitian least squares prob-

lem,
(

R̃
†
(ω)R̃(ω) + q2

)

X̃(ω) = R̃
†
C̃ , (2.95)

and then using Eq. 2.93.

It should be noted that the expensive matrix-matrix multiplication R̃(ω)†R̃(ω) in

Eq. 2.95, which is a K3
win process, does not have to be performed at each value of ω.

Significant numerical saving could be achieved by using

R̃(ω)†R̃(ω) = Ũ
†

0Ũ0 + Ũ
†

1Ũ1 − e−iτωŨ
†

1Ũ0 − eiτωŨ
†

0Ũ1 .

The spectral estimation given by Eq. 2.94 is one of the main results of this section.

Operationally it has a status of “transform” (like DFT), while a “method”, e.g. the

Filter Diagonalization Method, would refer to a procedure that would generally be

less obvious to use. More precisely, Eq. 2.94 corresponds to a direct nonlinear trans-

formation, here called the Regularized Resolvent Transform (RRT), of the time signal

to the frequency domain spectrum. Unlike most other nonlinear high resolution spec-

tral estimators, RRT is very stable, computationally inexpensive, and has adjusting
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parameters that are straightforward to use. These parameters are the size, Kwin,

and density, ρ, of the Fourier basis in the frequency domain, and the regularization

parameter q. Note that Kwin could in principle be as small as 3, although a larger

Kwin generally improves the resolution, while increasing the CPU-time according to

the cubic scaling of a linear solver. For sufficiently large Kwin, which is usually less

than 100, the results do not change noticeably. Thus, Kwin can be chosen according

to how long one would like to wait for the spectrum to be computed. The choice for

the basis density parameter, ρ, between 1.1 and 1.2 usually works well if a single-scale

basis (as opposed to the multi-scale one [79]) is used.

The spectrum I(ω) computed by RRT with q = 0 should generally be indistin-

guishable from that computed by the FDM algorithm based on solving the generalized

eigenvalue problem, Eq. 2.11, and using Eq. 2.27 for spectral estimation. However, for

q > 0 they will differ as demonstrated in Figure 2.19 using the model signal, “Jacob’s

Ladder”, described in Section 2.2. The signal contains 50 triplets of which both the

peak widths and the splittings gradually decrease from the right to the left, allowing

examination the breakdown of the resolution for any fixed signal size. The spectral

region shown has very small spacings and is therefore hard to resolve. The upper trace

is the exact spectrum that could be obtained by RRT using, for example, N = 48K

data points. The DFT spectrum using N = 64K cannot resolve all the triplets in this

region, while using DFT with N = 32K does not resolve any of them. In addition,

one can see some baseline ringing that is not completely removed by apodization of

the signal. The RRT result using N = 32K and q = 0 is very close to the exact result,

although some linewidths and amplitudes are slightly inaccurate. Interestingly, one
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Figure 2.19: Absorption spectra obtained by processing a model time signal, “Jacob’s
ladder”, by the Regularized Resolvent Transform (RRT) and DFT using different sizes
of the signal, N = 32, 000 and N = 24, 000. The RRT spectra have much higher
resolution than the DFT spectrum with N = 32, 000. The non-regularized spectra
(q = 0) may be quite non-uniform. An increase of the regularization parameter q
generally leads to a more uniform spectral estimate and gradual decrease of resolution,
however the best result is often obtained using RRT with some small q > 0. The q
values shown are relative values. The actual value used in Eq. 2.94 is computed as
q2
act = q2 < [R†R]ii >i.
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can control the appearance of the RRT spectrum by tuning q. An increase of q makes

the spectral estimation more uniform while decreasing the resolution. Note that the

scale for q is related to the normalization of the U-matrices.

The lower two traces show RRT spectra using N = 24K, which is too short for

the method to resolve the narrowest multiplets in this spectral region. The resolution

failure for q = 0 manifests itself in a quite non-uniform appearance of the peaks in

the multiplets. In particular, only two peaks appear in the left most triplet with the

smallest spacings. By increasing q one can make them more uniform and sometimes

improve the resolution (e.g., note the triplet at ∼ 22 Hz). That is, for short data

sets the RRT “fails” in a controllable fashion (as is the case for DFT), while typically

providing a higher resolution than DFT for narrow Lorentzian lines.

It is important to note here a subtlety present in all linear algebraic algorithms, in

particular, in FDM and RRT, related to the fit of the time signal by damped sinusoids,

Eq. 2.1. For example, in RRT the derivation of Eq. 2.89 assumes convergence of the

infinite geometric series
∑∞

n=0

(

eiτωÛ
)n

. However, this assumption may be ambiguous

since only a finite part of the data is available. Numerically, when evaluated in a finite

basis Û may have eigenvalues uk = e−iτωk outside the unit circle, corresponding to

the negative linewidth γk. Section 2.2.3 contains a detailed discussion of how to

deal with these “spurious” poles. However, in RRT, the spectral parameters are not

explicitly computed, making direct manipulation of individual poles impossible. This

has both advantages and disadvantages. One one hand, we can conserve the mutual

interferences and cancellations to the maximum extend; on the other hand, when the

true peak width is very small or zero as in Constant-Time NMR experiment (see
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Figure 2.20: The real (absorption) and imaginary (dispersion) parts of the RRT
spectrum I(ω) = τdk/(1 − eiτ(ω−ωk)) for a single line as a function of its “width”
γ = −Im {ωk}. The sign of the absorption peak is flipped when γ changes its sign,
while the appearance of the dispersion peak only depends on the absolute value of γ.

Chapter 3 for more details), it is likely to have γk < 0 due to noise and/or numerical

errors. This in turn results in a flip of the sign of the absorption part of the peak as

shown in Figure 2.20. Note though that the sign of the dispersion part is unaffected.

This property of the RRT lineshapes can be easily understood by considering the

behavior of I(ω) (see Eq. 2.27) near an eigenfrequency ωk = ωr − iγ, i.e., assuming

τ |ω − ωk| � π and then extracting the real and imaginary parts of the complex

Lorentzian as

I(ω) ≈ τdk

1 − eiτ(ω−ωk)
≈ idk

ω − ωk
=

dkγ

(ω − ωr)
2 + γ2

+ i
dk(ω − ωr)

(ω − ωr)
2 + γ2

. (2.96)

Since in RRT the eigenvalues are not computed, one cannot manipulate with those

in a simple fashion like in FDM. One way to circumvent this problem in RRT is to

shift the argument of I(ω) by iΓ with Γ > −γk , i.e, construct I(ω + iΓ). It replaces

γk of all peaks by γk + Γ and effectively flips the negative γk. The result of such

a shift is demonstrated in the third trace of Fig. 2.21 where all the peaks have the
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correct sign, but are slightly broadened. Clearly, this procedure may not be always

well defined and is one drawback of RRT. For example, peaks with γk < −Γ are

effectively narrowed and might result in artifacts.

360 380 400 Hz

Exact

N = 300

RRT, Γ= 0 Hz

RRT, Γ= 1 Hz

DFT

absorption
dispersion

Figure 2.21: An example of a failure of the RRT spectral representation with no shift
and no regularization implemented (second trace, both q = 0 and Γ = 0). Because of
a too short signal used to construct the spectrum both the amplitudes and widths of
the peaks are quite inaccurate, in particular, one peak appears with the wrong sign
(note that the appearance of the dispersion peaks is correct). The wrong absorption
peak is flipped by plotting I(ω+ iΓ) (the lowest trace) instead of I(ω) with Γ = 1 Hz.
Note, that this procedure replaces γk of all peaks by γk + Γ, i.e., effectively fixes the
signs of all peaks with γk > −Γ and broadens all the peaks with the correct γk > 0.
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2.5.2 Multi-Dimensional RRT

Generalization of RRT to a multidimensional case is essentially equivalent to how

the 1D FDM is generalized. Since there is only a minor difference between the 2D

RRT and D > 2 RRT, for the sake of simplicity, we restrict our presentation to the

D = 2 case.

To this end, given a 2D time signal c(~n) ≡ c(n1τ1, n2τ2) defined on an equidistant

rectangular time grid, our goal is to estimate the 2D (infinite time) discrete Fourier

sum, defined in Eq. 2.58, using only the finite N1 × N2 part of the signal. The 1D

quantum ansatz of Eq. 2.88 is generalized by using two commuting complex symmetric

evolution operators Û1 and Û2,

c(~n) ≡ c(n1τ, n2τ2) =
(

Φ0|Ûn1
1 Ûn2

2 Φ0

)

. (2.97)

Inserting Eq. 2.97 into Eq. 2.58 and evaluating the geometric sums analytically gives

I(ω1, ω2) = τ1τ2

(

Φ0

∣

∣

∣

∣

∣

{

1

1 − eiτ1ω1Û1

− 1

2

}

×
{

1

1 − eiτ2ω2Û2

− 1

2

}

Φ0

)

. (2.98)

Evaluated in the 2D Fourier basis, defined in Eq. 2.50, the operator equation of

Eq. 2.98 becomes the working resolvent transform expression for estimating complex

infinite time 2D DFT spectrum,

I(ω1, ω2) ≈ τ1τ2 (2.99)

×
{

C̃
T
[

R̃1(ω1)
−1Ũ0 R̃2(ω2)

−1 − R̃1(ω1)
−1 − R̃2(ω2)

−1

2

]

C̃ +
c(0, 0)

4

}

,

with resolvent matrices

R̃l(ωl) = Ũ0 − eiτlωlŨl , l = 1, 2 , (2.100)
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where Ũl matrices and the Fourier vector C̃ can be evaluated using the expressions

derived previously in Section 2.3 (Eqs. 2.52, 2.53, 2.54, and 2.57).

A 2D RRT can be obtained by regularizing the two resolvents in Eq. 2.99, leading

to

I(ω1, ω2) ≈ τ1τ2







X̃(ω1)
TŨ0X̃(ω2) −

X̃(ω1)
TC̃ + C̃

T
X̃(ω2)

2
+

c(0, 0)

4







, (2.101)

with the two frequency-dependent vectors X̃l(ωl), l = 1, 2, computed by solving the

regularized Hermitian least squares problems,

(

R̃l(ωl)
†R̃l(ωl) + q2

)

X̃l(ωl) = R̃l(ωl)
†C̃ . (2.102)

Note that the total number of the linear systems to be solved for each 2D frequency

window is equal to Nω1 + Nω2 instead of Nω1 × Nω2 , where Nω1 and Nω2 are the

numbers of the frequency grid points, ω1 and ω2, used to plot the 2D spectrum in the

window.

Derivation of the 2D RRT is another main result of this section. Similar to the

2D FDM, its substantial advantage as compared to the 2D DFT is in the ability

to process the whole 2D data set simultaneously, thus converting the time domain

information into the frequency domain with minimal loss. Unlike the 2D FDM, in

RRT we do not directly refer to the 2D harmonic inversion problem, although the

two methods are very closely related. In particular, if the form of Eq. 2.42 is satisfied,

the RRT spectrum for a sufficiently large data set processed should converge to

I(ω1, ω2) = τ1τ2

K
∑

k=1

dk

2

{

2

[1 − eiτ1(ω1−ω1k)] [1 − eiτ2(ω2−ω2k)]
(2.103)

− 1

[1 − eiτ1(ω1−ω1k)]
− 1

[1 − eiτ1(ω2−ω2k)]

}

+
τ1τ2 c(0, 0)

4
.
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Ideally, the results should fully converge if the total size of the data set satisfies the

condition Ntotal = N1 × N2 ≥ 4K, no matter whether N2 or N1 is small. This, of

course, does not take into account noise, degeneracies and roundoff errors which could

affect the convergence conditions significantly.

Due to its numerical stability, robustness and ease implementation, the RRT has

an advantage over FDM, when only complex 1D or 2D FT type spectra, as defined

by Eqs. 2.26 and 2.58, are of interest. Note, yet, an advantage of FDM, especially, in

the multidimensional case, lies in its ability to construct various nonanalytic spectral

representations, such as a double-absorption spectrum using a single purely phase

modulated 2D data due to the availability of the spectral parameters (Eq. 2.68). Fur-

thermore, in FDM inaccuracies in determining the imaginary parts of the computed

frequencies, in particular, their signs, might be corrected. In RRT the spectral pa-

rameters are not produced and therefore the artifacts are removed by regularization

with a finite value of q and/or by shifting the spectrum using I(ω1 + iΓ1, ω2 + iΓ2)

with shifting parameters Γ1 and Γ2.

In the next example we apply 2D RRT to the process the same 15N-1H HSQC

signal of rubredoexin used in previous examples. Figure 2.22 compares the RRT and

DFT spectra obtained using various signal sizes. Even though this signal is particular

favorable for DFT as it contains pure singlet of similar intensity, RRT still provides

a welcome improvement in resolution or a decrease in experimental time for given

resolution. As in FDM, the gain in resolution hinges on the total information content

of the signal, which depends on signal size, signal to noise ratio, amount of various

imperfections and others. It is neither possible to improve the resolution of very noisy
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spectra, nor to magically divine the presence of peaks buried in noise.
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Figure 2.22: Chemical shift correlation spectra of the metalloprotein rubredoxin ob-
tained by DFT and RRT using various signal sizes. All the double-absorption spectra
are generated using the conventional procedure which combines the complex N- and
P-type complex spectra. Regularization parameters are optimized for both RRT cal-
culations. The shifting parameters Γ1 = Γ2 = 1 Hz.
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2.5.3 Other Spectral Representations Using RRT

The resolvent formulas of Eq. 2.90 and Eq. 2.99 provide us a way to estimate

the infinite time DFT spectra using only finite data sets. In this section, I would

like to demonstrate that RRT is a more powerful method than just nonlinear FT-

type spectral estimator. With minor modifications, the resolvent formulas can be

used to construct many other types of useful spectral representations, revealing more

information about the signal.

1. Inverse Laplace transform via RRT: iRRT

Any complex variable can be used in RRT. In particular, when the frequency

variable is purely imaginary, RRT becomes an efficient expression for computing in-

verse Laplace transform without exponential instabilities. It has been shown that

it is possible to recover up to 4 exponential decaying constants with significant gap

between the fastest and lowest decaying components in the Quantum Monte Carlo

(QMC) calculations of vibrational states of polyatomic systems [98]. The RRT ex-

pression with imaginary frequency variable is also called iRRT. iRRT has been also

applied to processing the Diffusion Ordered Spectroscopy (DOSY) [100, 101] NMR

experimental signals, showing the promise to identifying multiple diffusion constants

even in the heavily overlapped spectral regions [96]. However, the overall results have

not been totally satisfactory considering the reliability of the results and accuracy

of intensities. There are several practical difficulties: first, accurate characterization

of both fast and slow decaying components requires signals with very high signal to

noise ratio, while typical DOSY experimental data sets are very noisy due to the lim-
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ited quality of magnetic field gradient and many other experimental limitations [102].

Second, fitting data to multiple exponential decaying components has been proved

to be a notoriously unreliable procedure. Even though the iRRT expression seems

to be very stable, there are still uncertainties such as the effect of regularization on

the accuracy of computing the decaying constants. It is necessary to study the re-

sults as a function of the signal length (or other parameters such as basis size and

regularization) to check the validity of the results. Finally, the intensity computed

by iRRT is not accurate enough for quantitative usage and it is not obvious how it

can be improved.

2. Pseudo-2D RRT spectra of both real and imaginary frequencies

There is another an interesting spectral representation that can be constructed

using RRT with complex variables. By computing the spectral intensity I(ω + iΓ)

as a function of both the real frequency ω and imaginary frequency Γ, a pseudo-2D

spectrum results. As I(ω + iΓ) diverges at ω + iΓ = ωk on the complex plane, we can

identify both the peak positions and the linewidths simply by looking at the singular

points on the 2D contour plot. In addition, it is also possible to separate peaks that

are severely overlapped according to their linewidths. Figure 2.23 shows a contour

plot of such a pseudo-2D spectrum, applied to a 1D NMR signal. Note that a slice

along Γ = 0 Hz corresponds to the normal 1D FT-type absorption spectrum with

no smoothing, which is shown on top of the 2D plot for direct comparison. The 2D

plot reals more information about the signal. For example, the 2D plot shows that

there are possibly two peaks, A and B, at around ω = −5600 Hz (indicated by two

arrows), while this information is totally hidden in the conventional 1D FT spectrum
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due to the heavy overlapping.
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Figure 2.23: Contour plot of I(ω + iΓ) on the complex plane. Peaks are spread
out along the imaginary frequency axis according to the line width, providing more
information than the conventional 1D FT spectrum (shown on the top). For example,
the pseudo-2D plot indicates that there are possibly two peaks, noted as A and B,
around -5600 Hz, while from the 1D FT spectrum this information is hidden due to
the heavy overlapping of the two peaks. Note that a slice at γ = 0 of the pseudo-2D
spectrum corresponds to the 1D FT-type spectrum without any linebroadening.

