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Important notations:A linear operator is identified
by a cap:Â: In the expressionub� � Âuc� a vectoruc)
from a linear space is mapped to a vectorub) from the
same space. (cu defines a dual vector touc) and�cub� �
�buc�; complex symmetric (as opposed to the Hermi-
tian kcubl � kbuclp� inner product between the two
vectors uc) and ub). Bold characters, asA or C are
used for matrix representations of linear operators or
vectors. Their elements are then defined using the
following notations: [A]mn or [C]n. AT is a transpose
of matrix A, while A†, is its adjoint (transposed and
complex conjugated) matrix.

1. Introduction and historical remarks

The main goal of this article is to review the Filter
Diagonalization Method (FDM), a method of spectral
analysis of time signals and, in particular, the NMR
signals. We discuss various aspects of NMR data
processing in the framework of FDM. Most results
reported here were published previously [1–16]. An
attempt is made to present FDM critically, emphasiz-
ing both its advantages and drawbacks. Some
unsolved either conceptual or computational chal-
lenges, associated mostly with the multidimensional
FDM, are identified.

We start with a description of some aspects of the
spectral analysis of quantum dynamical systems
because of the obvious historical and conceptual
connections between the quantum dynamics calcula-
tions and FDM.

Resonances or quasi-bound states appear to be one
of the most important characteristics of an open or
dissipative quantum system (as, e.g. a scattering
system). The calculation of resonance parameters
has always been a very important numerical task in
the study of quantum dynamics. Unlike the bound

states, resonances, formally defined as the complex
poles of Green’s function, are better characterized
by complex energies with the imaginary parts asso-
ciated with the inverse lifetimes. This often required
replacement of the true Hermitian Hamiltonian by a
non-Hermitian one with the imaginary part effectively
describing the dissipation. The eigenvalues of such an
effective Hamiltonian are complex and could, there-
fore, approximate the true poles of the Green’s func-
tion. As such the arising numerical problem would be
the one of diagonalizing a non-Hermitian Hamiltonian
matrix. Diagonalization of a large non-Hermitian
matrix still remains a central numerical bottleneck
in quantum dynamics calculations: the conventional
methods based on matrix transformations have severe
numerical limitations, while iterative techniques with
better numerical scaling, such as the Lanczos method,
are generally unstable.

“Filter Diagonalization” was the name given by
Neuhauser [17] in 1990 to a numerical procedure to
compute eigenenergies of a possibly large quantum
system using solutions of the time-dependent Schro¨-
dinger equation. In conventional, so called, spectral
methods based on, say, Fourier transforming a time
correlation function,

c�t� � k0ue2i�t="�Ĥ u0l; �1�

the propagation would have to be performed for the
time defined by the Heisenberg uncertainty principle,
t , "=dE for a given energy resolutiondE. Note that
in Eq. (1) we used the Dirac “bra”,k0u; and “ket”, u0l;
notations for a wavefunction. In Filter Diagonaliza-
tion the propagation time required to achieve similar
resolution could be much shorter: the “filter” part
would then be responsible for constructing a set of
“good” basis functions filtered by a short-time Fourier
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transform (FT),

uwjl �
Ztmax

0
ei�t="��wj2Ĥ�u0l dt; �2�

while the “diagonalization” of the Hamiltonian matrix
Hjj 0 � kwj uĤuwj 0 l; evaluated in this basis, would deli-
ver the accuracy for the eigenenergies beyond the
Heisenberg uncertainty relation. Because the Fourier
basis is highly localized in the energy space, i.e. each
basis functionuwjl is dominated by just a few eigen-
functions of Ĥ with eigenvalues close tow j, the
narrow band Fourier basis withw j values chosen in
a small energy interval can represent the eigen
subspace in this interval. Since 1990 this idea, origin-
ally implemented quite naively, had undergone
certain transformations before it boiled down to
numerically competitive schemes. One of the early
real successes of Filter Diagonalization was the very
accurate calculation of hundreds of quantum scatter-
ing resonances of the HO2 radical [18], which is still
hard to reproduce by any other technique.

The most essential development, that gave a new
perspective to Filter Diagonalization, was published
by Wall and Neuhauser [1] in 1995. In this article it
was discovered that neither the Fourier basis functions
uwjl (Eq. (2)) nor the Hamiltonian operator̂H have to
be known explicitly to carry out the Filter Diagonali-
zation steps: once a time correlation functionc�t� is
available, the Hamiltonian matrix could be evaluated
from it. On the other hand, we can write

c�t� �
XK
k�1

dke
2itvk ; �3�

wherevk � Ek=" are proportional to the eigenvalues
of Ĥ and the amplitudesdk � uk0uvklu2 are defined by
the projections of the eigenfunctionsuvkl on the initial
stateu0l. Therefore, the Filter Diagonalization could
be applied to extract the frequenciesv k and the ampli-
tudesdk from a general time signalc�t� only assuming
that Eq. (1) is satisfied, even in the case, when the time
signalc�t� was not generated by a quantum Hamilto-
nian. In this caseĤ plays the role of an effective
Hamiltonian whose spectral parameters are extracted
by the filter diagonalization procedure. As such the
method was applied to extract the instantaneous
normal modes from a time signal generated by calcu-
lating the classical trajectories of a multi-particle

system [19]. However, the numerical implementation
of the finding of Ref. [1] was quite inefficient, so it
would remain just a curious observation, unless better
implementations [2,20] could be found later. For
example, in Ref. [2], the new version of the method
was shown to possess the properties of an optimal
method of solving Eq. (3) from several points of
view including convergence, speed and reliability.
To distinguish this efficient version and its further
extensions from all the previous ones, but to also
keep the original name, we call it FDM (the Filter
Diagonalization Method).

Later FDM was applied to a number of problems in
theoretical physics and chemistry (some selected
references are [21–31]), where solution of the Harmo-
nic Inversion Problem (HIP), as defined by Eq. (3),
was essential. At the same time FDM started to be
applied to NMR data processing (the early publica-
tions include [4–8]).