2. Pseudo-absorption 2D RRT spectral estimations

When severely truncated data sets are used in RRT, just like in FDM, while the

positions of the peaks converge best, the phases of the complex amplitudes are least
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accurate, which manifest themselves as the incorrect phases of corresponding peaks

in the double-absorption spectrum obtained by combining N- and P-type complex

spectra. For example, close examination of the RRT spectra shown in Figure 2.22

reveals several peaks slightly out of phase, e.g., the peak at around (-600 Hz, 350 Hz).

In principle, increasing regularization will suppresses the phase instability. However,

numerical experiments showed that the phase stability improved slowly with regard to

RRT regularization, especially for truncated signals. Moreover, in certain situations,

only a single purely phase modulated data set is available (e.g., in 2D J experiments).

In such cases an absolute value RRT spectrum may be an appealing and/or the only

option, although the resolution of the latter are unacceptable due to the contribution

of the dispersion lineshapes. Note, yet, there exists a variety of other spectral rep-

resentations, in which the dispersion contributions are eliminated, therefore leading

to much higher resolution. An example of such a representation in 2D, which is also

used in 2D FT spectral analysis, is

A(ω1, ω2) = Re{I(ω1, ω2 + iΓ2) − I(ω1, ω2 + iΓ′
2)} . (2.104)

The dispersion contributions along ω2 are eliminated by the subtraction of the two

complex spectra using different shifts Γ2 6= Γ′
2 (with possibly positive Γ2 and negative

Γ′
2), while taking the real part leads to the absorption lineshapes along ω1. The

disadvantage of Eq. 2.104 is the need to fiddle with too many adjusting parameters.

Another very useful spectral representation is given by

I(2)(ω1, ω2) =





Φ0

∣

∣

∣

∣

∣

∣

∣

τ1τ2
[

1 − eiτ1ω1Û1

]2 [

1 − eiτ2ω2Û2

]2Φ0






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Figure 2.24: RRT pseudo-absorption spectrum
∣

∣

∣I(2)(ω1 + iΓ1, ω2 + iΓ2)
∣

∣

∣ (see

Eq. 2.105) constructed using only the N-type (i.e., the purely phase modulated) data
of Figure 2.22 with N1 = 16, N2 = 300, q = 0.0003, Γ1 = 2 Hz and Γ2 = 1 Hz.

=
K
∑

k=1

τ1τ2dk

[1 − eiτ1(ω1−ω1k)]
2
[1 − eiτ2(ω2−ω2k)]

2 . (2.105)

The absolute value spectrum
∣

∣

∣I(2)(ω1, ω2)
∣

∣

∣ will have a great resolution advantage

over |I(ω1, ω2)|. The peaks are narrow and have quasi-absorption lineshapes in

∣

∣

∣I(2)(ω1, ω2)
∣

∣

∣. Note that the amplitude dk is not squared. Thus the peak integral

will effectively be divided by the product of the linewidths in two dimensions, γ1kγ2k.

Accordingly, I(2)(ω1, ω2) will favor the narrow peaks against the broad ones. This non-

uniform distortion can be reduced by shifting the spectrum using
∣

∣

∣I(2)(ω1 + iΓ1, ω2 + iΓ2)
∣

∣

∣

which effectively increases the widths of all peaks making them more uniform. While

I(2)(ω1, ω2) cannot be constructed by FT, it is representable in terms of the U-

matrices in complete analogy with Eq. 2.99. Of course, the corresponding resolvents
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should be regularized accordingly. In Figure 2.24 we show the RRT spectra using

∣

∣

∣I(2)(ω1 + iΓ1, ω2 + iΓ2)
∣

∣

∣ with Γ1 = 1 Hz and Γ2 = 10 Hz using the same 2D signal

as in Figure 2.22. The peaks do have absorption lineshapes, although the heights

are somewhat distorted when compared to the correct spectra of Figure 2.22. Higher

order pseudo-absorption spectra can also be easily constructed by using higher power

of the resolvent matrices. In the later cases, SVD is preferred, as once decomposi-

tion of the resolvent matrix R(ωl) is available, it is trivial to construct regularized

pseudo-inverse matrix R−n
q (ωl) with same computational efforts for any integer n.

2.5.4 Extended Fourier Transform

As we discussed before, the phase computed by RRT seems to be the least stable.

Especially when the signal is severely truncated in all dimensions (even though it

rarely so in NMR experiments), the RRT spectra could be significantly distorted.

Increasing the regularization does not help much here unless the regularization level

is so high that most of the features are smoothed out. This is a disadvantage of RRT.

On the other hand, even though FT converges slowly with regard to the signal size, it

does not fail even in the severely truncated cases. The eXtended Fourier Transform

(XFT), developed by Armstrong and Mandelshtam [103], is a hybrid method of DFT

and RRT designed to combine the high resolving power of RRT and the stability of

DFT. The basic idea is to use RRT only to estimate the remainder of finite DFT of

the signal. The details of XFT can be found in the original reference [103]. Here we

give a brief derivation of 1D XFT for the illustration purpose.
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Given a finite time signal c(n) defined on an equidistant time grid of N points,

we want to estimate the infinite time DFT spectrum by breaking it into two parts15,

I(ω) = τ
∞
∑

n=0

c(n)eiωnτ = τ

{

N−1
∑

n=0

c(n)eiωnτ +
∞
∑

n=N

c(n)eiωnτ

}

. (2.106)

Note that the first summation is simply the conventional finite DFT summation. Due

to the truncation of the signal, the second term can not be directly computed, which

is the source of FT time-resolution uncertainty principle and the sinc-like truncation

artifacts (see Chapter 1). However, it can be estimated using the RRT expression,

∆N (ω) =
∞
∑

n=N

c(n)eiωnτ =
∞
∑

n=N

eiωnτ
(

Φ0

∣

∣

∣Ûn
∣

∣

∣Φ0

)

=
∞
∑

n=N

eiωnτ
(

ΦN/2

∣

∣

∣Ûn−N
∣

∣

∣ΦN/2

)

= eiωNτ
∞
∑

n′=0

(

ΦN/2

∣

∣

∣Ûn′

eiωn′τ
∣

∣

∣ΦN/2

)

= eiωNτ

(

ΦN/2

∣

∣

∣

1

1 − eiτωÛ

∣

∣

∣ΦN/2

)

. (2.107)

Evaluated in the Fourier basis defined in Eq. 2.15, we can obtain the numerical

expression with regularization for estimating the remainder of DFT,

∆N (ω) = eiωNτ C̃
T

N/2 R̃
−1

q (ω) C̃N/2 , (2.108)

with the same resolvent matrix R(ω) = U0 − eiτωU1 and a shifted FT vector,

[C̃N/2]j =
M−1
∑

n=0

einτϕj

(

Φn|ΦN/2

)

=
M−1
∑

n=0

einτϕjc(n + N/2) . (2.109)

Therefore, XFT is essentially a straightforward extension of RRT. We simply need

to construct the shifted FT vector C, evaluate the RRT estimation of the DFT re-

mainder, then add the correction to the DFT summation. Figure 2.25 is an interesting

15The zero correction term is dropped out here for the sake of simplicity.
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Figure 2.25: An interesting region of the 1D NMR spectrum of 12H-pyrido[1,2-a:3,4-
b]diinole, processed by the XFT using a truncated (N=5000) data set. The figure
illustrates the behavior of each term involved in the calculation of the XFT spectrum.
The XFT spectrum is obtained by adding together the unapodized DFT term, and
the correction term calculated with a regularization parameter of q that is optimized
for this case. The correction term exactly cancels the sinc-like oscillations present
in the unapodized DFT. It also adds small terms to increase the resolution of some
peaks, allowing some doublet structures to be identified. For comparison the apodized
DFT spectra for N=32000 and N=5000 are presented. (This figure is courtesy of G.
S. Armstrong [103]).
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illustration of how XFT works. The XFT of an experimental NMR signal is used to

examine the roles of both terms in Eq. 2.106. The lower three traces were computed

with only the first 5000 data points. The DFT trace shows several unresolved multi-

plets and sinc-oscillations in the baseline. The correction trace has oscillations equal

and opposite to those in the DFT trace. When added together, the oscillations cancel,

giving the correct baseline in the XFT trace. Furthermore, the correction contains

some high resolution features, revealing some splittings that are not resolved in the

DFT spectrum.

It is less obvious but can be proved that when the signal satisfies the Lorentzian

model and is sufficiently large, the XFT spectrum, Eq. 2.106, gives the exact infinite

time DFT of the signal. By separating the infinite DFT summation into two parts

and evaluating them independently provides us a way to combine the stability of DFT

and high-resolution of RRT together: on one hand, one can use a large regulariza-

tion to suppress the contribution of RRT correction, providing a more conservative,

finite DFT like spectrum; on the other hand, one can optimize the regularization for

maximum resolution enhancement. Thus, XFT does not fail even when the signal is

too short to obtain meaningful high-resolution spectrum. This is a very attractive

property, especially considering that in FDM and RRT, it is either “everything” or

“nothing” for certain cases.

XFT can be also extended to processing multi-dimensional data sets. The idea is

also to use RRT only for estimating the remainder of 2D DFT. Details can be found

in Ref. [103]. Applied to experimental 2D NMR signals, it has been shown that even

for signals severely truncated in both dimensions, 2D XFT can provide very stable
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2D spectral estimation with resolution similar to conventional 2D DFT but without

any sinc-like truncation artifacts. In the case of large data sets, 2D XFT is able

to provide higher resolution beyond FT uncertainty principle. However, the phase

instability seen in 2D RRT is still present in high-resolution the 2D XFT spectra,

which is a little disappointing but reasonable as RRT is responsible for the high-

resolution features. In addition, the shift FT vector CN/2 is computed using the tail

of the signal and therefore more noisy than the FT vector used in RRT, making the

phase instability potentially more severe in the XFT high-resolution estimation.

2.5.5 Conclusions

In this section, we derived a new numerical expression, the Regularized Resolvent

Transform (RRT), which corresponded to a direct transformation of the time-domain

data to a frequency-domain spectrum. RRT is suitable for high resolution spectral

estimation of multidimensional time signals. One of its forms, under the condition

that the signal consists only of a finite number of damped sinusoids, turns out to be

equivalent to the exact infinite time discrete Fourier transformation. RRT naturally

emerges from the Filter Diagonalization Method (FDM), but no diagonalization is

required. The spectral intensity at each frequency ω is expressed in terms of the

resolvent R(ω)−1 of a small data matrix R(ω) constructed from the time signal.

Generally R is singular, and thus its inversion requires certain regularization. Among

various possible regularizations of R−1, the Tikhonov regularization appears to be

computationally both efficient and stable. Numerical implementation of RRT is very
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inexpensive because even for extremely large data sets the matrices involved are small.

We also showed that RRT could be used to constructed various non-FT spectral

representations. In particular, using a purely imaginary frequency variable, RRT

becomes an expression for estimating inverse Laplace transform without exponential

instabilities. RRT can also be used to compute a pseudo-2D spectrum, I(ω+iΓ), with

respect to both the real and the imaginary frequencies, revealing more information

than the conventional FT-type spectral estimation. Finally, pseudo-absorption type

spectra can be also constructed by RRT when an absolute value spectrum is desirable.

When the signal is severely truncated in all dimensions, 2D RRT spectra might

be highly distorted due to the phase instability. Even though it can be improved by

constructing a pseudo-absorption spectrum, there exists a more elegant alternative.

The eXtended Fourier Transform, or XFT, attempts to combine the stability of DFT

and high-resolution of RRT, by using RRT only to estimate the remainder of finite

time DFT. XFT can provide a stable high-resolution estimation when the data set is

sufficiently large and does not fail even the data set is extremely small.

145



2.6 Reliability and Sensitivity of FDM/RRT

In previous sections, we have been focusing on how to extract maximal informa-

tion from the available data. In this section, we will exploit another important aspect

of signal processing—-checking the reliability of the results, which has been ignored in

previous discussions. Unfortunately, this is no easy task due to the high nonlinearity

and complexity of FDM and RRT algorithms. What makes the analysis even more

complicated are various practical factors including noise, lineshape distortions and

other NMR experimental artifacts16, which are very difficult to model and quantify.

As a result, we will only be able to check the reliability of FDM/RRT results in var-

ious qualitative and/or semi-quantitative ways. Instead of providing some rigorous,

conclusive statements, we will focus on how to double check the results and make

some qualitative judgments. A semi-quantitative way for studying the sensitivity of

FDM/RRT spectral estimations with respect to various processing parameters will

also be described.

2.6.1 Reliability of 1D FDM and RRT

Reliability of 1D FDM and RRT is relatively easy to check. As we known, both

FDM and RRT can be used as a high-resolution spectral estimator. One of the

simplest ways to check the validity of the result is to inverse DFT the FDM/RRT

spectrum to recover the time domain signal and compare it with original one. Al-

ternatively, when FDM is used as a parametric method, one can plug the parameter

16Such as t1 noise, pulsing artifacts and phase-cycling/gradient residual artifacts
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Figure 2.26: The spectral estimation obtained by FDM matches almost perfectly with
the DFT spectrum. The difference is within the noise level except for one of the three
most intensive peaks. The parameters used in FDM calculation were set to typical
values and not optimized.

list {ωk, dk} into Eq. 2.1 to reconstruct the time signal and compare it with the orig-

inal one. In the examples given in Section 2.2 and 2.5.1, we already compared the

FDM/RRT spectra with DFT spectra and showed that they matched very well. Here

we present a reliability study where FDM is used both as a parametric method and as

a spectral estimator to analyze a noisy experimental NMR signal. Figure 2.26 com-

pares the FT and FDM spectra, with the inner panel showing the real and imaginary

part of the time domain signal. Even though the signal is very noisy and contains

many heavily overlapped features, the difference between DFT and FDM spectra is
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Figure 2.27: Comparison of the original signal and that reconstructed from the spec-
tral parameters computed by FDM. Due to the use of multi-scale basis and multi-
windowing, only an approximate complete line list that primarily describes narrow
features can be obtained (see text), and used here to reconstruct the time signal.
The initial part of the signal is not well reproduced. However, the rest of this signal,
from t = 0.2s up to t = 2s (maximum), mainly defined by narrow poles, is very well
reproduced. The difference between original and reconstructed signals is within the
noise level.

within the noise level throughout the spectral range except a region around one of

the three most intensive peaks (∼-50 Hz). Similar comparison can be made between

RRT and DFT spectra (data not shown). FDM/RRT have also been tested using

many other 1D NMR experimental signals and proved to be very stable and reliable

as high-resolution spectral estimators.

It is less straightforward to check the spectral parameters computed by FDM
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for experimental signals. One of the reasons is that the “true” spectral parameters

are not available for direct comparison. In addition, the spectral parameters are

the most accurate when a multi-scale Fourier basis is used, where the background is

recomputed for each window calculations. It is not obvious how to combine results

from all window calculations to construct an effective line list for describing the

background (very broad poles). Furthermore, the adjacent spectral windows overlap

with each other by 50%. The spectral parameters for the same overlapped region

from two adjacent window calculations are similar but slightly different, especially

for those that describe noise. Instead of trying to match two lists to remove the

redundancy, which could be very tricky and unreliable, a simplified approach is used

here: for each window calculations, only the parameters for describing the poles that

locate inside the center half of the spectral window is retained. By concatenating

parameters from all window, we can obtain an approximate “complete” line list for

the whole spectral range. Figure 2.27 compares the signal reconstructed using such

a line list to the original one. It is not surprising that the initial part of the signal,

which is mostly defined by the broad features, is not reproduced well, due to the lack

of entries for the broad features. The rest of the signal is reproduced very well. The

difference between the original and reconstructed signals is about the noise level. This

proves that most, if not all, the narrow features are parametrized quite accurately.

However, this observation should not be extended to the conclusion that all the poles

computed by FDM are genuine. It is highly possible that multiple Lorentzian lines

are responsible for describing a single genuine peak, especially in the case of noisy

signals with heavily overlapped features and/or lineshape distortions.
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2.6.2 Possible Ways for Checking Individual Peaks

Figure 2.27 is an example where we check the overall validity of the parametric

fit provided by FDM. In many cases, we are also interested in knowing whether a

particular entry in the FDM line list is genuine or not, and if yes, what the uncertainty

(error bar) is. These are very difficult problems where the ultimate solutions are still

to be found. However, there are a few qualitative and semiquantitative methods for

estimating the error bar and reliability of individuals peak computed by FDM.

Method 1: There existed a method for estimating the error of each eigenvalue since

FDM was first introduced [24, 67], which was simply based on

ε(n) = ||(U (n) − un
kU

(0))Bk||, n ≥ 2 ,

where U (n) is the matrix representation of n-step evolution operator Û
n

= exp(−inτ Ω̂).

Typically n=2 is used. The spurious poles usually have a much larger estimated error

and this had been used to filter out spurious poles in the early days of FDM. It was

later discovered that it should only be used as a qualitative estimation, instead of a

rigorous criteria. Broader features, genuine as well as spurious, tend to have larger

estimated errors, and some narrow spurious poles might have small estimated errors

by accident. However, it is relatively safe to treat those narrow poles with large

estimated errors as spurious poles.

Method 2: This method relies on estimating the “velocity” of eigenvalues numer-

ically by small random noise perturbation. It is assumed that eigenvalues corre-

sponding to genuine poles tend to be less sensitive to small perturbations while the

spurious eigenvalues behave oppositely. Numerically, one can first run a FDM cal-
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culation using the original signal, then add small pseudo-random noise perturbation

(∼ 1%) to the signal and re-run the FDM calculation. Then one needs to match

up two sets of eigenvalues and estimate the velocity of eigenvalues numerically by

v(ωk) ∼ δωk/|noise|. The eigenvalue matching step might be tricky, but numerically

experiments showed that it could usually be achieved as long as the noise perturbation

was sufficiently small. The velocity estimation is typically consistent with the error

estimation described in previous paragraph. This estimation is also only qualitatively

correct. There is no guarantee that all spurious peaks can be detected, nor that all

eigenvalues with large velocities are spurious.

Method 3: This method involves injecting a narrow Lorentzian pole close to the

peak(s) of interest, rerunning the FDM calculation and comparing the results. This

is also based on the assumption that genuine peaks are more stable than the spurious

ones. If the peak is genuine, it is unlikely that injecting a small Lorentzian pole close-

by will have a large effect on it. However, if the peak corresponds to some poorly

converged features or noise, any change of the close-by environment might significantly

change the local results. A systematic scheme for carrying out this “probe-and-test”

procedure requires more studies on what kind of probe pole (e.g., peak intensity and

linewidth) should be used and where to inject it.

Method 4: Finally, one can always study the convergence of a particular peak as

a function of FDM/RRT processing parameters such as basis size, basis density, sig-

nal length used, and regularization level (for RRT). If a feature is stable or becomes

stable with respect to the change of these parameters, we can have more confidence

saying that it is a genuine peak. This procedure is more time consuming and might
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seem unnecessary in 1D case. However, in 2D or higher dimensional applications, it

is almost always necessary to run the FDM/RRT calculations multiple times, par-

ticularly using various signal sizes, before one can be confident that the results have

successfully converged.

2.6.3 A Semi-Quantitative Way for Estimating the Sensitiv-

ity of FDM/RRT Spectral Estimations

Here we describe a semi-quantitative way for estimating the sensitivity of FDM/RRT

spectral estimations. The idea is very simple. The spectral estimation I(ω) com-

puted by FDM/RRT has a periodic dependence on the spectral window position. If

one computes the spectral intensity at a particular frequency ω0 multiple times us-

ing different spectral window conditions, the results will differ, even though only by

small amount. The degree of variance provides us a semi-quantitative way of measur-

ing the sensitivity (or uncertainty) of FDM/RRT spectral estimation. For example,

Figure 2.28 illustrates this uncertainty using a special setup called Continuous Win-

dowing FDM/RRT, or CW-FDM/RRT. In CW-FDM/RRT, for each frequency point

ω, a spectral window centered at ω is first set up and the U matrices constructed.

Then these matrices are either diagonalized or used in RRT to compute the spectral

intensity only at ω. Same procedure is repeated for each frequency grid. Obviously

this is more time consuming than the normal FDM/RRT algorithm where the same

U matrices are used to compute spectral estimation for all frequency points inside the

spectral window. However, this setup reveals the uncertainty of FDM/RRT spectral
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Figure 2.28: Sensitivity of FDM/RRT calculations illustrated by using the continu-

ous windowing FDM. While the baseline of normal FDM calculation is perfectly flat,
it is highly oscillative in CW-FDM spectrum. The amplitude of the oscillation pro-
vides useful information about the sensitivity (or uncertainty) of FDM/RRT spectral
estimations.

estimations that is hidden in the normal FDM/RRT calculations. For example, while

the baseline of the bottom trace of Figure 2.28 is flat, highly oscillative behaviour is

observed in the top trace, computed by CW-FDM (CW-RRT spectrum is similar and

not shown). The period of the oscillation is purely determined bye the signal length,

but its amplitude depends on all the FDM/RRT parameters such as the basis density,

basis size and regularization level (for RRT). It is possible to use the amplitude of

this oscillation as a semi-quantitative measurement of the uncertainty of FDM/RRT

spectral estimations. One can simply use the amplitude of the oscillation as the error
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Figure 2.29: Sensitivity of FDM/RRT spectral estimation as functions of basis size
and basis density using two experimental NMR signal and a model signal with inte-
gerization noise.

bar for the spectral estimation. Another, more interesting application is to use it

to study the sensitivity as a function of all FDM/RRT parameters and find out the

optimal processing parameters for typical signals. For example, Figure 2.29 plots the

sensitivity of FDM/RRT spectral estimations as functions of the basis size and basis

density using two experimental NMR signals and a model signal with integerization

noise. We can see that basis size of Nb = 50 and basis density of ρ = 1.1 are the

most efficient values for obtaining stable FDM/RRT spectral estimations for these

three signals. Previous numerical experiments also suggest that these are indeed the

most efficient optimal conditions for processing typical 1D signals. It is very interest-

ing that such a semi-quantitative method is able to re-predict the optimal processing

parameters in a straightforward, explicit way.
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2.6.4 Reliability of 2D FDM

When 2D FDM and RRT are used as spectral estimators, one can also use inverse

FT to recover the time domain signal and compare to the original one. However,

this method is less convenient in 2D or higher dimensional cases due to the following

reasons: first, to compare the signals in the time domain, spectra over the whole

spectral range must be computed, while we are typically only interested in a few

local regions; second, multi-dimensional NMR signals typically contain a water signal,

which is often much more significant than all the other signals. Thus it is suboptimal

to include the water signal in checking the fitting quality of the small features of

interest. Instead, it is more efficient and more reliable to compare the results with

the FT of the original signal locally in the frequency domain.

The infinite 2D FT spectrum is typically estimated by 2D FDM. In order to make

direct comparison, we need to estimate the finite 2D FT spectrum using the same

spectral parameters. This can be done by replacing the double-absorption expression

of Eq. 2.68 with the following expression, obtained the analytically evaluating the

finite 2D FT summation17

AN1,N2(ω1, ω2) ≈ τ1τ2

∑

k,k′

Re[Dk,k′] (2.110)

Re

[

1 − eiN1τ1(ω1−ω1k)

1 − eiτ1(ω1−ω1k)
− 1

2

]

Re

[

1 − eiN2τ2(ω2−ω2k′ )

1 − eiτ2(ω2−ω2k′ )
− 1

2

]

.

By computing the difference of the FDM estimation of 2D DFT with the actual

2D DFT of original signal, one can have a rough measurement of the fitting quality.

17Note that FT with certain apodizations such as exponential and trigonometric functions can be
evaluated analytically and incorporated.
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Figure 2.30: An example where the spectral parameters obtained by FDM are used to
estimate finite 2D FT spectra for direct comparison with the actual 2D FT spectra.
The signal used is the same 1H-15N HSQC signal of rubredoxin used in previous
2D examples. The FDM spectral parameters were obtained using 200×16 N-type
complex data points. The actual 2D FT spectra (panel a and b) were obtained using
both N- and P-type data sets with cosine weighting functions in both dimensions. It
shows that the estimated finite 2D FT spectra match with the actual 2D FT spectra
very well. The mismatch between spectra (a) and (c) is only about 1.9% (see text).
Even when the same parameters obtained using only 200×16 data points were used to
estimate the finite 2D FT with length of N1 ×N2 = 200× 64, the mismatch between
spectra (b) and (d) is only 2.9%. Note that the noise that is only present in long 2D
FT spectra (panel b) can be accounted for a large percentage of the larger mismatch.
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Figure 2.30 is a demonstration of such a checking procedure using the same 2D HSQC

NMR experimental signal of rubredoxin used in previous 2D examples. Actual 2D FT

spectra were computed by using both N- and P-type data set with cosine weighting

functions in both dimensions. Both a short 2D FT spectrum (panel a, 200× 16) and

a long one (panel b, 200 × 64) are shown. Note that the long 2D FT spectrum is

noisier. Spectral parameters {ω1k, ω2k′, Dk,k′} were computed by FDM2K only using

200 × 16 complex data points. These parameters were then used to estimated two

finite time 2D FT spectra with signal length N1 × N2 being 200 × 16 (panel c) and

200 × 64 (panel d) respectively18, and the infinite time 2D FT spectrum (panel e).

One can simply stare at these spectra (such as panel a and c) and see that they match

very well. Quantitatively, one can compute a relative “matching error” based on,

ε =

∑ |AN1,N2(ω1, ω2) − FTN1,N2(ω1, ω2)|2
∑ |FTN1,N2(ω1, ω2)|2

, (2.111)

where FTN1,N2(ω1, ω2) denotes the actual 2D FT spectrum. The as calculated match-

ing error between spectra (a) and (c) is only 1.9%, which is within the noise level.

This is might not be surprising as we did use 200 × 16 data points to compute these

parameters in FDM and a good match is expected. We can also use the same spectral

parameters to estimate a long finite time 2D FT spectra with N1 × N2 = 200 × 64,

four times longer than the signal size used in FDM calculation. Again, the estimated

2D FT spectrum (panel d) matches with the actual 2D FT (panel b) very well, with

the matching error being only slightly larger, 2.9%. Note that a significant portion

of the increased mismatch can be due to the noise that is only present in the long 2D

18Note that cosine weighting function is evaluated analytically, resulting a formula that is slightly
different from Eq. 2.110.
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FT spectrum. This provides a very strong evidence that FDM is capable of providing

a good, reliable fit of the time signal to the Lorentzian model.

When the signal does not satisfy the Lorentzian model as well, the fitting error

will be larger. More examples will be given in Chapter 3, where FDM2K is applied to

analyzing 2D and 3D protein NMR signals. It has been shown that FDM is capable of

providing reliable fit of both large and complex multidimensional NMR signals in most

cases. The reliability and accuracy of individual peaks can be also be estimated, using

the techniques listed in previous section. In practice, these approximate error bars do

not always provide much information about the authenticity of the peak. Instead, it

is more useful and necessary to study the behaviour of particular peak(s) as a function

of processing parameters, especially the signal length used. More discussions can be

found in Chapter 3.

2.7 Summary and Remarks

Two nonlinear methods, namely the Filter Diagonalization Method (FDM) and

Regularized Resolvent Transform (RRT), for high-resolution spectral analysis of time

domain signals have been presented.

FDM solves the highly nonlinear fitting problem of Harmonic Inversion Prob-

lem (HIP) by pure linear algebra of diagonalizing some small data matrices in the

frequency domain. FDM is intrinsically stable and efficient due to its two most im-

portant properties: solving the nonlinear fitting problem via linear algebra and local

spectral analysis via Fourier-type basis. Applied to both model and experimental
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signals, it has been shown that FDM is able to deliver resolution beyond the FT

time-frequency uncertainty principle, given that the signal sufficiently satisfies the

Lorentzian model and is long enough (but typically not long enough for FT to fully

resolve all the features). The actual power of FDM lies in its multi-dimensional ex-

tensions (MD-FDM). MD-FDM is a true multi-dimensional spectral analysis method,

which is able to process the whole data set to characterize the multi-dimensional fea-

tures. The achievable resolution in all dimensions is determined together by the

total information content of the signal, instead of the signal sizes along individual

dimensions. MD-FDM is ill-conditioned due to several fundamental and practical

limitations. Regularization techniques must be used in order to obtain stable and

meaningful results with single FDM calculations. Among all the regularization meth-

ods exploited, FDM2K and SVD are particularly efficient. However, the ultimate

optimal regularization is yet to be found. In conclusion, 1D FDM is basically a well-

developed method, that is stable, efficient and capable of provide resolution higher

than FT spectral analysis. Stable, high-resolution multi-dimensional spectral estima-

tions can be obtained efficiently by MD-FDM with regularizations, but the problems

associated with processing multi-dimensional signals have only been partially solved.

Even though the results we have obtained are already superior compared to those

given by FT or other high-resolution methods such as LP and MaxEnt, there is still

plenty of room for further improvements.

RRT emerges naturally from FDM. The same data matrices are used but spectral

estimations are directly computed without the diagonalization step. Implementation

of RRT is straightforward and numerically efficient. Conventional techniques such as

159



Tikhonov regularization or SVD can be efficiently use to regularize RRT. RRT can be

also use to construct non-FT types of spectral representations such as inverse Laplace

transform and various pseudo-absorption spectra. The advantage of RRT lies in its

simplicity and transparency, and the drawback is the lack of the freedom to directly

manipulate individual peaks. Both 1D and MD RRT are well-developed methods

that are stable, reliable and efficient. The problems associated with RRT are mostly

understood and significant improvements over current version of RRT are not much

expected. The major limitation of RRT lies in the phase instability of the peaks,

manifesting it as the lineshape distortions in the final absorption spectra, especially

when the signal is truncated in all dimensions. While the hybrid method eXtended

Fourier Transform (XFT) intends to combine the stability of FT with high-resolving

power of RRT, the results are not totally satisfactory. In high-resolution XFT spectra

where the contribution from RRT correction is significant, the phase instability is still

present.

Finally, a limitation shared by RRT and FDM is the lack of a consistent way for

verifying the results. While it is possible to qualitatively check whether a particular

feature is likely to be genuine or not, there is not a rigorous, quantitative way to

make some solid, conclusive judgments. False positives as well as false negatives can

be costly for those unaware of the underlying uncertainty. One of the main focuses

for future research should be developing some systematic schemes for detecting false

positives and false negatives. Before such a scheme becomes available, the question

of “I see something great, but is it real?” will always be haunting us and hamper

FDM/RRT from being widely accepted and used.
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Appendix I: Non-Hermitian Quantum Mechanics

Here we briefly review the linear algebra of Non-Hermitian Quantum Mechan-

ics [91]. The conventional quantum mechanics considers only Hermitian operators

acting in a Hilbert space. The Hilbert space is characterized by a Hermitian inner

product 〈Ψ|Φ〉 = 〈Φ|Ψ〉∗ with the asterisk defining the complex conjugate. Any vec-

tor in Hilbert space has is a well defined the norm, 〈Ψ|Ψ〉, which is always real and

non-negative. The eigenvalues of a Hermitian operator are always real. However,

Hermitian quantum mechanics is not sufficient to describe dissipative dynamic sys-

tems, as we need non-Hermitian operators with complex eigenvalues representing the

frequencies of decaying sinusoids.

Consider an abstract non-Hilbert linear vector space A. To distinguish between

the Hermitian and complex symmetric inner product for the latter we use the round

brackets, (Ψ|Φ) = (Φ|Ψ). Note that (Ψ|Ψ) is not necessarily real, i.e., the norm of Ψ is

not necessarily defined in our non-Hilbert space. Moreover, (Ψ|Ψ) can even vanish for

a nonzero vector Ψ. Although numerically this is unlikely to happen, it is clearly an

indication of possible problems (e.g., instability) in the numerical algorithms involving

the non-Hermitian inner products.

We will always identify linear operators, Û , Ω̂, etc., that act on vectors in A by

a cap. By the complex symmetric operator Ω̂ we mean that it satisfies the following

relationships:

{(Ψ|}{Ω̂|Φ)} = {(Ψ|Ω̂}{|Φ)} = (Ψ|Ω̂|Φ) , (2.112)

for any two vectors |Ψ) and |Φ) from A. In words, it does not matter whether we first
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operate with Ω̂ on |Φ) and then evaluate the inner product with (Ψ| or vice versa.

An operator Ω̂ is diagonalizable, if it has a set of eigenvalues ωk and eigenvectors

|ωk) satisfying

Ω̂|ωk) = ωk|ωk) , (2.113)

where the eigenvectors are orthonormalized with respect to the complex symmetric

inner product, i.e.,

(ωk|ωk′) = δkk′ . (2.114)

We will also assume implicitly that our operators are not pathological, which, in

particular, means that the eigenvectors form a complete basis and one can use the

resolution of identity,

Î =
∑

k

|ωk)(ωk| . (2.115)

This also implies that Ω̂ can be expressed using the spectral representation,

Ω̂ =
∑

k

ωk|ωk)(ωk| . (2.116)

The spectral representation becomes very useful when we want to obtain an ex-

pression for a function f(Ω̂) of an operator Ω̂, whose eigenvalues and eigenvectors are

known:

f(Ω̂) =
∑

k

f(ωk)|ωk)(ωk| . (2.117)

Note that f(Ω̂) is also an operator with the eigenvalues fk = f(ωk) and the same

eigenvectors |ωk).
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Appendix II: An alternative expression for comput-

ing the amplitudes

Here we derive an alternative expression for computing the amplitudes, which is

more accurate for narrow poles. As for normal eigenvalue solvers, the eigenvalues are

obtained variationally, while the eigenvectors are obtained in a non-variational way.

Thus according to Eq. 2.24 the amplitudes dk are generally much less accurate than

the frequencies ωk. In addition, given an eigenvector B̃k, Eq. 2.24 only makes use

of the first half (M = N/2) of the time signal available and is not always the most

accurate expression for the coefficient dk that exists, especially for a narrow pole ωk.