One point, which might not always seem obvious,
is that formally Eq. (3) is a nonlinear fit problem with
all the bad attributes of the nonlinearity. In particular,
a general nonlinear optimization problem does not
have a unique solution. Moreover, finding a solution
for such a problem might become a serious numerical
challenge even with a few fitting parameters. Appar-
ently, the HIP, being only formally nonlinear, is not
that in reality, once it is formulated appropriately. One
of the central advantages of FDM (shared by several
other linear algebraic techniques) is that the spectral
parameters are, to certain extent, uniquely obtained by
solving some particular linear algebraic problems.
Originally, the authors of Refs. [1,2] were not aware
of the vast number of the high resolution methods for
spectral analysis of time signals, so some aspects of
FDM were actually re-inventions. In fact, the first
known publication on the subject, that contained
several key ideas used in FDM as well as in most
other methods of solving Eq. (3), is due to Baron de
Prony and dated by 1795 [32]. In particular, the first
linear algebraic solution to a problem of identifying
the parameters of a multi-exponential decay of a time
signal was presented in the same article by Baron de
Prony. It might appear that for the period of more than
two centuries the problem must have been beaten to
death. In spite of that, it is still alive and FDM seems
to possess some unique features which, in certain
respects, makes it superior to the other methods. In
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particular, to the best of our knowledge, its multidi-
mensional versions hardly have competing analogues.
Although, for some one-dimensional (1D) problems,
especially involving very long and noiseless signals,
FDM is extremely efficient, its actual strength is
revealed outside of the 1D applications. The basic
reason is that FDM processes the whole multi-dimen-
sional data set simultaneously by fitting it to a certain
multi-dimensional parametric form, unlike the FT
spectral analysis which is intrinsically 1D. For
instance, 2D HIP can be written as

c�t1; t2� �
XK
k�1

dk e2it1v1k e2it2v2k �4�

with v1k; v2k anddk now characterizing the 2D spec-
tral features. By solving Eq. (4) one can, in principle,
obtain high spectral resolution even if the signal is not
available at both longt1 and t2, as would be required
by the Fourier uncertainty principle. It is the total size
of the 2D data set, which implies the total number of
algebraic equations with the unknowns {dk;v1k;v2k}
and which is relevant. Experimentally, it may be easy
to satisfy the condition when the total number,N1 ×
N2; of the 2D signal points, i.e. the number of equa-
tions, dominates the total number of unknowns (3K).
In a 1D signal processing scheme the length of the
signal in each dimension has to dominate the number
of unknowns, i.e.N1 . 2K andN2 . 2K: In Ref. [6]
one can find a striking example of a resolved 2D
double-absorption HSQC spectrum obtained using
just two 1D purely phase modulated FIDs.

Unfortunately, 2D FDM did not always work as
well as it was predicted by the naive information
consideration. In fact, the original formulation of 2D
FDM [3] has only been applied to either model or
experimental NMR signals [5,6] with quite high
signal-to-noise ratio (SNR) for which the assumption
of Eq. (4) holds. The attempts to treat more complex
and noisier multi-dimensional data by the method of
Ref. [3] identified some problems, that were addressed
in several recent papers [8–10,12]. For example, in
Ref. [8] it was pointed out that a problem would occur
if there are degenerate frequencies, i.e. when the 2D
spectra would have peaks at the samev1k but sepa-
rated in the other frequency dimension (or vice versa).
A method implemented in the frame of 2D FDM,
called “simultaneous diagonalization”, was suggested

to overcome this degeneracy problem. It was argued
later [10] that the degeneracy itself does not actually
create any numerical problem, if the SNR is suffi-
ciently high, an artifact free spectrum can be
constructed by using theresolvent operator(or
Green’s function) approach [9,10,12]. Rather than
Eq. (4), this approach implies a much more pessimis-
tic, direct-product, parametric form to represent the
2D time domain data

c�t1; t2� �
XK1

k1�1

XK2

k2�1

dk1k2
e2it1v1k1 e

2it2v2k2 ; �5�

although this equation is not solved explicitly for the
unknownsdk1k2

; v1k1
andv2k2

: Apparently, Eq. (5) is
consistent with the formulations used previously for
processing of 2D NMR signals [33–36].

Although the resolvent operator approach appeared
to be a significant improvement, compared to the
previous implementations of 2D FDM, i.e. it signifi-
cantly lowered the SNR threshold of the FDM stabi-
lity, it would still fail for sufficiently noisy data, where
the FT spectra could still be very well resolved. The
reason is that for a general 2D data arrayc�t1; t2� Eq.
(4) is ill defined or in other words, the solution is very
sensitive to both the parameters of the fit (such asK)
and small perturbations ofc�t1; t2�: This sensitivity
causes instability of the result for a noisy input,
appearing in the FDM spectra in a wild nonlinear
fashion as spurious spikes or errors in the amplitudes
and phases of the genuine features.

The next development which gave FDM new breath
was the discovery of a simple trick to overcome the
instability problem. The idea was to average the FDM
spectrum over those small perturbations of the input to
which the former is so sensitive. The original imple-
mentation of the averaging idea [9,10,13] used varia-
tion of the signal size processed by FDM. However a
more consistent and elegant way to average suggested
in Ref. [12] is based on averaging the FDM spectrum
over small random perturbations of the input signal of
fixed size. The fact that a particular realization of the
signal plus artificial noise has more noise than the
original signal is irrelevant as the auxiliary artificial
noise has zero mean. We called this latter method
pseudo-noise averaging.

Green’s function formalism with the averaging
were two of the main ingredients in the status of the
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multidimensional FDM until very recently. Appar-
ently, irrelevant of the fact that FDM is based on
solving the parametric fit Eq. (4) these two methods
complicate a direct parametric classification of the
spectrum in terms of frequencies and amplitudes, as
each spectral peak is now characterized by many
terms with a lot of cancellations and interferences.
In a sense, this is a step backwards comparing with
the original hopes of Refs. [3,5,6]. Thus construction
of a compact and reliable line list for noisy data in
more than one dimension at this stage reappeared as
an unsolved problem. Another problem, albeit not
conceptual, was that averaging required multiple
diagonalizations which made FDM by one or two
orders of magnitude more time-consuming. One step
toward reduction of both the ill-conditioned structure
of the matrices involved and the computational
burden was to try to implement a more sophisticated
multi-scale Fourier basis [11]. In the most simple
implementation, a two-scale basis represents two
subspaces, a narrow band Fourier basis (i.e. dense
in the frequency domain and long in the time
domain) which is localized in the particular small
frequency window and describes the fine structure
in this window, and a coarse basis (i.e. sparse in
the frequency domain and short in the time
domain) that describes global low resolution beha-
vior of the spectrum. Such a multi-scale basis is
not only capable of minimizing the total size of the
basis, but for some difficult cases it gives a more
stable solution, especially in the case of both low
SNR and the presence of broad non-localized spec-
tral features, where the original method fails, even
in the 1D case.

Very recently we discovered [14] that the spec-
tral estimation problem could be handled more
consistently in the framework of the resolvent (or
Green’s function) formula, e.g.I �s� � CTR21C;

where R � R�s� and C are data matrices defined
by the time signal. I �s� does not, in principle,
require calculation of the spectral parameters as it
can be evaluated directly by matrix inversion or by
solution of a linear system. Since the data matrixR
is singular, a pseudo-inverseR21

q must be used. In
the new numerical expression for spectral estima-
tion, called the Regularized Resolvent Transform
(RRT) the Singular Value Decomposition (SVD)
or Tikhonov regularization [41,42] is implemented

for regularization purpose. In the latter case the regular-
ized inverse is approximated byR21

q < �R†R 1
q2�21R†

: Possible singularities ofR21 are removed by
using the real regularization parameterq. The latter
actually controls the appearance of artifacts: a larger
value of q suppresses the artifacts and broadens the
peaks with low amplitudes. A too largeq leaves only a
few strongest peaks in the spectrum. The role ofq is,
therefore, similar in spirit to that of the singular value
threshold in the truncated SVD applications but is
generally much less frustrating as the result only
smoothly depends onq. Unlike FDM, RRT has the
status of a “transform”, i.e. a direct (albeit nonlinear)
transformation of the time-domain data into the
frequency domain spectrum and is very straightfor-
ward to use. Unfortunately, in RRT no line list is
produced which may be associated with its major
drawback. Another difficulty associated with the
RRT at this stage is the lack of a numerically fast
method to evaluate the absorption spectrum directly
from a single multidimensional purely phase modu-
lated signal. Thus, in spite of the invention of RRT,
FDM had not lost its attractiveness as it can, at least in
principle, deliver the spectral parameters with the
possibility of easily generating all kinds of spectral
representations.

FDM2k was the name given to the new version of
FDM [15] that used a simple trick to remove the
instability in the solution of the arising generalized
eigenvalue problems avoiding either expensive aver-
aging over many FDM calculations or the state of the
art fiddling with various FDM parameters. In FDM2k
a real parameterq, similar to that in RRT, is used to
control the appearance of the artifacts. However, so
far FDM2k has been tested only for 2D applications,
while higher dimensional applications may have some
caveats.

Despite the very encouraging results obtained so
far, FDM is very far from being able to entirely
replace the FT data processing. Clearly, the latter
has quite different requirements to the data, such as
no restrictions to the lineshapes or lower bounds for
SNR, but it needs bigger data sets in all dimensions.
FDM can extract certain types of spectral informa-
tion that are unavailable by FT. For example, in 2D
FT data processing purely phase modulated signals
give rise to mixed-phase (“phase-twist”) lineshapes
in which neither the real nor the imaginary part of the
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2D FT spectrum can be phased to the desired double
absorption lineshape [37]. In some experiments the
latter can be obtained by, for instance, acquiring
hyper-complex type data [38] corresponding to
two-fold larger data sets. However, in 2D-J experi-
ments those are unavailable and only absolute value
2D spectra [39] are used, leading to poor resolution,
even when the data sets are large, or requiring imple-
mentation of heavy digital filters [40] to improve the
lineshapes at the expense of considerable amplitude
distortions. In FDM one can generate a double-
absorption spectrum from purely phase modulated
data, or an absorption mode 458 projection of a 2D-
J spectrum leading to a singlet-proton spectrum. The
latter idea is extendable to more than 2D experi-
ments, such as 3D HSQC-J and 4D J-TOCSY-J
[13], in which the proton multiplets are collapsed
into singlets, considerably simplifying the problem
of spectral assignment. Thus, FDM not only allows
one to improve the spectral resolution relative to the
conventional data processing, but also makes certain
experiments much more useful, and opens various
possibilities to design new experiments.

2. Spectral estimators, parameter estimators and
nonlinear problems

For a given 1D time signalcn ; c�tn� defined on a
finite time gridtn, n� 0;…;N 2 1, we can formulate
the spectral analysis problem. In this section we will
describe the difference and relation between a spectral
estimator and parameter estimator. Although in
generaltn could be any grid, due to various reasons
it is most common to consider equidistant time points,
tn � nt; separated by a sufficiently small stept , which
is consistent with the spectral width (SW) according
to

t � 2p
SW

; �6�

i.e. so that the highest frequency oscillation is
correctly represented by the discretized data.

We can now define two spectral functions, that,
corresponding to the integral FT,

I �s� � i
Z∞

0
c�t� eits dt; �7�

and the other, corresponding to the discrete FT (DFT),

I t�s� � it
X∞
n�0

1 2
dn0

2

� �
cn eints

; �8�

where the term�1 2 dn0=2� multiplies c0 by 1/2 to
correct the error introduced by the discrete sum
approximation of the continuous half-line Fourier
integral. Generally, for smallt we haveI t�s� < I �s�
but unlikeI �s�; the DFT spectrumI t�s� is periodic ins
with the period equal to the Nyquist width 2p=t: Since
c�t� is not available on the whole semi-infinite interval
�0;∞� and since the experimental data may also be
contaminated by noise, it is impossible to use Eq. (7)
directly to computeI �s� (or I t�s��: A method which
estimatesI �s� (or I t�s�� from the available incomplete
and possibly noisy data can be called aspectral esti-
mator. It is, therefore, more appropriate to formulate
the spectral estimation problem as the following inte-
gral equation, obtained from Eq. (7) by the inverse FT,

cn � i
2p

Z∞

2 ∞
I �s� e2itns ds; n� 0;…;N 2 1: �9�

Apparently, a finite DFT is an example of a linear
method of solving Eq. (9), i.e. DFT is a spectral esti-
mator, in which the infinite time FT spectrum is esti-
mated by a finite sum. It is not necessary to explain the
importance of DFT for the problem of spectral analy-
sis. DFT is computationally very efficient, due to the
existence of fast Fourier transform (FFT) algorithms,
and robust method. It gives a uniform approximation
of the spectrum. In particular, the resolution of the FT
spectrum is not worse than

ds ,
2p
Nt

; �10�

which is due to the relation between the frequency
grid spacing and the Fourier lengthNt . Furthermore,
the FT spectrum is stable with respect to the variations
of the signal. This is due to the linear nature of Eq. (8),
the time domain noise being converted into the
frequency domain noise linearly.