As such a more accurate formula is derived for the narrow poles. First let us rewrite

Eq. 2.6 in a more general form:

d
1/2
k ≡ (Υk|Φ0) =

(

[

Û/uk

]n′

Υk|Φ0

)

= u−n′

k

(

Υk|Ûn′

Φ0

)

= u−n′

k

∑

j

[

B̃k

]

j
(Ψj|Φn′)

= en′γ
∑

j

[

B̃k

]

j

M−1
∑

n=0

ein′τ(ωk+iγ)einτϕjcn+n′ ,

where γ and n′ are free parameters. We can now average the above expression over

n′ = 0, 1, . . . , Maver − 1 for an arbitrary Maver between 1 and M ,

d
1/2
k =

1 − e−τγ

1 − e−Maverτγ

∑

j

[

B̃k

]

j

×
Maver−1
∑

n′=0

M−1
∑

n=0

ein′τ(ωk+iγ)einτϕjcn+n′ , (2.118)

where the averaging was done by weighting each term with e−n′γ (to eliminate the

prefactor) and then normalizing the final result by
[

∑Maver−1
n′=0 e−n′γ

]−1
. Just like in
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Eq. 2.18 one of the two sums in Eq. 2.118 can be evaluated analytically (see Section

2.2.4). To eliminate the ambiguity in the choice of the free parameters in Eq. 2.118 for

narrow poles ωk (for which Eq. 2.118 is relevant), it suffices to stick with Maver = M

and

γ =



















−Im{ωk} , Im{ωk} < 0

0 , Im{ωk} > 0

.

For model signal or real signals with very high SNR, Eq. 2.118 does yield the ampli-

tudes with more accuracy. However, it will lead to an ambiguous result if Mτ |Im{ωk}| �

1, in which case the signal corresponding to these “broad” peaks should decay away

very quickly and thus including longer signal to calculate their amplitudes would only

deteriorate the accuracy. In these cases, Eq. 2.24 should be used. A final word on

whether Eq. 2.24 or Eq. 2.118 should be used is as following: unless the signal has very

high SNR and one is really interested in computing the amplitudes of some narrow

poles as accurately as possible, Eq. 2.24 should always be used.
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Appendix III: Other Fourier-Type Basis

The rectangular-window Fourier basis defined in Eq. 2.15 is very simple and easy

to implement. However, experience with Fourier Transform spectral analysis might

suggest that it might not the most efficient one, for example, considering the highly

oscillative sinc-like structure of off-diagonal matrix elements. Here we discuss a more

general definition of Fourier basis by including a filter function gn,

|Ψ(ϕj)) =
M−1
∑

n=0

gn einτϕj |Φn) . (2.119)

Mathematically, any non-vanishing filter functions gn are exactly identical in the

full space. However, the point of using a Fourier-type localized basis is to reduce

the problem to a small subspace. It is possible, but not obvious, that a good filter

function might lead to more accurate and stable numerical approach.

In general, the efficient expressions we derived for computing the U matrix ele-

ments (Eq. 2.20 and Eq. 2.23) can not be used. Chen and Guo [62] have derived an

alternative expression to compute the U matrix elements in a Fourier basis with a

general filter. This expression requires Krmwin times more CPU time compared to

the simple case of rectangular-window Fourier basis of Eq. 2.15. However, there are

several other type of filter functions that can be implemented with similar compu-

tational efficiency of rectangular window function [67]. For example, a exponential

filter function,

gn = exp(−γn) , (2.120)

corresponds to replacing the real frequency grid ϕj by a complex one, ϕj + iγ, and

expressions Eq. 2.20 and Eq. 2.23 can still be used.
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Trigonometric type of filter functions can also be efficiently implemented. For

example, a cosine filter function,

gn = cos
(

π

2

n

M + 1

)

, (2.121)

is often used in Fourier Transform and leads to a good balance between the suppression-

of sinc wiggles and efficient sampling of initial part of the signals. In this case,

Eq. 2.119 can be rewritten as in terms of rectangular-window Fourier basis,

|Ψ(ϕj))cos =
1

2
( |Ψ(ϕj + α)) + |Ψ(ϕj − α)) ) , (2.122)

where α = π/(2(M + 1)). Then the U matrix elements can be computed using the

same expressions, Eq. 2.20 and Eq. 2.23.

To our disappointment, numerical experiments showed that introducing these win-

dow functions had not led to a significant numerical difference. This indicates that

a rectangular-window Fourier basis is already very efficient in carrying out the local

spectral analysis. The use of different filter functions only affect the initial structure

of U matrices and have minor effect on the whole subspace formed by Kwin window

basis functions.
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Chapter 3

Application of FDM for NMR

Spectral Analysis

3.1 Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most powerful

tools for probing the structure of the physical matters. It is one of most commonly

used non-destructive analytical tools for studying the structure of chemical com-

pounds; it is one of the only two methods for determining the 3D structure of biolog-

ical macromolecules, and the only one that works in solution. In addition, NMR is

a powerful tool for studying the dynamics and interactions between molecules, pro-

viding unique information for understanding how biomolecules such as proteins and

DNA function in their natural environments.

NMR is based on the principle of nuclear spin angular momentum, an intrinsically

quantum mechanical property that is analogous to electron spin angular momentum.
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It was first detected in bulk matter by Bloch [104] and Purcell [105] in 1946, who

then shared the Nobel Prize for Physics in 1952 for this discovery. In the molecule,

the nuclei are surrounded by electrons, which act like a shield to the external mag-

netic field. Thus the actual strength of magnetic field experienced by the nucleus

has dependence on the local electronic environment. The observed nuclear magnetic

resonance frequencies will be slightly different for nuclei in different chemical envi-

ronments. This frequency shift is thus called the “chemical shift”. The chemical shift

was first predicted by Dharmatti and then demonstrated by the famous three-line

proton NMR spectrum of pure ethanol [106]. Even though the existence of chemical

shift is a big disappointment for physicists [107], it provides a way for chemists to

study the structure of chemical compounds. At that time, NMR spectroscopy was

called continuous wave NMR (CW-NMR) as it relied on sweeping either the magnetic

field or the radio-frequency to detect difference resonances. Due to its low sensitivity

and long experimental time, NMR did not actually gain much popularity in organic

chemistry, until Ernst and Anderson developed modern Fourier-Transform NMR (FT-

NMR) [108] in 1966. Short bursts of RF field, or pulses, were applied perpendicular

to the static magnetic field to excite all the resonances at once. A Free Induction

Decay (FID) time domain signal was then acquired and Fourier Transformed to pro-

vide the frequency spectrum. FT-NMR speeded up the experiment by hundreds of

times and improved the signal to noise ratio (SNR) enormously for the data obtained

in the same amount of time. With the development of the Fast Fourier Transform

(FFT) algorithm by Cooley and Tukey [6] and decreasing cost of computers in the

late 1960s, FT-NMR grew explosively and almost completely replaced the CW-NMR.
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Another milestone in the history of NMR spectroscopy was the introduction of

two-dimensional NMR experiments by Ernst [109] in 1976, based on the idea proposed

by Jeener [110] in 1971. By introducing a second dimension, not only could the

potentially heavily overlapped resonances be dispersed into the second dimension, but

useful information about the chemical and/or dynamical connections between spins

could be obtained. With the aid of a quantum-mechanical representation known as

the density matrix formalism [111, 112], which provides a complete description of the

state and dynamics of the spin system, numerous novel 2D and higher dimensional

NMR experiments were developed. In 1991, Ernst was warded the Nobel Prize for

Chemistry for his pioneering work on modern NMR methodology. Nowadays, 1D and

multidimensional NMR experiments are performed on a routine basis in many fields

including chemistry, solid state physics, molecular biology, and medicine [113, 11].

The effectiveness of NMR hinges on the ability to obtain a resolved spectrum.

While sensitivity of NMR has been steadily improved by new advances in NMR

probe and high-field magnet technologies over the last two decades, the fundamental

resolution of NMR solely depends on the obtainable magnetic field strength and has

only seen limited improvement [114]. The resolution that can actually be achieved

is further limited due several severe drawbacks of conventional FT spectral analy-

sis. In particular, the FT resolution is limited by the so-called FT time-frequency

uncertainty principle, which means a long time signal has to be acquired in order to

obtain a high spectral resolution. What makes it worse is that the FT uncertainty

principle applies to all dimensions independently in multidimensional FT spectral

analysis. Due to various practical limitations, multi-dimensional NMR signals are
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typically truncated or severely truncated in the indirect time dimensions, leading to

poor FT resolution in the corresponding frequency dimensions. This is one of the

major limitations of the multi-dimensional NMR experiments. As we discussed in

Chapter 1, considerable efforts have been spent on developing various high-resolution

alternatives to FT spectral analysis. However, due the high complexity and large

scale of the problem, these methods are typically both computationally expensive

and numerically unstable. Accordingly, FT remains the method of choice in most

cases for NMR spectral analysis.

The FDM and RRT algorithms introduced in Chapter 2 have proved to be superior

in computational efficiency and numerical stability. It shows promise as a working

method for high-resolution spectral analysis. Multi-dimensional FDM and RRT are

true multidimensional methods. The whole data set are processed together to provide

resolution enhancements in all dimensions, according to the total information content

of the signal. FDM and RRT are thus particularly suitable for NMR spectral analysis.

In this chapter, we will discuss various issues that are specific to analyzing NMR

experimental signals. The rest of the chapter is organized as following: we will first

discuss the linear phase correction via FDM/RRT for 1D NMR signals in Section 3.2,

then in Section 3.3, we will discuss the construction of non-trivial projections and its

application to a singlet-TOCSY experiment. In Section 3.4, an efficient scheme for

processing multi-dimensional Constant-Time (CT) NMR signals is introduced and

then applied to 2D CT-HSQC and 3D CT-HNCO NMR experiments of proteins.

Finally, a summary is given in Section 3.5.
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3.2 Application of FDM/RRT for 1D NMR

From the spectral analysis point of view, 1D NMR does not really have limi-

tations, simply because long signals are typically available and high resolution FT

spectra can be thus obtained. The resolution enhancement that can be achieved is

marginal, even for methods like FDM or RRT. However, FDM and RRT can pro-

vide additional useful information besides the high-resolution spectra. For example,

as discussed in Section 2.5.3, RRT can be used to generate a pseudo-2D spectrum

I(ω + iΓ) as a function of both real and imaginary frequencies and separate poten-

tially heavily overlapped resonances. FDM can provide a parameter list which is

generally a reasonable fit of the time signal, as was demonstrated in Section 2.6.1.

Even though multiple entries might be used to represent a single spectral feature and

any nontrivial use of line list should be done with cautions, the line list provides a

much better starting point for peak picking, peak integration and coupling constant

measurement, while the conventional peak searching methods are sensitive to noise,

baseline distortion, and closeby strong features. In this section, we will focus on cor-

recting the linear phase by FDM and RRT, where conventional FT spectral analysis

has problems.

3.2.1 Linear Phase Correction

Problems with the first few data points of NMR signal can arise from many sources

including the transient response of the audio filter and probe ring-down. Linear

phase delay can be also caused by the stabilization delay following the magnetic field
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gradient pulses and some special pulse sequences such as 1-3-3-1 water suppression

sequence [115]. In these cases, the signal c(t) is only available from some time t0 > 0

instead of t0 = 0. In 1D NMR, all resonances are typically controlled to have the

same phase at t = 0, giving rise to a nice absorption spectrum with all peaks “in

phase”. It is thus desirable to produce such a “in phase” spectrum even when the

signal does not start from t = 0, requiring a time shifting or so called “linear phase

correction” in FT,

I(ω) =
∫ T

t0
C(t)eiωtdt = eiωt0

∫ T−t0

0
c(t′)eiωt′dt′ = eiωt0 FT[c(t′)] , (3.1)

where the term eiωt0 corresponds to a phase correction that is linear with respect to

the frequency, ω. The FT linear phase correction works well only when the delay

is short, so that the phase roll over the typical linewidth is small. A large linear

phase correction can cause severe phase rolls in the baseline. For example, trace (c)

of Figure 3.1 shows that, with the delay t0 = 17ms, the baseline is severely distorted

after the FT linear phase correction. The source of the baseline distortion is follows:

FT corrects the linear phase point by point on the frequency axis, which is only

accurate at the center of the peaks. In another word, the phase roll is due to the fact

that FT is not able to recognize individual peaks and correct their phases accordingly.

For example, considering a signal that contains an isolated resonance at zero frequency

with a linewidth of 5 Hz, and assuming a delay of 10 ms, the phase corrections for

spectral points at -5 Hz and +5 Hz differ by ∆φ = 10 × 0.010 × 360 = 36o, while

the phase correction should be the same as across the same peak (at zero frequency).

FDM and RRT fit the signal to a sum of Lorentzian lines and thus can potentially
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-4000 -3500 -3000 -2500

Frequency (Hz)

a) No delay, 1D RRT

c) 17 ms delay
    1D FDM via Eq. 3.1

b). 17 ms delay
     DFT, phase corrected

d) 17 ms delay
    1D RRT via Eq. 3.4

Figure 3.1: Linear phase correction via DFT and FDM/RRT, applied to a NMR
experimental 1D signal with 5K complex data points. The FT linear correction intro-
duces severe phase rolls in the baseline (trace b). The FDM linear phase correction
via Eq. 3.2 is numerically unstable and can also introduce baseline distortions (trace
c). By incorporating the linear phase correction into the RRT expression or the
generalized eigenvalue problem, the numerical instabilities introduced by Eq. 3.2 can
be eliminated (trace d). However, there are still some small instabilities due to the
existence of broad poles and noise, which can be further suppressed by FDM/RRT
averaging.

recognize all peaks and correct the phases of all peaks in a more consistent way.

In FDM is used, we have all the spectral parameters {ωk, dk(t0)}, where dk(t0)

denotes the complex amplitude at t = t0 > 0. They can be then used to estimate the

amplitudes at t = 0 simply by

dk(0) = dk(t0) exp(iωkt0) . (3.2)

However, such a correction is only reliable if both the frequencies ωk and the ampli-
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tudes dk(t0) are accurately extracted. This is often true for the narrow peaks when

the signal sufficiently satisfies the Lorentzian model (as we demonstrated in Sec-

tion 2.6.1). However, for broad features, the parameters extracted are less accurate,

and such a correction might introduce a large error and result in baseline distortions.

In addition, multiple entries might often be responsible for describe a single spectral

feature. The mutual cancellation and interference might not be conserved after the

linear phase correction, resulting in distorted lineshapes. Finally, the line list con-

tains entries that describe noise. Linear phase corrections for these entries do not

make sense and might amplify the noise. Unfortunately, there is no reliable method

for separating noise spikes from genuine features. As a result, Eq. 3.2 can introduce

numerical instabilities. For example, trace (b) of Figure 3.1 shows an example where

Eq. 3.2 is directly used to correct the linear phase caused by a delay of 17ms for an

experimental signal that contains noise and broad features. Even though it seems that

the correction is quite good for narrow peaks and there is no phase roll in the base-

line, there is a big baseline distortion due to some broad poles around ω ∼ −2750Hz.

An averaging method that is similar the stabilization scheme proposed by Mandelsh-

tam [116] can be used to suppress the instabilities. The idea simply relies on the fact

that the errors in the poles are random and thus can be reduced by averaging over

many FDM calculations with varying signal length. A successful example was given

in Ref. [67].

Here we present an alternative scheme where the linear phase correction is in-

corporated into the generalized eigenvalue problem and can significantly reduce the

instabilities. RRT expressions can also be used to obtain the linear phase corrected
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spectral estimation directly from the signal in this scheme.

Given a discrete time signal c(n) ≡ c(nτ), available only from n = n0, n0 +

1, . . . , n0 + N − 1, the goal is to estimated the infinite time DFT summation1,

I(ω) = τ
∞
∑

n=0

c(n)eiωnτ . (3.3)

Substituting the FDM quantum ansatz, c(n) =
(

Φ0|ÛnΦ0

)

, into Eq. 3.3 and evaluat-

ing the geometric summation analytically leads to2,

I(ω) = τ

(

Φ0

∣

∣

∣

∣

∣

1

1 − eiτωÛ

∣

∣

∣

∣

∣

Φ0

)

= τ

(

Φn0

∣

∣

∣

∣

∣

Û−n0
1

1 − eiτω Û
Û−n0

∣

∣

∣

∣

∣

Φn0

)

= τ

(

Φn0

∣

∣

∣

∣

∣

1

Û2n0 − eiτω Û2n0+1

∣

∣

∣

∣

∣

Φn0

)

. (3.4)

Evaluated in the Fourier basis defined in Eq. 2.15, the operator expression of Eq. 3.4

becomes a numerical expression for estimating the linear phase corrected spectra

directly using the delayed finite time signal:

I(ω) = τ C̃
T

n0

[

Ũ
(2n0) − eiτωŨ

(2n0+1)
]−1

C̃n0 = τ C̃
T

n0
R̃

(2n0)
(ω)−1 C̃n0 , (3.5)

where the shifted FT column vector C̃n0 is computed as,

[C̃n0]j = (Φn0 |Ψj) =
M−1
∑

n=0

einτϕjc(n + n0) ,

and the delayed evolution matrices U(2n0+l), l = 1, 2 can be computed using Eq. 2.20

and Eq. 2.23 with p = 2n0 and p = 2n0 + 1 respectively. Note that M = (N − n0)/2

due to the condition that 2(M − 1) + 2n0 + 1 = N + n0 − 1.