Having mentioned the main advantages of FT spec-
tral analysis, it is also important to point out some of
its drawbacks, such as finite resolution,Gibbs oscilla-
tions, etc. Also, because of the finite time-stept the
estimated lineshapes of the broad lines inI t�s�
are distorted. However, this particular problem is
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practically irrelevant and, if necessary, can be avoided
by decreasingt . It is the truncation artifacts which are
the major disadvantage of the Fourier spectral estima-
tors. To reduce the Gibbs oscillations it is customary
to useapodizationof the signal prior to the FT, i.e.
multiplication ofcn by some smoothly decaying func-
tion of n. The “uncertainty relation” between the
frequency and time, Eq. (10), responsible for the
uniform resolution of the FT, also turns into a major
disadvantage as the FT resolution cannot be better
than that in Eq. (10).

To this end, let us note that there are alternative to
FT methods of solving Eq. (9), the Maximum Entropy
Method (MEM) being the most popular in NMR (see,
e.g. Refs. [43,44]). It is straightforward to formulate
the inversion problem, Eq. (9), as a nonlinear least-
squares problem. The main characteristics of the
nonlinear optimization methods is, theoretically,
their high resolution nature, which is different from
Eq. (10). On the other hand, a major caveat associated
with nonlinear problems is the existence of many local
minima solutions, i.e. difficulties in finding the global
minimum, and their notoriously ill-defined nature.
Even though a nonlinear method can, in principle,
offer very high resolution, our goal here is to avoid
dealing with such problems, as we consider them too
difficult to apply and, generally, very time consuming.

A parameter classificationin NMR data processing
is commonly understood as the following parametric
fit of the time signal (FID),

cn �
XK
k�1

dk e2intvk ; �11�

where again we restrict the consideration to the case
of a finite equidistant time grid withn� 0;…;N 2 1:
In Eq. (11) the variational parameters are the complex
amplitudes dk and complex frequenciesvk �
nk 2 igk: The line width g k is proportional to the
inverse decay time for the term that oscillates with
(real) frequencyn k.

This problem is often referred to as the Harmonic
Inversion Problem (HIP). At first glance, it might
appear that there is nothing special in the form of
Eq. (11). However, the HIP is the most popular
among all the other possible parametric forms. The
reason is its unique property of having a linear alge-
braic solution and, therefore, allowing one to consider

a much bigger parameter space than that usually
considered feasible in nonlinear optimization
problems.

There is a hidden subtlety in the formulation of HIP
which will arise if one tries to assume the total number
of terms K to be fixed andN independent. This
seemingly natural assumption fails as it makes the
problem very ill defined and the solution very sensi-
tive to the errors (noise) in the input data. Even start-
ing with a very special case, i.e.K , N=2; a general
infinitesimal perturbation of the input signalcn will
destroy this special property. Therefore, the well-
defined, i.e. numerically stable, formulation of HIP
is to setK � N=2 (considering, without serious sacri-
fice, only evenN) which corresponds to having the
number of unknowns consistent with the number of
equations. In the context of FDM the total number of
terms in Eq. (11) is usually irrelevant because the
spectral analysis is generally performed locally in
the frequency domain. In this case it is more appro-
priate to think in terms of the density of information in
the frequency domain, i.e. the local density of poles
r�vk� that should be consistent with the information
content of the signalcn of sizeN,

r�vk� ;
1

Dvaver
,

Nt

4p
; �12�

whereDvaver is the local average spacing between the
poles. This condition is to be compared with the FT
uncertainty principle, Eq. (10). Clearly, Eq. (12) offers
much higher resolution than the latter for the time
signals that are well represented by the form of Eq.
(11).

Rigorously speaking, the solution of Eq. (11) is not
unique as the line list {vk;dk} depends on the sizeN
of the fitted data set. In which sense then can we
consider the line list converged? Depending on the
type of the problem, Eq. (11), can be understood
differently. One extreme corresponds to having to
find the spectral parameters for a very large data set
cn with very dense set of spectral lines and with suffi-
ciently high SNR. This situation appears to be quite
typical in NMR and is most favorable for FDM but
generally difficult to handle using other high resolu-
tion methods involving solutions of large linear alge-
braic problems. The other extreme considered
typically in the engineering literature corresponds to
having to extract the parameters of a few genuine lines
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(sources) from the sea of noise. In the present article
we do not consider the latter case, assuming that the
form of Eq. (11) is an efficient representation of the
data and that the peaks with large amplitudes are not
due to noise, but rather the noise is represented by
either broad polesv k or small amplitudesdk or both.
Therefore, once we achieved the regime when a
certain part of the line list is not sensitive to further
increase of the data size, while there are still entries
�vk; dk� that change withN, we can consider the stable
part of the line list converged, although the degree of
convergence will always be a very delicate issue.