1The zero point correction term is dropped here for the sake of simplicity.
2Assume that for dissipative systems, Û∞ → 0.
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Obviously, Eq. 3.5 can be directly evaluated by computing a pseudo-inverse of the

resolvent matrix via either SVD or Tikhonov Regularization. Alternatively, we can

solve a generalized eigenvalue problem,

Ũ
(2n0+1)

B̃k = ukŨ
(2n0)

B̃k , (3.6)

compute the amplitude (already linear phase corrected) as

d
1/2
k (0) = C̃

T

n0
B̃k , (3.7)

and then use Eq. 2.27 to construct the linear phase corrected FDM ersatz spectrum.

In principle, both approaches should give essentially the same result. However, as

a large linear phase correction is ill-conditioned for signals with noise, broad poles

and/or heavily overlapped features, the RRT approach is more suitable for obtaining

a stable spectral estimation.

By incorporating the linear phase correction into the RRT expression or general-

ization eigenvalue problem, we totally avoid the possibility of amplifying the numerical

errors in the spectral parameters by using a separate linear phase correction step of

Eq. 3.2. Expression Eq. 3.5 is numerically much more stable and can potentially

used to correct much larger time delays. For example, Figure 3.2 demonstrates the

robustness of Eq. 3.5 using the model signal “Jacob’s Ladder” that has been used in

previous 1D examples. It shows that Eq. 3.5 can be used to apply the linear phase

correction for virtually any length of delays without running into numerical insta-

bility problems. Applied to the experimental signal, Eq. 3.5 also shows significant

improvement in baseline stability compared to both DFT and Eq. 3.2, demonstrated
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Nsig = 32 K

Frequency (Hz)

Delay = 0

Delay = 0.1 s

Delay = 1.0 s

Delay = 10 s

a.

b.
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d.

Figure 3.2: A demonstration of the robustness of linear phase correction via Eq. 3.5
using the model signal “Jacob’s Ladder”. Shown here is a dense region of the spec-
trum. Only 32 K data points were used and thus the multiplets were not totally
converged, even though sufficiently resolved. Trace (b) through (d) show the spectra
obtained by first skipping 100 up to 10000 data points before reading in 32K data
points from the rest of the signal, corresponding to time delays of t0 = 0.1 second up
to t0 = 10 seconds. Even with a delay of 10 seconds, a reasonably good spectrum can
still be obtained. However, note that small artifacts start to appear in the baseline,
and the phases of several peaks are not perfect.

in trace (d) of Figure 3.1. However, there is still some small distortions in the base-

line. The reason is that even though we eliminate the numerical instability introduced

by Eq. 3.2, instability due to the ill-conditioning of large linear phase corrections for

noisy signals with broad peaks is still present. FDM averaging procedures can be

used if one wish to further suppress the instabilities.

A last comment on linear phase correction via FDM and RRT is that the multi-
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scale Fourier basis should not be used. Even though it can improve the accuracy

of the parameters for the narrow features, this is achieved by using broad poles to

describe the background and features outside the spectral window in lower resolution.

These broad poles are often some effective representation of more complicated fine

structure of actual features. Linear phase correction of these “unphysical” poles is

meaningless and likely to introduce severe baseline distortions.

3.3 Nontrivial Projections by FDM

In addition to the trivial projections such as the conventional 1D projections

(Eq. 2.67), FDM can be also used to construct some non-trivial projections. One of the

most useful projections for NMR is the 45o projection for J-experiment [72, 71, 73, 90].

It was demonstrated in that highly resolved absorption-mode 45o projection can be

obtained by FDM, while for FT construction of absorption-mode 45o is impossible and

only skew 45o projection of an absolute value 2D-J spectrum can be obtained [118]. In

this section, we will first outline the mathematical approach for constructing a general

nontrivial projection along an arbitrary time vector, then focus on its application to

obtain highly resolved homonuclear correction spectra using a few TOCSY data set.

Numerical difficulties related to constructing stable nontrivial projections will also be

addressed.

Let ~p = (p1, . . . , pD) be a general N-dimensional time vector along which we want

to construct a spectral projection. pl can be any real or even complex numbers (such

as in 2D-J DOSY [96]). For example, in 2D case, ~p = (1, 0) and (0, 1) correspond to
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the normal 1D projections along the first and second time dimensions; ~p = (1,−1) cor-

responds to the non-trivial 45o projection. Given an N-dimensional line list {dk, ~ωk},

the ~p-projection of the frequencies is simply defined as,

ω~pk = ~p ~ωk =
D
∑

l=1

pl ωlk . (3.8)

The complex spectral ~p-projection is then3,

I~p(ω) = i
∑

k

dk

ω − ω~pk
. (3.9)

An absorption-mode projection can then be obtained by taking the real part of the

complex spectrum. Therefore, if we can obtain a parametric representation of the

signal, it is trivial to compute any trivial or non-trivial projections. In practice, this

procedure has difficulties due to the lack of a reliable N-dimensional FDM line list.

Instead, it is less demanding to first construct the ~p-projection Hamiltonian [73, 91],

Ω̂~p = ~p ~Ω =
D
∑

l=1

pl Ω̂l (3.10)

and then solve the eigenvalue problem,

Ω̂~p |Υ~pk) = ω~pk |Υ~pk) , (3.11)

to obtain the ~p-projection of the frequencies. The corresponding resolvent for esti-

mating complex spectral ~p-projection is then,

I~p(ω) = i

(

Φ0

∣

∣

∣

∣

∣

1

ω − Ω̂~pk

∣

∣

∣

∣

∣

Φ0

)

= i
∑

k

(Φ0|Υ~pk)
2

ω − ω~pk
= i

∑

k

d~pk

ω − ω~pk
. (3.12)

3Note we use the integral Fourier spectral representation instead of the discrete one as the latter
is unlikely to be advantageous for non-trivial projections
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Note that for certain types of projections such as the 45o projection of J-experiments,

ω~pk has virtually zero linewidth. Some smoothing should be used to improve the

appearance of the spectra (see Eq. 2.28).

Evaluated in Fourier basis, the operator equations of Eqs. 3.10-3.12 become nu-

merical expressions for computing general ~p-projections. Given the matrix repre-

sentations Ũl for l = 0, ..., D in the Fourier basis, {|ϕj)}, a numerical procedure of

computing a general ~p-projection is given as following,

(i) Solve D number of 1D generalized eigenvalue problems (Eq. 2.62) independently

to obtain the eigenvalues ulk ≡ e−iτlωlk and eigenvectors B̃lk.

(ii) Use ωlk and B̃lk to construct a matrix representation of Ω̂~p in the basis of {|ϕj)},

Ω̃~p =
D
∑

l=1

pl Ω̃l =
D
∑

l=1

pl

∑

k

ωlkŨ0B̃lkB̃
T

lkŨ0, (3.13)

where Ω̃l is the corresponding matrix representation of Ω̂l in the Fourier basis.

(iii) Solve another generalized eigenvalue problem

Ω̃~pB̃~pk = ω~pkŨ0B̃~pk ; B̃
T

~pkŨ0B̃~pk = 1 . (3.14)

(iv) Compute the frequencies ω~pk, and the amplitudes d~pk from the eigenvectors B̃~pk

(Eq. 2.56), then use Eq. 3.12 to compute the complex spectral projection I~p(ω).

Initially, FDM averaging was used to obtain an artifacts free spectrum [73]. Here

we implement the more efficient FDM2K regularization, simply by reformulating all

the GEPs involved according to the FDM2K algorithm (Eq. 2.82). For non-zero q2,

the matrices on both sides of Eq. 2.82 are asymmetric. Thus both left and right

eigenvectors need to be computed when diagonalizing Ũl, especially for large regu-
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larizations:

Ũ
†

0ŨlR̃lk = ulk

(

Ũ
†

0Ũ0 + q2
)

R̃lk , (3.15)

L̃T
lkŨ

†

0Ũl = ulkL̃
T
lk

(

Ũ
†

0Ũ0 + q2
)

, (3.16)

where R̃lk and L̃lk denote the right and left eigenvectors, normalized according to

L̃T
lkŨ0R̃lk′ = δk,k′ .

Eq. 3.13 then becomes,

Ω̃~p =
D
∑

l=1

pl

∑

k

ωlkŨ0R̃lkL̃
T
lkŨ0 . (3.17)

3.3.1 45o-Projections of J-Experiments.

One of the most interesting non-trivial projects for NMR spectroscopy is the

45o projections of various J-experiments. J-experiment was first proposed by Ernst

and coworkers to obtain broad-band proton-decoupled proton NMR spectrum [118].

It is hampered by the poor resolution of phase-twisted line shape, because in J-

experiments only a single purely phase-modulated data set can be acquired. Con-

ventional FT spectral analysis requires many J increments and can only provide

absolute value mode 45o-projections, which are unimpressive in resolution. The J-

spectroscopy has thus not been widely used. However, combined with FDM data

processing, J-experiments can be very useful in simplifying complicated spectra with

heavily overlapped multiplets, by first dispersing the multiplets into an additional

J-dimension and then reducing them into sharp singlets in the 45o projection.
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Figure 3.3: The singlet-HSQC spectrum of progesterone obtained using a HSQC-J
pulse sequence given in Ref. [90]. All the proton multiplets are collapsed into singlets!
The 3D purely phase modulated signal consists of N1×N2×N3 = 600×64×2 points
in the proton, carbon-13, and proton J dimensions respectively. FDM signal-length
averaging was used to obtain an artifact free spectrum.

FDM has been successfully applied to various J-experiments including 2D-J [72,

71] and 3D HSQC-J [73, 90]. In 2D-J experiments, ~p is set to (1,−1) to compute the

45o projection. Highly resolved absorption mode homonuclear decoupled 1D proton

NMR spectrum was obtained using as few as four J-increments [72]. In addition,

for each singlet, an estimate of the corresponding multiplet can be computed. In 3D

HSQC-J experiments, first two dimensions are proton and carbon chemical shifts and

the third dimension is the proton homonuclear J dimension. ~p = (1, 0,−1) corre-

sponds to the proton-decoupled 45o projection. Correlated with the carbon chemical

shifts, we can obtain a so called singlet-HSQC 2D double-absorption spectrum where

the proton multiplets of the conventional HSQC spectrum are collapsed into singlets
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at the proton chemical shifts,

A(ω~p, ω2) =
∑

k,k′

Re[Dk,k′]Re
[

1

1 − eiτ2(ω2−ω2k)
− 1

2

]

Re

[

i

ω~p − ω~pk′

]

, (3.18)

with cross amplitudes Dk,k′ computed as Eq. 2.66. It was demonstrated that the J-

dimensions did not have to be fully resolved in order to obtain a good 45o-projection.

As few as one additional increment in each J-dimension might be sufficient in many

cases. An example of singlet-HSQC spectrum is shown in Figure 3.3.

3.3.2 Singlet-TOCSY Spectra via FDM

Another interesting application of nontrivial FDM projections is the singlet-TOCSY

experiment, where two J-dimensions, combined with FDM data processing, are used

to decouple the homonuclear coupling in both proton dimensions. The closely spaced

rectangular multiplet of conventional TOCSY is reduced to a sharp and intense singlet

at the chemical shifts of two correlated protons, leading to a substantial resolution

improvement. The simplified 2D spectra are thus called singlet-TOCSY spectra.

A J-TOCSY-J pulse sequence, developed by De Angelis [119], is given in Figure 3.4

in comparison with that of the conventional TOCSY experiment. The double spin

echoes preceding each of the traditional time variable, t1 and t2, add two homonuclear

J-dimensions, t3 and t4, leading to 4D time signals. Detailed descriptions of the NMR

experimental parameters can be found in Refs. [90, 119]. Surprisingly, as few as one

additional increment along each J-dimension is sufficient. Finally, only three TOCSY

data sets, with (t3, t4) = (0, 0), (τ3, 0) and (0, τ4), are required to obtain the 2D singlet-

TOCSY spectrum.
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Figure 3.4: Timing diagrams of the conventional TOCSY, (a), and J-TOCSY-J ex-
periments (b). The black solid icons represent 90o pulses. Scored icons represent
constant amplitude FM 180o pulses. A spin lock and short Tr-ROESY purging
pulse [120] surround the isotropic mixing sequence DIPSI-2 [121, 122]. The 4-step
phase cycling φ1 = (x, y,−x,−y); φ2 = 4(x); receiver= (x, y,−x,−y) is combined
with CYCLOPS [123] for a total of 16 scans per increment.

A 2D double 45o projection of the 4D time signal can be constructed by setting

~p1 = (1, 0,−1, 0) and ~p2 = (0, 1, 0,−1) and computing the double-absorption mode

2D spectral estimation as,

A(ω~p1, ω~p2) =
∑

k,k′

Re[Dk,k′]Re

[

i

ω~p1 − ω~p1k

]

Re

[

i

ω~p2 − ω~p2k′

]

. (3.19)

Note that 2D spectral estimation with a single homonuclear decoupled proton dimen-

sion can also be obtained simply by replacing either ~p1 or ~p2 with the conventional
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projection vectors. For example, setting ~p1 = (1, 0, 0, 0) and ~p2 = (0, 1, 0,−1) leads

to a 2D spectrum homonuclear decoupled only in the second proton dimension.

Figure 3.5 demonstrates the singlet-TOCSY using a simple spin system, 2,3-

dibromopropionic acid, with three weakly coupled protons. The pulse sequence

shown in Figure 3.4 was used with a 40.0µs spin lock, 35.0µs Tr-ROESY purging

sequence, and 53.0µs DIPSI-2 mixing time. The spectral widths are 25Hz for both

J-dimensions, and 700Hz for both proton dimensions. For each (t3, t4) increment,

200 × 80 complex data points were acquired. The regularizations were optimized for

all FDM calculations. Even though one additional increment in each J-dimension is

not sufficient to fully resolve the multiplets in J-dimension, clean and sharp singlets

can be obtained in the 45o-projections. Figure 3.6 compares the corresponding verti-

cal cross sections of the central part of the central triplet in the conventional TOCSY

and singlet-TOCSY spectra. The multiplets are not fully resolved in the indirect

dimension (t1), shown in the top trace, while nice and intense singlets are obtained

in the singlet-TOCSY, shown in the bottom trace.

The simple example of Figure 3.5 demonstrates the possibility of using FDM to

obtain homonuclear decoupled TOCSY spectra using small J-TOCSY-J 4D data sets.

However, its performance on more complex systems still needs further investigation.

There are several difficulties associated with computing 2D singlet-TOCSY spectra.

First, TOCSY spectra contain a lot of multiplets that are degenerate in both dimen-

sions, are unfavorable for FDM. Second, the scaling step of Eq. 3.13 is sensitive to

any numerical errors in the eigenvalues and eigenvectors. It is not clear how regu-

larization will effect the accuracy of projection operators as constructed. Third, it
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Figure 3.5: A demonstration of successive simplification of TOCSY spectra using
a weakly coupled three-spin system. The 4D J-TOCSY-J signal consists of three
2D TOCSY data sets, each of which consists of 200 × 80 complex data points.
Panel (a) through (d) show the conventional, homonuclear decoupling in F1 only,
homonuclear decoupling in F2 only, and homonuclear decoupling in both F1 and F2
TOCSY spectra. The projection vectors used are: (a) ~p1 = (1, 0, 0, 0), ~p2 = (0, 1, 0, 0);
(b) ~p1 = (1, 0, 0, 0), ~p2 = (0, 1, 0,−1); (c) ~p1 = (1, 0,−1, 0), ~p2 = (0, 1, 0, 0); (d)
~p1 = (1, 0,−1, 0), ~p2 = (0, 1, 0,−1).
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Figure 3.6: Vertical traces along the center peak of the central triplet of conventional
TOCSY (panel (a) of Figure 3.5) and singlet-TOCSY spectra (panel (d) of Figure 3.5).

is not clear whether and how we should regularize the second eigenvalue problem

of Eq. 3.14. Until we have solutions for overcoming these difficulties, application of

singlet-TOCSY to simplify complex systems with many heavily overlapped multiplets

will remain problematic.
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3.4 Constant-Time NMR Signals Processed by FDM

In conventional 2D NMR experiments, two data sets, either N-/P-type phase

modulated signals or cosine/sine amplitude modulated signals, are acquired4. This

is an absolute must for FT to obtain a double absorption spectrum. However, FDM

only requires a single purely phase modulated signal, either N- or P-type, to compute

a double absorption mode 2D spectral estimation. It appears that processing N-

and P-type independent data sets, and then combining the results does not greatly

improve the FDM results. In addition, FDM might fail due to insufficient signal size

of a single phase-modulated signal (either N- or P-type). Instead, a single, twice as

long N-type (or P-type) data set would be far superior for FDM data processing,

while such as a data set will be useless for FT data processing, because only absolute

value spectra can be obtained. Therefore, it seems that the optimal data formats

for FT and FDM are different and incompatible with each other. Fortunately, for

the special case of Constant-Time (CT) NMR experiments, there exists a doubling

scheme for FDM to co-process both N- and P-type signals together as a single signal,

but twice as large. With the doubling scheme, optimal data formats for FDM and

FT become compatible. In addition, there are some special properties of CT signals,

making them particularly suitable for the FDM spectral analysis.