In addition to the line list it is often desirable to
have a spectrumI �s� as a function of the real
frequency arguments, as the spectral representation
is much less ambiguous than the line list. It is also
important to realize that solution of Eq. (11) for the
line list is much more demanding than constructing
the spectrum by solving Eq. (9), as the latter does not
yield the line list, while the line list generally yields
the spectrum. In other words, a parameter estimator
can often be used as a spectral estimator (but not vice
versa). The simplest example of a spectral estimation
using the line list {vk; dk} is based on analytic integral
or discrete FT of Eq. (11) resulting in

I �s� �
X

k

dkGk�s� �13�

or

I t�s� �
X

k

dkG
t
k�s�; �14�

where we introduced the two complex resolvent func-
tions (Lorentzians)

Gk�s� � i
Z∞

0
eit�s2vk� � 1

vk 2 s
�15�

and

Gt
k�s� � it

X∞
n�0

1 2
dn0

2

� �
eint�s2vk�

� it
1 2 eit�s2vk� 2

it
2
: �16�

For small values oft�s2 vk� we haveGk�s� < Gt
k�s�;

however, unlikeGk�s�; Gt
k�s� is periodic with period

equal to the Nyquist width 2p/t .
In NMR spectroscopy the absorption spectrum is

the physically most meaningful. Note, that in the 1D
case it is usually possible to express

A�s� � Im{ I �s�} ; �17�
assuming all amplitudesdk being real andI �s� prop-
erly phased. Since in the framework of the FT spectral
analysis no other absorption mode representation is
available, Eq. (17) is called the absorption spectrum,
even in cases when different amplitudes are not in
phase resulting in non-absorption lineshapes. It is,
therefore, useful to have a more general definition of
an absorption spectrum in which the absorption line-
shapes are reinforced but which would coincide with
the usual expression if all amplitudes have zero phase:

A�s� �
X

k

dkdk�s�; �18�

At�s� �
X

k

dkd
t
k�s� �19�

with

dk�s� ; Im{ Gk�s�} ; Im
1

vk 2 s

� �
; �20�

dtk�s� ; Im{ Gt
k�s�} ; Im

it
1 2 eit�s2vk�

� �
2

t

2
: �21�

Apparently,dk�s� is the familiar absorption Lorentzian
lineshape, gk=��nk 2 s�2 1 g2

k�; centered at nk ;
Re{vk} and having the width gk ; 2Im{vk} :
Furthermore, in the case of zero width bothdk�s�
and dtk�s� coincide with the Dirac delta-function
(multiplied byp).

Note that bothA�s� and At�s� will generally be
complex if the amplitudes are not phased. A real-
valued absorption mode spectrum can then be
obtained by using either the real part of an a priori
phasedA�s� or the absolute value ofA�s�:

In the 1D case we will use the standard and familiar
definition of an absorption spectrum (17) if not expli-
citly specified otherwise.

Being very simple analytic representations of the
spectrum, the sum of Lorentzians, Eqs. (13), (14), (18)
and (19), are clearly very useful in many respects.
Later in the text we will address the question of how
well the spectrum can be estimated by these forms
using FDM and when the representations fail.
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3. Non-Hermitian quantum mechanics: connection
to the harmonic inversion problem (HIP)

In this section we review the quantum mechanical
terminology and relations to be used in FDM to solve
the HIP. Clearly, the method could be presented with-
out the quantum mechanical jargon, although the
latter makes the theory more elegant and all the deri-
vations, straightforward.

The conventional quantum mechanics considers
only Hermitian operators acting in a Hilbert space.
The later is characterized by a Hermitian inner
product kCuFl � kFuCl p with the asterisk defining
the complex conjugate. This has many useful conse-
quences. For example, for any vectorC from the
Hilbert space we can define the norm,kCuCl; which
is always a real number; the eigenvalues of a Hermi-
tian operator are real. One can actually restrict consid-
eration to the use of real numbers exclusively by
choosing a real basis. In such a basis a Hermitian
operator becomes real symmetric matrix, the Hermi-
tian inner product becomes real symmetric inner
product, i.e.kCuFl � kFuCl; and so on. However,
these properties are not always very useful for
describing dissipative systems. Since eventually we
need to end up with complex eigenvalues representing
the frequencies of decaying sinusoids, we have to
leave out the Hermiticity property. Interestingly, if
we restrict ourselves to the use of complex (non-
Hermitian), but symmetric operators and replace the
real symmetric inner product by the complex
symmetric one, all the relations, that were correct
for the real symmetric case will hold. Roughly speak-
ing, this corresponds to an analytic continuation of the
real symmetric case in which all the real variables are
declared as complex and all the real operations are
replaced by complex operations.

Consider an abstract linear vector spaceA. To
distinguish between the Hermitian and complex
symmetric inner product for the latter we use the
round brackets,�CuF� � �FuC�: Note that�CuC� is
not necessarily real, i.e. the norm ofC is not neces-
sarily defined in our non-Hilbert space. Moreover,
�CuC� can even vanish for a non-zero vectorC .
Although numerically this is unlikely to happen, it is
clearly an indication of possible problems (e.g.
instability) in the numerical algorithms involving the
non-Hermitian inner products.

We will always identify linear operators,̂U; V̂ ;

etc., that act on vectors inA by a cap. By the complex
symmetric operatorV̂ we mean that it satisfies the
following relationships:

{ �Cu}{ V̂ uF�} � { �CuV̂ }{ uF�} � �CuV̂ uF�; �22�
for any two vectorsuC ) anduF ) from A. In words, it
does not matter whether we first operate withV̂ on
uF ) and then evaluate the inner product with (C u or
vice versa.

An operatorV̂ is diagonalizable, if it has a set of
eigenvaluesv k and eigenvectorsuv k) satisfying

V̂ uvk� � vkuvk�; �23�
where the eigenvectors are orthonormalized with
respect to the complex symmetric inner product, i.e.

�vkuvk 0 � � dkk0 : �24�
We will also assume implicitly that our operators are
not pathological, which, in particular, means that the
eigenvectors form a complete basis and one can use
the resolution of identity,

Î �
X

k

uvk��vku: �25�

This also implies thatV̂ can be expressed using the
spectral representation,

V̂ �
X

k

vkuvk��vku: �26�

The spectral representation becomes very useful
when we want to obtain an expression for a function
f �V̂ � of an operatorV̂ ; whose eigenvalues and eigen-
vectors are known:

f �V̂ � �
X

k

f �vk�uvk��vku: �27�

Note thatf �V̂ � is also an operator with the eigenva-
luesfk � f �vk� and the same eigenvectorsuv k).