In this section, we will first briefly review relevant properties of CT NMR experi-

4These two types of data sets can be converted into each other simply by taking linear combi-
nations. For example, given cosine and sine modulated time signal, Sc(t1, t2) and Ss(t1, t2), purely
phase modulated N- and P-type signals can be obtained as,

SP (t1, t2) = Sc(t1, t2) + iSs(t1, t2) , SN (t1, t2) = Sc(t1, t2) − iSs(t1, t2) .
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ments, and then describe the FDM doubling scheme for processing CT signals. Both

numerical and experimental 2D and 3D examples will be given to demonstrate the

efficiency of the doubling scheme.

3.4.1 Special Properties of CT NMR Signals

Many protein backbone NMR experiments on uniformly-labelled molecules em-

ploy a fixed, or constant-time evolution period [124, 125], 2T , to encode chemical

shift information. In some cases, the constant-time period is used to decouple the

homonuclear carbon-carbon couplings, leading to sharp and intense singlets instead

of broader multiplet, as demonstrated in the CT-HSQC experiment [126]. In other

cases, constant-time evolution is encoded within a fixed delay that is already present

for coherence transfer between spins, for example, in the CT-HNCO experiment [127],

thereby minimizing the total time between excitation and acquisition.

The CT signals almost show no decay in the CT dimension, with the residual

linewidth purely determined by the quality of the magnetic field homogeneity, which

is typically excellent with modern shimming. In FT spectral analysis, the linewidth

in the CT dimension is governed by the FT time-frequency uncertainty principle. The

maximum signal length is limited by half of the total constant period, the obtainable

FT resolution is thus limited by 1/T . Apodization of the CT signal, which is to

reduce the sinc-like truncation artifacts, further broadens the lines. Therefore, longer

constant-time period is preferred from the resolution point of view, if FT is to be

used. However, there are other factors that prohibit the use of very long constant-
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Figure 3.7: The sensitivity of CT experiments as a function of the constant-time
period for Cα with a 35 Hz one-bond coupling to a single Cβ.

time period. The observed signal intensity decreases exponentially with respect the

constant-time period, S(2T ) ∼ e−2T/T2 , with T2 being the traverse relaxation time

constant. Thus to from the sensitivity point of view, a short constant-time period is

preferred. Accordingly, when FT is used, one has to compromise between resolution

and sensitivity and this is one of the major limitations of CT experiments.

The actual observed intensity of the aliphatic carbon is also modulated by the

one-bond coupling between Cα and Cβ, Jcc ∼ 35Hz, further limiting the usable

constant-time period for carbon:

S(2T ) = e−2T/T2 cos(2πJccT ) . (3.20)

Figure 3.7 plots the relative intensity of Cα as a function of the constant-time period

for two different relaxation time constants. To obtain a sufficient FT resolution

without losing most of the signal, 2T is typically chosen to be either 26 − 28ms or

52 − 56ms, avoiding to the nulls at 1/Jcc and 2/Jcc.

190



FDM is a true multi-dimensional method in which the obtainable resolution in

all dimensions is determined together by the total information content of the data

set. It is not necessary for the signal to be long in all dimensions in order to obtain

high spectral resolution in all dimensions. In particular, it is possible for FDM to

use the information encoded in a long dimension to enhance the resolution in the

short dimensions. Thus, combined with FDM data processing, one does not have to

compromise between sensitivity and resolution in CT experiments. Short constant-

time periods can be used to improve the sensitivity without sacrificing the resolution

in a CT dimension. An additional bonus of using FDM data processing is that the

better sensitivity, as a result of using shorter constant-time period, can be effectively

translated into a better resolution in the FDM spectra.

Last, but not the least, CT signals have two special properties that make them

particularly suitable for FDM data processing. First, CT signals have virtually zero

linewidth and thus perfect Lorentzian lineshape in the CT dimensions. Therefore,

CT signals can be handled by FDM very efficiently. Second, there is a time reverse

symmetry between N- and P-type CT data sets. It is possible for FDM to process

them together as a single data set, but twice as large. Due to the sudden convergence

property of nonlinear methods, doubling the signal size can often lead to a dramatic

improvement in the obtainable resolution. This doubling scheme will be first described

in details and then demonstrated using both numerical and experimental signals.
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3.4.2 A Doubling Scheme for Processing CT NMR Signals

Assuming zero phase at t1 = n1τ1 = 0, t2 = n2τ2 = 0, which is readily achievable

experimentally, the N- and P-type signals for a single peak may be written as,

SN(n1τ1, n2τ2) = exp[i(ω2n2τ2 − ω1n1τ1)] , (3.21)

SP (n1τ1, n2τ2) = exp[i(ω2n2τ2 + ω1n1τ1)] , n1τ1 = 0, τ1, . . . , T ,

where t1 corresponds to the CT dimension, and t2 the acquisition time dimension.

ω2 is complex, but ω1 is essentially real5, as the imaginary part vanishes in the CT

dimension. In a conventional picture, the N-type signal appears to evolve forward

in time but with “negative frequency”. Alternatively, we can consider it to evolve

with the same “positive frequency” as P-type signal, but with negative time step:

n1(−τ1) = 0,−τ1, . . . ,−T . Therefore, by preceding the P-type data set, in the time

domain, with the N-type data in reverse chronological order, a pseudo-signal that

evolves effectively almost twice as long in CT dimension results:

SNP (n1τ1, n2τ2) = exp[i(ω2n2τ2 + ω1n1τ1)] , n1τ1 = −T, . . . , T . (3.22)

Note that this is achievable only if there is no decay in the CT dimension. Otherwise,

SNP will have a Golden Bridge shape and is inconsistent before and after t1 = 0.

Even though the combined signal SNP is twice as long, due to the time symmetry

at t1 = 0, the FT resolution in the CT dimension is still determined by 1/T instead of

1/2T . FT of such the combined signal automatically produces absorption lineshape

in the t1 dimension, which is not surprising since the purpose of acquiring both N-

5No assumption that ω1 should be real is used in FDM when CT signals are analyzed.
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Figure 3.8: Time symmetry between N- and P-type CT signals and Fourier Trans-
forms of them. It shows that due to the time symmetry between N- and P-type CT
signals, FT of the combined signal, SNP , automatically gives an absorption spectrum
with vanishing imaginary part. The peak is twice as intense but the linewidth is the
same as those in absorption mode FT spectra of N- or P-type signals (indicated by
the double arrows.)

and P-type signals is to obtain an absorption lineshape in the indirect dimension.

Interestingly, this property was actually utilized, long ago, to obtain absorption-

mode lineshape in 2D NMR experiments [124, 128]. Figure 3.8 illustrates the time

reverse symmetry between N- and P-type signals and its effects on the lineshape and

resolution of the FT of the combined signal.

However, this time symmetry is totally irrelevant for FDM data processing. FDM

is a nonlinear method that is capable of producing double absorption type spectra

from a single purely phase-modulated signal. The signals effectively evolve twice as

long and thus the combined signal contains roughly twice as much information that
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can be utilized by FDM. Due to the “sudden convergence” property of any nonlinear

method, doubling the signal size can lead to a substantial resolution enhancement.

Our procedure is clearly reminiscent of the method called “mirror-image” linear

prediction [129, 127, 130]. It has been noticed [127] that, as the CT signal does not

decay, twice as many points can be used to extrapolated the signal by LP if the data

is “reflected” in F1. Thus twice as many LP coefficients can be computed and then

used to extrapolate the data, usually be a factor of two. Once the longer signal is

obtained, the “mirror-image” part is discarded and spectrum is obtained by taking

the FT of the new extended data set. This procedure can improve the resolution in

the F1 dimension, although the final spectral resolution can not exceed that expected

from a hypothetical experiment in which data over [0,2T] is collected and transformed.

There are further limitations. Reflecting the signal also symmetrizes the noise, which

could introduce some avoidable bias.e An improved mirror-image LP will use SNP ,

to compute the LP coefficients and then use them to both forward and backward

extrapolate the signal by a factor of two to obtain an extended signal , available from

t1 = −2T, . . . , 2T , from which extended N-type and P-type signals can be obtained

by simply keeping the negative or positive halves. A more severe limitation of the

mirror-image LP procedure, which is shared by the Fourier transform, lies in the fact

that it is essentially a 1D procedure and unable to utilize the important information

that evolutions in two dimensions are correlated.

In order to process the signal SNP , only minor changes to the previous FDM2K

algorithm are required. Let’s redefine the 2D discrete time signal c(~n) = c(n1τ1, n2τ2)

to be available from n1 = −(N1 − 1), . . . , 0, . . . , N1 − 1 and n2 = 0, . . . , N2 − 1. The
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new Fourier basis then reads,

∣

∣

∣ΨNP
j

)

=
M1−1
∑

n1=−(M1−1)

M2−1
∑

n2=0

ein1τ1ϕ1jein2τ2ϕ2j |Φn1,n2) (3.23)

= e−i(M1−1)ϕ1j

2(M1−1)
∑

n1=0

M2−1
∑

n2=0

ein1τ1ϕ1jein2τ2ϕ2j |Φn1−(M1−1), n2)

= e−i(M1−1)ϕ1j |Ψj(M1 − 1)) , (3.24)

where M1 ≡ N1/2, M2 ≡ N2/2, and |Ψj(M1−1)) denotes the normal 2D Fourier basis

defined in Eq. 2.50 but with shifted Krylov basis |Φn1−(M1−1), n2). j = 1, 2, ..., Kwin.

The U matrices in the new Fourier basis can be then computed as,

[

U(~p)
]

jj′
=

(

ΨNP
j

∣

∣

∣ Û (~p)
∣

∣

∣ΨNP
j′

)

= e−i(M1−1)(ϕ1j+ϕ1j′ ) (Ψj(M1 − 1)| Û (~p) |Ψj′(M1 − 1)) , (3.25)

where the (Ψj(M1 − 1)| Û (~p) |Ψj′(M1 − 1)) part can be computed efficiently using the

formulas derived previously (Eqs. 2.52-2.54), but with shifted data matrices, c(~n′ +

~p) = c(n1 −2(M1 −1)+p1, n2 +p2). e−i(M1−1)(ϕ1j+ϕ1j′ ) is simply a “phase factor” that

can be included after the (Ψj(M1 − 1)| Û (~p) |Ψj′(M1 − 1)) term is computed.

Once the U matrices are available, one can solve the generalized eigenvalue prob-

lems of Eq. 2.62 and then use the Green’s Function formulas, such as Eq. 2.68, to

construct various 2D spectral estimations. The last minor modification is to redefine

the FT column vector C̃ (Eq. 2.57) accordingly,

[

C̃
]

j
=

M1−1
∑

n1=−(M1−1)

M2−1
∑

n2=0

ei~n~ϕjc(~n) , j = 1, 2, ..., Kwin . (3.26)
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Figure 3.9: A comparison between 2D Lorentzian (left panel) and Gaussian lineshape
(right panel), using a selected region of a 2D 13C Constant-Time HSQC of uniformly
labelled human ubiquitin.

3.4.3 Lineshape Modification

Although the output of FDM is expressed in terms of Lorentzians lines, it is pos-

sible to convert them into any other lineshapes such as a Gaussian lineshape. The

most conservative way is to employ the standard Lorentzian to Gaussian deconvolu-

tion [131]. A rather more aggressive procedure, and the one we have employed here,

is simply to replace each Lorentzian with a Gaussian of the same full-width-at-half-

magnitude (FWHM) and equal integral,

IG(ω1, ω2) =
4

π

∑

k,k′

Re [dk,k′]

γ1kγ2k′

e−(ω1−ν1k)2/γ2
lk e−(ω2−ν2k′)

2/γ2
2k′ , (3.27)

where νlk = Re[ωlk] and γlk = −Im[ωlk] are the line positions and linewidths computed

by FDM. The well-known star-shaped contours of the 2D Lorentzian peaks become

elliptical contours that are more easily discerned, as demonstrated in Figure 3.9.

This line shape modification is purely cosmetic in the sense that the information

on the peaks is already entirely encapsulated by the parametric description of the
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spectrum. The downside of this more aggressive procedure is that when broad lines

interfere by overlapping Lorentzian tails, the sharper cutoff of the Gaussian may

introduce ”new” features that are misleading. Practically, well-resolved spectra are

readily obtainable by FDM and additional artifact due to Gaussian formula is often

at minimum. When the method fails to resolve all the peaks, instability might occur

locally in the unresolved region. This will be further discussed later on in this section

when we demonstrate this doubling scheme using a experimental NMR signal and

study its sensitivity to the noise level.

3.4.4 Numerical Experiments

Numerical studies on model signals plus noise have the advantage that the cor-

rect answer is known exactly. As long as this information is not employed in any

way by the algorithm, model data can be used as a powerful tool for studying and

demonstrating new computation methods. We have made an attempt to objectify the

performance of 2D FDM2K by examining model N- and P-type signals from a hypo-

thetical constant time experiment, including various amounts of uncorrelated random

noise. Figure 3.10 shows a model spectrum meant to mimic a section of a CT-HSQC

spectrum. There are 13 peaks of identical integral, with similar line widths in F2

in the range of 2.2 ± 0.2 Hz (at random) and zero line width in F1 (mimicking CT

dimension). The spectral width is 1 KHz in both dimensions. The SNR is extremely

high, around 1000:1 in the time domain. The exact spectrum, panel (a), has been

line broadened in F1 to roughly the mean width in F2 to allow meaningful contours
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to be drawn. The absorption mode DFT spectrum is shown in panel (b), computed

from a pair of N- and P-type data with size 10× 10. Cosine apodization was used to

limit the sinc-function wiggles and zero-filling to 512× 512 points was used to obtain

same digital resolution as the FDM spectra. Some of the peaks are resolved, but

others are too close to distinguish. In panel (c) the FDM double-absorption spec-

trum from the 10 × 10 time-domain P-type data set is shown. Many of the peaks

are obtained quantitatively, but local crowding results in several pairs of peaks be-

ing fit as a single broader peak. Note in addition that the apparent width of the

single feature is less than the separation of the two genuine peaks. Convoluting this

spectrum with the transform-limited line shape still gives a good match to the actual

DFT spectrum (data not shown), but this is clearly not sufficient to guarantee that

all the information has been obtained. Finally, in panel (d) the effect of processing

a single ”NP” data set, SNP , is shown. The larger basis size (and possibly slightly

better overall SNR) allows all the peaks to be obtained correctly. With experimental

data, of course, one never knows in advance what the correct result is supposed to be!

However, by doing several FDM2K calculations with different basis size, it is possible

to identify stable recurring features, and also features that depend on the size of the

basis. As long as a feature is stable with respect to basis size and the regularization

parameter, our experience has been that it is quite accurate and reliable.

Figure 3.11 is an attempt to be somewhat more realistic. The same features are

present as in Figure 3.10, but now the noise level is substantially higher, giving around

20:1 SNR in the time domain. A DFT of a pair of 18×18 time-domain data sets shows

resolution of most, but not all, of the peaks in the absorption-mode spectrum, panel
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Figure 3.10: Demonstration of FDM doubling scheme for analyzing CT NMR signals,
using a model signal with a high SNR of 1000:1 in the time domain (first point, see
text for details). In all FDM spectra, the linewidth in F1 (CT dimension) is smoothed
to the average linewidth of 2Hz in F2. With Nsig = 10× 10, while neither DFT nor
normal FDM is able to fully resolve the most crowded region, FDM with doubling
scheme is able to efficiently use the information from both N- and P-type data sets
together and provide a fully resolved spectral estimation, shown in panel (d). Note
that 2D DFT of the combined signal SNP will be identical to the DFT spectrum
shown in (b), given that the factor of 2 in intensity is correctly taken into account
(data not shown).
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(a). The FDM2K calculations all employ the doubling scheme, but now the results

are less impressive. Using only a 10 × 10 signal there is now inadequate information

for FDM2K to accurately identify all the peaks, as shown in panel (b). Increasing

the signal size to 14 × 14 in panel (c) sharpens up most of the features. But only

when using the same 18 × 18 data set as used in the DFT calculation again allows

all the features to be identified, as shown in panel (d), although there are still some

errors in the widths and intensities of the most crowded peaks. Further increasing

the signal size only results in minor improvements and is evident that the calculation

has converged to the true features.