If we now adapt the quantum mechanical terminol-
ogy by callingV̂ a Hamiltonian, the following opera-
tor functions will be of most interest, namely, the time
evolution operatorÛ�t� and the two resolvent opera-
torsĜ�s� andĜt�s�; related toÛ�t� via the integral and
discrete Fourier transformations according to, respec-
tively, Eqs. (15) and (16). The spectral representations
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of these operators, according to Eq. (27), are

Û�t� ; e2itV̂ �
X

k

e2itvk uvk��vku; �28�

Ĝ�s� ;
1

V̂ 2 s
�
X

k

Gk�s�uvk��vku; �29�

Ĝt�s� ;
it

1 2 eit�s2V̂ � 2
it
2
�
X

k

Gt
k�s�uvk��vku: �30�

Clearly, these operators are complex symmetric as
they are some analytic functions of the complex
symmetric operator̂V :

It is also possible to extend the spectral representa-
tion to the case of the imaginary part of an operator,

Im{ L̂ } �
X

k

Im{lk} ulk��lku; �31�

wherel k andul k) are eigenvalues and eigenfunctions
of a general operator̂L : It is important to realize that
generally Im{L̂ 1 1 L̂ 2} ± Im{ L̂ 1} 1 Im{ L̂ 2} if the
operatorsL̂ 1 andL̂ 2 do not commute, i.e. taking the
imaginary partis nota linear operation.

With this definition we can introduce thespectral
densityoperators

d̂ �s� ; Im{ Ĝ�s�} �
X

k

dk�s�uvk��vku �32�

and

d̂ t�s� ; Im{ Ĝt�s�} �
X

k

dtk�s�uvk��vku; �33�

which will mostly be useful later in the framework of
constructing theD-dimensional absorption mode
spectra.

For a vectoru0), here called theinitial state, we can
consider the vectorut) evolving in time according to

ut� � Û�t�u0�: �34�
Since V̂ is not Hermitian, the evolution operator

Û�t� is not unitary, i.e. its eigenvalues do not neces-
sarily belong to the unit circle in the complex plane.
This also implies that the norm of the vectorut) is not
preserved, which is the case of a dissipative dynamics.

It is often convenient (although, not necessary) to
assume that all the eigenvaluesvk ; nk 2 igk of V̂
have negative imaginary parts,gk . 0; i.e. all the
eigenvalues ofÛ�t� are inside the unit circle. In this

case the time autocorrelation function

c�t� � �0ut� �35�
will strictly decay in time. This is easy to see if we
insert Eq. (34) into Eq. (35) and then use the spectral
representation of̂U�t�; Eq. (28),

c�t� � �0uÛ�t�u0� �
X

k

�0uvk��vku0� e2itvk

�
X

k

dk e2itvk ;
X

k

dk e2itnk e2tgk ; �36�

with the amplitudes

dk � �0uvk�2; �37�
defining the projections of the initial stateu0) on the
eigenvectorsuv k). The real numberg k is naturally
called thewidth or inverse lifetimeof the kth reso-
nance state.

The set of parameters {vk;dk} corresponds to spec-
tral representation of our quantum dynamical system
with the initial state u0). The spectral parameters
completely define the time correlation functionc�t�
due to the relation, Eq. (36).

Another characteristics of our dynamical system
defined byu0) andV̂ corresponds to the integral or
discrete FT spectra (note that the infinite time FT
exists only ifc�t� does not have exponentially increas-
ing components, while the spectral parameters can be
defined without this condition). The two representa-
tions are related because using Eq. (36) the Fourier
integral (or sum) can be evaluated analytically.

It is useful to express the Fourier spectraI �s� and
I t�s� in terms of the matrix elements of the corre-
sponding resolvent operators:

I �s� � �0uĜ�s�u0�; �38�

I t�s� � �0uĜt�s�u0�; �39�
which follows from Eqs. (13), (29), and Eqs. (14),
(30), respectively. Furthermore, for the absorption
mode spectra we have

A�s� � �0ud̂ �s�u0�; �40�

At�s� � �0ud̂ t�s�u0�: �41�
Note, that the use of̂Gt�s� and d̂ t�s�; rather than
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Ĝ�s� andd̂ �s�; may be computationally advantageous
in the discrete time framework as will be seen below.

Quite amazingly, the time correlation functionc�t�;
Eq. (36), exactly satisfies the form of Eq. (11) so if the
u0) and V̂ (or Û) are known explicitly, one could
convert the HIP to the problem of diagonalizinĝV
(or Û�: If we were very naive, we would try to diag-
onalize it by choosing some basis set, say, {uC j�} ; j �
1;…;K; evaluating the matrix elements�V� jj 0 �
�C j uV̂ uC j 0 � in this basis, and then diagonalizing the
K × K matrix V in the hope that for large enough K
we could converge all the relevant eigenvaluesv k and
eigenvectorsuv k). Apparently, this naive idea can be
realized by choosing quite a special set of basis
vectors which allows one to evaluate the required
matrix elements only in terms of the available data,
i.e. cn. This is shown in the next section.

4. HIP can be solved by pure linear algebra

With the quantum mechanical ansatz (assumption)
of the previous section derivation of an eigenvalue
problem for the frequenciesv k and amplitudesdk

that are unknowns in HIP, Eq. (11), becomes very
simple. We only need to choose a suitable basis set.

Apparently, instead of the eigenvalue problem for
the Hamiltonian V̂ [1], it is more convenient to
consider the equation (2).

Ûuvk� � ukuvk� �42�
for the evolution operator̂U ; Û�t� ; e2itV̂ which
has eigenvaluesuk � e2itvk with the same eigenvectors
uvk). For a sufficiently smallt knowinguk is equivalent
to knowingvk. In the following we will try to diagona-
lize Û: To avoid unnecessary complications we assume
that the eigenvaluesuk are nondegenerate.

The initial stateu0) belongs to our linear vector
spaceA. According to Eq. (37)u0) has non-zero
projections on all the eigenvectorsuv k) with weights
dk. An application ofÛ to u0) will result in another
vector, u1� � Ûu0�; from A, that is some other linear
combination of the eigenvectorsuv k). This way we
can generate a subspace of vectors fromA,

un� � Ûnu0�; n� 0;…;M 2 1: �43�
We can regard the indexn as discrete time. Accord-
ingly, we can consider the discrete time correlation

function,

cn � �0un� � �0uÛnu0�: �44�
Each vectorun) is some linear combination of the

eigenvectorsuv k) of Û: Such a subspace is called
Krylov subspacein the theory of linear operators. If
M is less than the rank, sayK, of Û; these vectors will
generally be linearly independent (note again thatK
does not have to be fixed or even finite; neither do we
have to useK as a superscript in the summation of Eq.
(11)). Thus, we can regard the set {un)} as a basis set.
Now consider a particular eigenvectoruv k). Assume
that for sufficiently largeM the following expansion
holds,

uvk� �
XM 2 1

n�0

�Bk�nun�; �45�

where Bk defines a column vector with coefficients
�Bk�n. Inserting Eq. (45) into Eq. (42) and multiplying
both sides by (n0u from the left we obtain the general-
ized eigenvalue problem for the eigenvaluesuk and
the eigenvectorsBk,XM 2 1

n�0

�U1�n0n�Bk�n � uk

XM 2 1

n�0

�U0�n0n�Bk�n; �46�

where we introduced the convenient notation

�Up�n0n � �n0uÛpun� �47�
for the M × M matrix representation of the operator
Ûp in the Krylov basis. With this notationU0 is the
overlap matrix, which is different from the unit matrix
as the Krylov vectors are not orthonormal.

Eq. (46) can also be written in a matrix form,

U1Bk � ukU0Bk: �48�
Quite importantly, the matrix elements ofUp can be

expressed only in terms of the discrete time correla-
tion function, Eq. (44), as

�Up�n0n � �0uÛn1n01pu0� � cn1n01p; �49�
where we utilized the complex symmetric property of
Û; like in Eq. (22), and then recognized Eq. (44). The
matrix Up can be viewed as ap-independent linear
functional of the signalcn with total length 2M 2 1
shifted byp. As such evaluation of Eq. (49) requires
the knowledge ofcn for n� p;p 1 1;…; p 1 2M 2 2:
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Once the frequenciesv k are known from the solu-
tion of Eq. (48), one can solve for the amplitudesdk by
solving the linear least-squares equation, Eq. (11),
with respect todk, as commonly done in other linear
algebraic approaches. However,dk can also be
computed directly using the eigenvectorsBk [1].
Note first, that because of Eqs. (24) and (45) the eigen-
vectors Bk are subject to orthonormalization with
respect to the overlap matrix:

BT
k 0U0Bk � dkk0 : �50�

Practically, any two eigenvectors, that are solutions of
Eq. (48) with different eigenvalues, have to be auto-
matically orthogonal, so only the normalization part
of Eq. (50) for each eigenvector has to be implemen-
ted. Finally, because of Eqs. (37) and (45), the prop-
erly orthonormalized eigenvectors can be used to
compute the amplitudes,���

dk

p � BT
k C; �51�

whereC � �c0;…; cM21�T is a known 1× M column
vector.

To appreciate the result which we just derived, note
that we only assumedcn to satisfy Eq. (11) with the
frequenciesv k and amplitudesdk related to the eigen-
values and eigenvectors ofÛ: The latter is not known,
but it is not needed either, as the information, only in
terms of the sequencecn with n� 0;…;N 2 1�
2M 2 1; is sufficient to construct theU1 and U0

matrices of sizeM × M to be used in Eq. (48) to
solve foruk andBk.

Eqs. (48)–(51) constitute a remarkably simple
method of solving the HIP, i.e. parametric classifica-
tion of a time signalcn. There was no name given to
this particular method of parameter estimation in Ref.
[2]. Here to distinguish it from FDM we call it Krylov
Basis Diagonalization Method (KBDM).

By deriving the above equations we also proved
that a finite signal of sizeN � 2M can be fitted
uniquely by the form of Eq. (11) usingM � N=2
complex sinusoids, i.e. theN unknowns can be
obtained uniquely fromN equations. Of course, this
observation does not imply that the results are signal
size independent. The latter will only be true if a
signal has exactly the form of Eq. (11) with some
fixed and finite number of termsK, in which case
for N $ 2K; i.e. M $ K; the rank of both matrices,

U1 andU0 will be K. That is, forM . K they will be
singular with exactlyM–K zero eigenvalues. The non-
degenerate subspace (the “range space”) of rankK
will uniquely define theK frequenciesv k and K
amplitudesdk.

It must be noted that noiseless signals hardly occur
in real life (they can only occur in theory [2]). The
singularity of the data matrix is removed by a general
small perturbation of the signal. Noise always plays
the role of such a perturbation, in which case, roughly
speaking, M 2 K pairs of �vk;dk� with small dk

describe the noise. Obviously, noisier data requires
longer signals to achieve the same resolution.
However, one should be very careful when interpret-
ing a line list of a noisy signal as it is often impossible
to separate the genuine poles from the noise poles due
to their interference.

4.1. Example: K� 2

The simplest non-trivial example of a HIP corre-
sponds to having two sinusoids, i.e. consider the
signal

cn � d e2int�v2Dv� 1 d 0 e2int�v1Dv�
;

n� 0; 1;…;N 2 1� 2M 2 1
�52�

Now we want to set up and solve the KBDM equa-
tions to invertcn usingM � 1 andM � 2:

M � 1
Although we know that with just one basis function

one cannot possibly get two eigenvalues, we consider
this case as it reveals some interesting properties of
the harmonic inversion solutions.

M � 1 corresponds to the total signal lengthN � 2:
Eq. (48) for this case boils down to the 1× 1 general-
ized eigenvalue problem,

c1B1 � u1c0B1:

There is only one eigenvalue

u1 ; e2itv1 � c1

c0
� e2intv d e2itDv 1 d 0 eitDv

d 1 d 0
: �53�

The eigenvector, which is just a number, after the
normalizationB1c0B1 � 1 (see Eq. (50)) is given by

B1 � 1=
���
c0
p

:

Therefore, the solution for the amplitude (see Eq. (51))
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is

d1 � B1c0 � d 1 d 0: �54�
That is, a single-sinusoid-fit of a sum of two complex
sinusoids has an amplitude equal to the sum of the two
amplitudes and oscillates with a frequency which is
some weighted average of the two underlying frequen-
cies. Eq. (53) implies that even if both genuine frequen-
ciesv^ Dv were purely real, the solution given byv1

will be complex, i.e. will have some width of order of
Dv to account for the two peaks separated by 2Dv . In
other words, the spectrum given by this single Lorent-
zian line will be of a low resolution type. This simple
example demonstrates that even if the problem is under-
determined�M , K�; the method does not collapse.
Also note, that in theDv! 0 limit, i.e. the single sinu-
soid case, Eqs. (53) and (54) recover the exact result as
they should.