Another interesting observation of the numerical experiments of Figure 3.11 is the

different behaviours of peaks in crowded regions and isolated ones, due to the local

convergence property of FDM. Isolated features tend to converge first and stay stable

with respect to the change of signal size, while crowded regions are more difficult to

converge and sensitive to the change of signal size until fully resolved. By computing

a series of FDM spectra with varying signal size, one can quite reliably decide whether

a particular feature is genuine or not. In addition, sensitivity of unconverged features

is not limited to varying signal size. Other FDM parameters such as basis size,

basis density and regularization can also be used to probe the different stabilities

between converged and unconverged features. Again, in practice when we use FDM

to analyze experimental NMR signals, it is always necessary to produce several, if

not many, FDM spectra with different signal size and computing parameters before

we want to draw some reliable conclusions on the results as obtained.
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Figure 3.11: Demonstration of FDM doubling scheme for analyzing CT NMR signals,
using the same model signal as Figure 3.10 but with a low SNR of 20:1 in the time
domain. Panel (a) shows a contour plot of absorption mode DFT spectrum obtained
using 18 × 18 complex data points (both N- and P-type signals), with the contours
drawn low enough t show some of the noise. Panel (b) through (d) show the FDM
spectra obtained using successively larger data sets, from 10 × 10 up to 18 × 18.
The doubling scheme was used in all calculations. A continuous improvement in both
intensity and resolution is seen with increasing signal size. With 18×18, all peaks are
essentially resolved by FDM. Further increase of signal size will slightly improve the
peak lineshapes and intensities, but the resolution remains similar (not shown). Also
note the different behaviours of the peaks in crowded regions and isolated ones, which
is an important way of checking the convergence of FDM calculations (see text).
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3.4.5 Application to a CT-HSQC Experiment

The 2D Heteronuclear Single-Quantum Correlation (HSQC) experiment [132] is

one of most basic and most useful NMR experiments. HSQC correlates heteronuclear

resonances with proton resonances by transferring the polarization between heteronu-

clear spins, typically 1H and 13C or 15N. It is routinely used to obtain the backbone

assignments of proteins due to the high sensitivity. Together with 2D Heteronuclear

Multiple-Quantum Correlation (HMQC) [133], they are integral components of all

heteronuclear 3D and 4D experiments [11].

Constant-Time HSQC (CT-HSQC) [126, 11] is often used to simplify the spectra

by collapsing the multiplets along the carbon dimension into sharp and intense sin-

glets, making it easier to resolve and assign all the resonances. Here we demonstrate

the power of FDM with doubling scheme using a CT-HSQC experiment of a model

protein, human ubiquitin. All the 1H-13C CT-HSQC spectra shown were obtained

using a 500 MHz Varian UnityPlus spectrometer equipped with a standard 5 mm

HCN triple resonance probe. The sample was 700 ml of a 1 mM solution of 100%

doubly labeled (13C and 15N) human ubiquitin in D2O (VLI Research) at 24 oC. A

slightly modified pulse sequence, shown in Figure 3.12, was used to acquire the sig-

nals. The partly selective noco and co pulses [136], of duration 200µs, either invert

the aliphatic region of the carbon-13 spectrum and not the carbonyls, or vice-versa.

Their only role here is to provide a spectrum with zero phase correction in F1 , with

no Bloch-Siegert phase shifts [137], and no loss of signal intensity over the slightly

inhomogeneous radio-frequency field on the carbon-13 channel. Their short pulse

202



H1

PFG

C

N
15

13

C’13

τ ττ τ t 2

t 1

4-

G1 G2

T t 1

4
t1

4

Dec.

x y

t 1

4-T

y

φ1

φ1φ2 φ3

φ4 φ5

y

Figure 3.12: Modified CT-HSQC pulse sequence to observe correlations between Hα

and Cα spins in a protein. Aside from the minor addition of a pair of partly selective
pulses, denoted noco and co, and the broadband inversion pulses (BIPs) [134], denoted
with scored icons, the pulse sequence is standard. The 200µs noco and co pulses have
been developed for ultra-short CT experiments, in which longer pulses reduce the
available number of increments. They work to invert the aliphatic region of the 13C
spectrum without inverting the carbonyl region (noco) or vice-versa (co). The BIPs
cleanly invert the entire chemical shift range of the indicated nucleus. All these pulses
show superb compensation for RF inhomogeneity. By using the pair of partly selective
180s, all phase shifts are removed, leading to a spectrum with zero phase correction
in the indirect dimension. The proton 90o time was 10µs and the carbon-13 90o time
was 15µs. The co and noco shaped pulses are applied with a maximum of 10 kHz; the
other pulses are applied at full power. All the spectra shown result from two scans
per increment, in which the phase φ3 = x, y; receiver=x,−x. φ1 and the receiver
phase are inverted for each t1 increment. Cosine/sine modulated data are acquired
according to the States-TPPI scheme [135].

width ensures maximal use of 2T period for data acquisition.

As the brief gradients during the longitudinal states of the INEPT and reverse

INEPT steps were enough to suppress the residual HDO resonance, amplitude mod-

ulated data sets were in fact acquired. The cosine and sine data sets required two

scans each to complete the simplest difference phase cycle to select the 13C-bearing

protons. These two data sets were then combined to form pseudo N- and P-type data

sets, which were then processed as above. Calculations with actual gradient-selected
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data showed no significant difference as long as the experiments were done carefully

and the same number of increments obtained. For ultra-short CT experiments, the

loss of time during the actual pulsed field gradient is disadvantageous.

Noise Performance

The numerical experiments of the last section carry over fairly well to actual CT-

HSQC data. Figure 3.13 shows a zoomed section, in a crowded portion of the Cα

region, of a 1H-13C CT-HSQC spectrum. A signal with 1024 × 90 complex data

points (for both N- and P-type data sets) was acquired with a short constant time

of 2T = 7.5 ms, well below the null in the CT transfer function at ∼ 13 ms, and

almost a factor of four shorter than the typical time of 2T = 1/Jcc ≈ 26.4 ms. The

total experimental time is about 7 minutes. Lowering the power of the last proton

90 pulse has mimicked the effect of poorer sensitivity. The 2D FT spectra are on the

top panels and the 2D FDM2K spectra from the same data are directly underneath.

The FT spectrum from the FID of the first increment, with some blank down-field

region included for a noise reference, is shown along the top of each of the series.

As the effective read pulse is reduced to 11o and finally 5o, corresponding to a rela-

tive SNR five and ten times lower, respectively, it is clear from the first increment that

the data becomes quite noisy. Nevertheless, FDM2K with the new doubling scheme

behaves remarkably predictably, with the achievable resolution gradually diminish-

ing, and weaker features disappearing along with the noise when the regularization

is used. There is clearly no catastrophic loss of performance, and the resolution in

many regions is always preferable to the FT result. The fine structure along the
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Figure 3.13: Demonstration of the noise performance of FDM2K. The top traces show
the FT of the FID from the first increment, with some down-field region included to
show the noise level. The contour plots below show the 2D FT (top series) and
2D FDM2K (bottom series) spectra. The pulse sequence of Figure 3.12 has been
used with the power of the 10 ms read-out proton 90o pulse attenuated to achieve
the desired flip angle. The 2D FT spectra are shown in the top series, and the
2D FDM2K spectra, from the doubled NP data set, are shown directly underneath.
Regularization has been increased as the SNR decreases from left to right. Two scans
per increment were recorded for the total of 90 increments, for the sine and cosine
data sets. (a) 90o read pulse. (b) 11o read pulse (-18 dB). (c) 5o read pulse (-25 dB).

205



proton dimension, a known result of a flip angle effect [138] when the small flip angle

read pulses are used, is blurred away by the regularization. The result is a set of

nearly structureless ellipses centered on the correct chemical shifts. Particularly with

the noisier spectra, attempts to resolve the proton multiplet structure, and simulta-

neously separate the close carbon-13 shifts, have not been successful.

Ultra-short Constant Time Performance

Attenuation of Cα magnetization during the constant time period is a common

problem in larger proteins, where the T2 losses can be severe. However, using larger

B0 fields in conjunction with FDM2K may allow very short constant time periods,

greatly improving sensitivity without the need for deuteration. This is in contrast

to the usual fixed value of 2T ≈ 26.4 ms, independent of the field strength. The

difference is that by operating with (much) shorter periods than the null condition at

13 ms, shown as the shade area in Figure 3.7, the delay can be shortened as much as

we like, fixing only the number of increments obtained. For example, if a decent CT-

HSQC spectrum can be obtained using 2T = 4.25 ms at 500 MHz, then only 2.6 ms

would be required at 800 MHz. The relative basis function density versus the number

of local peaks is identical. However, there can be a great improvement in performance

both on account of the superior intrinsic sensitivity of the higher field strength, and

the reduction in relaxation losses. The local nature of the convergence of FDM means

that many of the spectral regions can be essentially completely resolved, leaving a

few dense regions that may require a longer experiment, some editing techniques, or

a higher-dimensional experiment to make headway. Alternatively, the same 4.25 ms
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experiment may, at higher field, allow completely converged spectra to be obtained.

The ability to achieve high resolution with very short constant time periods could

establish FDM as a key component in successful NMR of larger proteins at high field.

Human ubiquitin is not a rapidly-relaxing protein, but can be studied simply to

assess the degree of separation of the resonances that can be obtained with ultra-

short constant times. Figure 3.14 panel (a) shows the conventional absorption-mode

spectrum in the Cα region of the CT-HSQC spectrum using 26.4 ms and the pulse

sequence of Figure 3.12. Two scans per increment for the N- and P-type data were

used. This is our reference spectrum for the study. Many of the 2D peaks are

clearly resolved, with a couple of denser regions. In the right-hand panel, (b), the

FT spectrum obtained with 2T = 4.25 ms is shown. Many of the distinct peaks have

coalesced because of the reduced resolution along the dimension. In panel (c) FDM

absorption mode spectrum of processing the P-type data only is shown for the same

4.25 ms data set. A similar result was obtained with the N-type data (not shown).

The spectrum shown is sensitive to changes in FDM processing parameters, and would

not be considered reliable. Many regions of the spectrum remain unresolved, as the

basis density is apparently too low to capture the local number of peaks. There are

only eight basis functions along the Cα dimension in the region displayed. Finally in

panel (d) the FDM2K result using the same data, but now with doubling scheme, is

displayed. Clearly the combined signal SNP is a case where the whole is greater than

the sum of the parts. Many of the regions display essentially identical resolution to

the reference FT spectrum, panel (a). In the most crowded region the basis function

density is still insufficient to characterize all the local 2D peaks, and so a distorted
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Figure 3.14: Ultra-short constant time spectra compared with conventional measure-
ment. (a) Reference 2D FT spectrum using 2T = 26.4 ms. (b) 2D FT spectrum
using 2T = 4.25 ms. (c) 2D FDM2K spectrum using the same 4.25 ms data set as in
(b), processing only the P-type data. This 2D spectrum is not stable in many regions
and would not be considered reliable. (d) Result of the FDM with doubling scheme
applied to the same 4.25 ms data set. There is a vast improvement in both resolution
and stability. Comparison of reference spectrum, panel (a), shows that peaks that
are resolved are also very accurately recovered by FDM2K.
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spectrum with some wide features is obtained. There are ways to conclusively show

that regions like this are not converged, but no simple and reliable way to correct

the inaccurate results. For example, a true resonance should have a line width of

nearly zero along the Cα dimension, with errors that depend on the noise level and

quality of the data. The ”unconverged” features have line widths that are quite

large, and that are sensitive to the exact parameters of the FDM calculation, allowing

them to be flagged as unreliable. Another approach is to use the FDM parameters

to simulate the FT spectrum, and compare the result with the actual DFT of the

data. Ideally, only featureless noise should remain after subtraction, if a perfect fit is

obtained. In unconverged windows, a substantial residual may be used as evidence

of untrustworthy local spectral features. More details can be found in Section 2.6.

Note that there are only 50 increments for the 4.25 ms experiment, making this

an ultra-fast acquisition as well - less than four minutes. The calculation of the

displayed regions using FDM2K is completed in a matter of a few minutes on either

an AMD XP 1800+ Athlon PC running Linux, or an older 533 MHz DEC Alpha

workstation. Calculation of the entire 2D spectrum takes of the order of 2-3 hours

depending on the size of the window basis. As many regions are completely devoid

of signals, however, a more realistic estimate is around 45 minutes for the relevant

areas. With an appropriate parallel architecture, the computing time could be a few

minutes for virtually any size data set, as each window is a separate job.
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Figure 3.15: A absorption mode spectrum obtained by mirror-image LP, applied to
the same 2T = 4.25 ms ultra-short CT signal used in previous example. There is
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210



Comparison with Mirror-Image LP

There are many factors that work together to make the result shown in Fig-

ure 3.14 possible, including the two special properties of CT signals and intrinsic

high-resolving power of FDM. In particular, it is essential to process the whole two-

dimensional together and make use of the important information that the evolutions

in two dimensions are correlated. To demonstrate the point, here we applied the more

commonly employed mirror-image LP to the same ultra-short CT data set used in

Figure 3.14. The mirror-image LP implemented in NMRPipe [139] software pack-

age was used to obtained the spectrum shown in Figure 3.15. The filter order was

optimized by trial and error. Because mirror-image LP is implememnted as 1D LP

extrapolations of the F1 interferograms, rather than a true 2D method, it is not able

to use the information that both dimensions are correlated. In this case, there are

very few increments in the indirect dimension (effectively 8 data points for the region

shown, thus a maximum of 4 poles can be used), making it impossible for LP to

efficiently model the evolution along F1.

Performance on Larger Proteins

Human ubiquitin is a relatively small and well-behaved protein that is known to

give some of the best spectra ever seen. It is not obvious how FDM will perform

on larger and less well-behaved proteins, until we try the same experimental and

data processing scheme on such kind of systems. Unfortunately, highly pure doubly-

labeled proteins are not readily accessible except for molecular biologists, making

211



extensive test of FDM currently infeasible. Here we present some preliminary results

where FDM was applied to analyze CT-HSQC experimental signals of MTH1598, a

16 KDa protein with 141 residues. MTH1598 is one of the non-membrane protein of

methanalbacterium theromautotrophicum δH, courtesy of Dr. Cheryl Arrowsmith of

the Ontario Cancer Institute. Figure 3.16 compares the conventional DFT spectrum

of a long CT-HSQC experiment with 2T = 26.4 ms, with the FT and FDM spectra of

a much shorter experiment with 2T = 7.1 ms. It clearly shows that the performance

of FDM, shown in the center panel, is just as impressive. The resolution of the FDM

spectrum, obtained using 7.1 ms constant time, is even higher than that of the FT

spectrum of a much longer experiment, shown in the top panel. There is another

interesting observation. The FDM spectrum shows a weak peak in the right bottom

corner, highlighted by a rectangular box, which is missing in the high-resolution FT

spectrum. For comparison, the bottom panel shows the FT spectrum using 7.1 ms

constant time. The peak is now present, proving that it is genuine. However, the

resolution is much worse. For example, the two peaks highlighted by the square box

are not resolved in the low-resolution FT spectrum, but well resolved in both the

FDM and high-resolution FT spectra. This is exactly one of the major limitation of

CT experiments that we discussed in the beginning of this section: if FT is used, one

has to compromise between resolution and sensitivity. Therefore, FDM might even

be more useful for analyzing larger proteins, especially those that relax very fast. In

this case, FDM data processing, combined with short or ultra-short constant time

experiments, is the optimal scheme with both good sensitivity and high resolution.
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3.4.6 A Quadrupling Scheme for 3D NMR Experiments with

Two Constant-Time Dimensions

We have demonstrated that FDM, as a true two-dimensional method, can have a

substantial advantage over FT spectral analysis or any other 1D methods like mirror-

image LP. The advantages of true multidimensional spectral analysis will be even

more enormous when more dimensions are involved. In this section, we extend the

FDM doubling scheme for 2D CT signals to a quadrupling scheme for 3D NMR exper-

iments with CT evolution implemented in both indirect dimensions. The achievable

resolution enhancement will be really astonishing.

Extension of 2D FDM to the 3D case is straightforward. A third evolution operator

is introduced and the formulas derived in Section 2.3 for the 2D case can be easily

modified accordingly. Additional details can be found in Refs. [73] and [91]. For a

3D NMR signal with two CT indirect dimensions, all the four 3D data sets6 can be

combined together and processed by FDM as a single data set, but four times as

large. The doubling scheme of 2D thus becomes a quadruple scheme in 3D. Same

minor changes as those in the 2D case need to be applied to the original 3D FDM

formulas. Mathematical derivations are very similar and thus not given again here.

The example used to demonstrate the quadrupling scheme is a double constant-

time 3D HNCO experiment of human ubiquitin. HNCO is also one of the most

basic 3D heteronuclear experiments for obtaining the protein backbone chemical shift

6In 3D NMR, in order to obtain absorption lineshapes in all three dimensions in the 3D FT
spectra, either cosine/sine or N-/P-type signals are acquired for both indirect dimensions, leading
to 2 × 2 = 4 3D data sets in total.
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assignments. It correlates the chemical shifts of (15N)H, 15N and 13C(O) of previous

residue, leading to nice singlets at the chemical shifts of 1HN
i -15Ni-

13C(O)i−1. HNCO

experiments have good sensitivity and are thus chosen for this demonstration. The

standard (single) CT-HNCO [127, 11] pulse sequence was slightly modified [76] by

implementing the CT evolution to encode the CO chemical shift information. The

signals were all acquired on a 500 MHz spectrometer equipped with a normal probe

at room temperature. 8 scans were acquired per increment. The sample was 1

mM uniformly labeled human ubiquitin. States-TPPI was implemented in the CO

dimension and gradient select was used in the 15N dimension. The constant-time

period was fixed at the standard value of 2T = 48 ms for the 15N dimension to

maximize the polarization transfer. A very short constant time period of 2T = 10 ms

was used in the 13C(O) dimension, to minimize the intensity lost due to the transverse

relaxation. A maximum of 6 13C(O) increments can be acquired with a spectral width

of 1 KHz. The spectral width was 2 KHz in the 15N dimension, and, in principle,

up to 48 increments could be acquired. However, only 8 increments were actually

acquired in the 15N dimension to minimize the experimental time, and also to study

the low limit of signal size required for FDM to fully resolve all the resonances for the

system under study. The spectral width in proton dimension was 10 KHz and 1024

complex points were acquired. At the end, a 3D signal of size (H, C, N) = 1024×6×8

(for each of four data sets) was acquired in about 25 minutes.

The 3D FT spectrum were obtained using cosine weighting functions along all

dimensions. The signal was zero-filled to 128 × 128 in the 13CO and 15N dimensions

to provide sufficient digital resolution for smooth contours to be drawn. The FDM
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Figure 3.17: The real and imaginary parts of the first FID of the 3D HNCO signal
used in Figures 3.18-3.20. Note that the signal already decays to below noise level
by about half of the full length. The tail part of the signal contains mainly noise and
should not be include in FDM calculation.

spectra were obtained using the FDM2K algorithm with the quadruple scheme. Reg-

ularization was optimized, with the final regularization level q2 = 10−4 (see Eq. 2.83).

As the signal was very short in the indirect dimensions, the 3D spectral windows

were chosen to cover the whole spectral ranges, leading to a basis size of 5 × 7 in

the (C,N) dimensions7. In the proton dimension, fully decayed signals were acquired

and thus the tail parts were mainly noise, as shown in Figure 3.17. Acquiring extra

points in the time domain helps to improve the digital resolution without sacrificing

sensitivity for FT with proper apodizations. However, the noisy tail part of the sig-

7With doubling scheme implemented in both (C,N) dimensions, a combined signal with 11 × 15
(C,N) increments results. Only even number of increments can be used by FDM, Nl = 2 Ml. The
maximum basis size is thus M2 × M3 = 5 × 7.
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nal does not contain any meaningful information and should not be included in FDM

calculations. There are several severe drawbacks for including the noisy tail in the

FDM calculations. First, it introduces more noise to the U matrices, making them

more ill-conditioned. Second, it increases the total basis size that has to be used,

making the problem even more overdetermined. Third, it increases computational

cost. Therefore, in practice, it is necessary to plot out, typically, the first FID for

choosing the optimal signal size to be used in the proton dimension. For example,

simply by looking at the plot of Figure 3.17, one can easily estimate that 500-600

data points should be using in proton dimension. When the total size the multi-

dimensional signal is sufficiently large, the FDM results are typically insensitive to

the actual number of proton increments used, as long as it is in a reasonable range.

This can be used as an indication of the convergence of FDM calculations. The 2D

projections shown in Figure 3.18-3.20 were computed using 500 increments in pro-

ton dimension. Thus the maximum basis size in proton dimension for the region

shown was Nb ∼ 500/2 × 2000Hz/SW = 50. Four overlapping windows with 20

basis functions per window were actually used. The total basis size for each window

was 20 × 5 × 7 = e700. The whole calculation took about 40 minutes on a small

PC Linux workstation with an AMD XP 1800+ CPU. Calculations were also carried

out using slightly different numbers of proton increments between 400 and 600 data

points. They produced very similar spectral estimations, showing that FDM already

converged. As there is no direct way to plot the 3D spectra, the 2D projections along

three planes, namely, (H,C), (H,N), and (C,N), are shown instead in Figures 3.18-

3.20. All the FDM projections shown are properly smoothed in the CT dimensions for
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details about the experiment and data processing).
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better plotting. The Lorentzian lineshapes were converted to the Gaussian lineshapes

according to the procedure described previously (Eq. 3.27).

Figure 3.18 compares the 2D FT and FDM projections in the (H,C) plane. We

can clearly see the effects of the FT time-frequency uncertainty principle applying to

each dimensions independently: the resolution is high in the proton dimension where

long signal exists, while the carbon dimension is poorly resolved as there are only 6

increments. The overall resolution of the FT projection is very poor, making it use-

less for obtaining chemical shift assignments. However, the FDM projection, obtained

using the same data set, shows extremely high resolution in both dimensions. All the

peaks are fully resolved and can be easily assigned. This is possible because FDM is a

multidimensional method. The resolution in all dimensions is determined together by

the total information content of the multidimensional signal. Even though there are

only 6 increments in the 13C(O) dimension, the total size of the signal is sufficiently

large for FDM to pin down all the 3D features and thus very high resolution can be

obtained in both the proton and the 13C(O) dimensions. Similar pictures are seen

in Figure 3.19, where we compare the FT and FDM projections in the (H,N) plane.

What is truly astonishing, at least to those who are used to FT spectral analysis, is

the FDM projection in the (C,N) plane, shown in Figure 3.20. In this plane, there

are only 6 × 8 increments. There is almost no usable information in the FT pro-

jection. Surprisingly, and not surprisingly, the FDM projection in (C,N) plane are

just as highly resolved as projections along the other two planes, demonstrating the

substantial advantage of true multidimensional data processing. It is predictable that

any methods that fail to utilize this advantage could not possibly obtain comparable
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results to what has been shown here. What should also be emphasized are the two

other essential properties of FDM: solving the nonlinear fitting problem by linear al-

gebra and local spectral analysis via Fourier basis. Without these two properties, the

scale and complexity of the problem would make any methods practically infeasible.

This is one of the main reasons why methods like, Maximum Entropy Reconstruction,

even though a multi-dimension method, relying on nonlinear optimizations and at-

tempting to fit the whole signal in a single shot, could not be used to analyze realistic

data sets. It should be pointed out that 3D FDM is the first true three-dimensional

method that has ever been successfully applied to analyze experimental NMR signals

and produce meaningful results.

Validity of the FDM Results

Unfortunately, it is difficult to directly check the validity of the FDM results,

partially due to the lack of comparable references. However, there are various ways

to validate the results indirectly, as discussed in Section 2.6. We have already checked

that the results were stable with respect to varying signal size in the proton dimension,

and other FDM parameters such as basis size, basis density and regularization level.

Here we present some additional results using the checking mechanism described and

demonstrated in Section 2.6.4.

After all the spectral parameters {Dk,k′,k′′, ω1k, ω2k′′, ω3k′′} are computed, in ad-

dition to estimating the infinite time DFT spectra, which have been shown in Fig-

ure 3.18-3.20, we can also estimate various finite time DFT spectra using,
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Figure 3.21: Comparison of the FDM estimation of the finite (H,C) FT projection
with the actual (H,C) FT projection obtained from the original data. FDM estima-
tion was computed using Eq. 3.28 with (α, β) = (1, 2); N1 = 1024, N2 = 6 and the
spectral parameters {Dk,k′,k′′, ω1k, ω2k′′, ω3k′′} computed from the short constant-time
3D HNCO signal (see text for details). The FDM estimation agrees with the actual
FT projection very well, proving that FDM does provide a reasonably good fit of the
3D signal. Similar comparison was also made along (H,N) plane, which also shows a
very good match (data not shown).

223



-400-2000200400
-1000

-500

0

500

1000

-400-2000200400
-1000

-500

0

500

1000

FDM Estimation

3D DFT
Nsig = 6x8

1
5N

 / H
z

13CO / Hz

1
5N

 / H
z

Figure 3.22: Comparison of the FDM estimation of the finite (C,N) FT projection
with the actual FT projection obtained from the original data. FDM estimation was
computed using Eq. 3.28 with (α, β) = (2, 3); N2 = 6, N3 = 8 and using the spectral
parameters computed from the short constant-time 3D HNCO signal. It appears
that the matching is reasonable but not as good as in (H,C) plane. This is because
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eliminated in FDM (see text).
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Figure 3.23: Comparison of the estimated “high-resolution” FT projection with the
actual FT projection obtained from a long experimental signal with 12 × 32 incre-
ments in (C,N) dimensions. FDM estimation was computed using expression Eq. 3.28
with (α, β) = (2, 3); N2 = 12, N3 = 32 but using the spectral parameter that were
computed from the short signal with only 6 × 8 (C,N) increments. The matching is
still very well, further proving that FDM does provide a very accurate and reliable fit
of the 3D signal. Note that the intensities in the actual FT projection is lower due
to the relaxation during the longer CO constant time (2T = 24ms vs. 2T = 10ms).
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ANα,Nβ(ωα, ωβ) ≈ τ1τ2τ3

∑

k,k′,k′′

Re[Dk,k′,k′′] (3.28)

Re

[

1 − eiNατα(ωα−ωαk)

1 − eiτα(ωα−ωαk)
− 1

2

]

Re

[

1 − eiNβτβ(ωβ−ωβk′)

1 − eiτβ(ωβ−ωβk′)
− 1

2

]

,

where (α, β) can be set to (1,2), (1,3), and (2,3) to compute the estimated finite FT

projections along (H,C), (H,N) and (C,N) planes respectively. Apodization functions

such as exponential and trigonometric functions can be also included analytically

into Eq. 3.28. All the results shown in Figures 3.21-3.23) were obtained with cosine

window functions in all dimensions, implemented either numerically for the actual

DFT calculations or analytically for computing the FDM estimations.

Figure 3.21 compares the FDM estimation of the finite FT projection with 1024×6

increments in (H,C) plane, to the actual FT projection obtained from the experimen-

tal data of the same size. The FDM estimation was computed using the spectral

parameters obtained from the short HNCO signal with the same processing parame-

ters used to produce Figures 3.18-3.20. The estimated and actual projections match

with each other very well, proving that FDM does provide a good fit of the experi-

mental signal. Similar comparison was also done in (H,N) plane, and the matching

quality was similar (data not shown). Quantitatively, the relative matching errors, as

defined in Eq. 2.111, are only 1.8% and 1.7% respectively, which are below the noise

level. Figure 3.22 compares the FDM estimation of the finite FT projection along

(C,N) plane with 6×8 increments to the actual FT projection. The mismatch is much

higher than those in the other two planes, with relative matching error being 7.5%.

However, this increase of mismatch does not mean that the parameters in (C,N) di-

226



mensions are less accurate. Instead, most of the increased mismatch is due to the

water signal that leaks to every (C,N) plane in 3D FT spectrum8, while for FDM, the

use of the Fourier basis followed by diagonalization is very efficient in suppressing the

interference of the features outside of the spectral window. To further support the

quality of FDM fit, we used the same spectral parameters, that were computed from

the short HNCO signal with 6× 8 (C,N) increments, to estimate a “high-resolution”

FT projection corresponding 12 × 32 (C,N) increments, and compared it with the

actual FT projection obtained from a much longer experiments, where the constant

time period in 13C(O) dimension was 2T = 24ms and 12× 32 (C,N) increments were

actually acquired. The results are shown in Figure 3.23. Due to the transverse re-

laxation, the intensities in the actual FT projection are lower. Otherwise, the two

projections match with each other very well, providing a strong evidence that the fit

computed by FDM is an accurate and reliable fit of the 3D signal.

3.5 Summary and Remarks

In this chapter, we applied the FDM and RRT algorithms to processing in 1D and

multidimensional NMR signals.

Long time signals are typically available in 1D NMR and high resolution FT

spectra can be obtained, leaving little room for resolution enhancement. However,

conventional FT spectral analysis can still have problems in certain cases. For ex-

ample, large linear phase corrections give rise to severe phase rolls in the baseline of

8The water signal can be actually seen in th plot of first FID as low frequency oscillations, as
shown in Figure 3.17.
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the FT spectra, because of the point-by-point fashion of linear phase correction in

FT. FDM and RRT can recognize the individual peaks and correct the linear phase

in a more consistent way. The phase roll due to point-by-point phase correction is

completely removed. For noisy signal with heavily overlapped features and strong

background, there are still some small instabilities problems in the FDM/RRT linear

phase corrected spectra, which can be further suppressed by averaging.

Multidimensional NMR signals are typically truncated in the indirect dimensions

due to practical limitations including expensive experimental time and limited long-

term instrumental stability, resulting in poor FT resolution in the corresponding fre-

quency dimensions. FDM is a true multidimensional method and can have substantial

advantages over FT in these cases. FDM is capable of analyzing the whole data set

to pin down the intrinsically multidimensional features. The obtainable resolution in

all dimensions is determined together by the total information content, or, roughly

speaking, the total size, of the signal. Multidimensional NMR signals typically have

a large total size due to the long acquisition time dimension and thus contain a lot

of information that can be used by multidimensional methods like FDM and RRT to

significantly enhance the resolution in the truncated dimensions.

Nontrivial projections can be constructed by FDM, among which the 45o pro-

jections of J-experiments are particularly useful. By constructing 45o projections,

homonuclear coupling are decoupled and intensive singlets result. FDM has been

successfully applied to various J-experiments including 2D-J, 3D HSQC-J and 4D J-

TOCSY-J. In J-TOCSY-J, double 45o projections are used to decouple the homonu-

clear coupling in both proton dimensions. So called singlet-TOCSY spectra can be
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obtained using as few as one additional increment in each J-dimension. However,

application of the method to simplifying highly complex spectra has difficulties with

degeneracy and others, and needs more investigations.

In this chapter, we have been focusing on applying FDM to analyzing a special

type of NMR experiments that utilized Constant-Time (CT) evolutions to encode the

chemical shift information in the indirect dimensions. There are some special prop-

erties of CT signals that make them particularly suitable for FDM data processing.

Firstly, there exists an efficient doubling scheme for CT signals. A pair of N- and

P-type data sets from the same 2D CT NMR experiment are processed jointly by

FDM as a single data set, twice as large, in which the signal effectively evolves in

time for twice as long. Secondly, the signal has nearly perfect Lorentzian lineshape in

the CT dimension, thus can be efficiently handled by FDM. Applied to both model

and experimental signals, FDM with doubling scheme shows significant resolution

improvement and appears to tolerate the noise well. Very short constant time period

can be used without sacrificing the resolution, leading to higher sensitivity, especially

for proteins with short transverse relaxation time constants.

The doubling scheme can be applied to each CT dimension in higher dimensional

NMR experiments with multiple CT dimensions. When CT evolution is implemented

in all indirect dimensions, all the 2N−1 N-dimensional data sets from the same N-

dimensional experiment can be processed jointly as a single data set by FDM to

extract maximum information. This was demonstrated by a quadruple scheme for

a 3D HNCO experiment with two CT dimensions. By processing all four 3D data

sets from the same experiment together, FDM was able to provide a 3D HNCO
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spectrum of protein human ubiquitin that are fully resolved in all dimensions, even

when there are only as few as 6 × 8 increments in the 13C(O) and 15N dimensions.

The results were validated extensively by various approaches including: (1) repeating

the FDM calculations with a wide range of different parameters such as signal size,

basis size, basis density and regularization level; (2) comparing the FDM estimations

of low-resolution and high-resolution finite FT spectra, using the spectral parameters

computed from the short signal, to the actual FT spectra obtained from both short

and long experimental signals. They all showed that the FDM spectrum already

converged and that an accurate, reliable fit of the 3D signal was obtained by FDM.

Optimization of N-dimensional NMR experiments has always presupposed that

FT will be used to obtain the N -dimensional spectrum. For example, 3D NMR is

quite often employed because decent digital resolution can be obtained without ex-

travagant experiment time. As such, a series of different 3D experiments may be used

to correlate all the desired chemical shifts, and comparing planes from experiments

taken at different times is usually mandatory to complete the assignment. Whether

this is the most profitable use of human and instrument time, once FDM is reduced

to practice, is certainly open to question. In FDM the digital resolution of individ-

ual dimensions has no direct relation to the ultimate spectral resolution. Further,

we have shown here that the best calculation is the one with the largest available

basis set that can be obtained from the measured signal. Two different 3D experi-

ments do not lend themselves to this maximal basis set in the same way that one 4D

experiment does. While extra delays may lead to some additional losses in the higher-

dimensional experiment, there is also a gain in sensitivity by having all the data in
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one spectrum rather than divided up between several. In 3D experiments where a

set of nuclei are merely used to transfer magnetization, for example the HN(CO)CA

pulse sequence [140], the delays are already present, and removing the parentheses

to record the carbonyl chemical shift in a 4D experiment will be more sensitive and

highly advantageous, if FDM is to be used.

In closing, it is interesting to note that the time it takes to identify M random-

frequency peaks accurately in an N-dimensional experiment depends on M but not N

when FDM is employed. Indeed, as local spectral crowding is the only limiting factor

once sufficient SNR is achieved, increasing the dimensionality of the experiment, so

that the resonances are dispersed as widely as possible in frequency space, may result

in a shorter overall experiment. For backbone assignment experiments on proteins

with known primary structure, the expected value of M is known beforehand, so that

the time required to obtain a converged high-dimensional FDM spectrum should be

predictable, and scale with M. With the SNR of the first increment and the value of

M in hand, it may be possible to semi-automate the data acquisition of even quite

complex experiments. This assertion should be tested in a future series of 3D, 4D,

and 5D experiments that are specifically designed with the method in mind.
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