M � 2
The case of two Krylov basis functions requires the

use ofN � 4 signal points and needs the solution of
the following 2× 2 generalized eigenvalue problem,

c1 c2

c2 c3

 ! �Bk�1
�Bk�2

 !
� uk

c0 c1

c1 c2

 ! �Bk�1
�Bk�2

 !
�55�

The eigenvalues can be found from the roots of the
corresponding secular equation,

det
c1 2 ukc0 c2 2 ukc1

c2 2 ukc1 c3 2 ukc2

 !
� 0:

After substituting the assumed form for thecn terms,
Eq. (52), one can check that the two roots areu1 �
e2it�v1Dv� andu2 � e2it�v2Dv�

: Solving then Eq. (55)
for the eigenvectors, normalizing them according to
Eq. (50),

� �Bk�1 �Bk�2 �
c1 c2

c2 c3

 ! �Bk�1
�Bk�2

 !
� 1;

and using Eq. (51),���
dk

p � � �Bk�1 �Bk�2 �
c0

c1

 !
;

then recovers the two amplitudes,d1 � d andd2 � d 0:
Thus for a noiseless signal made of two complex

sinusoids the spectral parameters can be calculated to
essentially machine accuracy using just four signal

points, regardless of how close the two frequencies
are to each other. This is quite different from the
conventional FT spectral analysis which will require
a very fine frequency grid (with a spacing less than
Dv ) and therefore many time-domain points to
resolve two very close lines, no matter how high the
SNR is. That is, the FT cannot take the full advantage
of the high SNR, while in a parametric fit of the signal
the sensitivity is naturally converted into high resolu-
tion.

It might be useful to check that forM . K (here
K� 2) theU1 andU0 matrices will indeed be singular
with M 2 K zero eigenvalues. Such a case requires a
special algorithm (e.g. the QZ-algorithm [45]) which
takes care of the singularities, yet, it can be checked
that for, e.g.M � 3 the corresponding 3× 3 general-
ized eigenvalue problem will have the sameK � 2
correct eigenvalues, and their two eigenvectors will
result in the correct amplitudes.

5. RRT: the regularized resolvent transform for
direct spectral estimation

The amplitudesdk together with frequenciesv k can
be used for spectral estimation according to either Eq.
(13) or Eq. (14). Alternatively, due to the resolvent
formula, Eq. (39), the infinite time DFT spectrum can
be estimated directly (i.e. avoiding the solution of the
generalized eigenvalue problem) using the Resolvent
Transform formula [14]

I t�s� � CTR�s�21C 2
itc0

2
; �56�

where we have defined another data matrix in the form
of a matrix pencil:

R�s� � U0 2 eitsU1

it
: �57�

(Note, that in place ofR�s� we will often useR to
simplify the notation.)

Rather surprisingly, Eq. (56) is a working expres-
sion. In the case when Eq. (11) is exactly satisfied, it
yields the exact infinite time DFT spectrum, if we
chooseM � K; even though only a finite part of the
signal cn of size N� 2M is used and the spectral
parametersv k and dk are not computed. The result
is also exact ifM . K; although in this case bothM ×
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M U-matrices are singular requiring the use of a
pseudo-inverse ofR. In practice, the measured data
contains some noise, so the matrices are not exactly
singular, although they could still be very ill condi-
tioned, so some kind of regularization will often be
required.

When calculatingI t�s� it might be a good idea to
solve the generalized eigenvalue problem (48) to be
able to generate the results for all values ofs with no
extra cost. However, it is not necessary if a fast linear
system (i.e.R�s�X�s� � C� solver is available (for
instance, if it can take advantage of the special form
of the s dependence of the resolvent in Eq. (56)) or,
more importantly, if it allows one to implement an
efficient regularization scheme, which happens to be
the case here. (Note that a both robust and computa-
tionally efficient regularization of FDM that can be
applied to a generic multi-dimensional signal is still
an open problem.)

In what follows we present a brief discussion of
regularization for the present context. Much more
elaborate discussion on regularization of ill-condi-
tioned linear systems can be found in the tutorial by
Neumaier [46].

In order to regularize Eq. (56) one can replace the
true inverseR21 by a pseudo-inverseR21

q with some
regularization parameterq, arriving at the Regularized
Resolvent Transform (RRT),

I t�s� � CTR21
q C 2

itc0

2
: �58�

Now one has several options.

5.1. Regularization by singular value decomposition

SVD of the squareKwin × Kwin matrix R is defined
as

R �WLV† �59�
with unitary Kwin × Kwin matricesW andV and real
diagonal matrixL � diag�li� with l1 $ l2 $ … $
lKwin

$ 0: Now the problem of regularizingR21 is
reduced to regularization ofL21, so that we can write

R21
q � VL21

q W† �60�
with lq

21 defining a pseudo-inverse ofl.
The simplest regularization procedure corresponds

to the use of thetruncated SVD:

�L21
q �ii �

1=li ; li . q;

0; li , q:

(
�61�

Truncated SVD is a very good option in cases when
there is a clear thresholdq between the subset of
nearly singular valuesli p q (“the null space”) and
the other valuesli q q (“the range space”). Unfortu-
nately, for realistic signals this is often not the case
and there is no general prescription on how to choose
q. The results could abruptly depend onq, so the use
of this technique is often associated with frustration
and subjectiveness. A much better regularization
would be, for example,

�L21
q �ii � li

l2
i 1 q2 ; �62�

in which the “singular” contributions are not removed
abruptly.

Although Eq. (62) is a smooth regularization, the
main problem associated with it is still the lack of a
general prescription on how to chooseq. Thus the
cheapest and easiest way to both choose optimalq
and construct the best solution is to generate the spec-
tra with several values ofq. Even though SVD is,
generally, quite expensive, the benefit of using it is
that the results with differentq could be generated at
no extra cost.

5.2. Tikhonov regularization

Much less numerically expensive, than SVD, is the
Tikhonov regularization [41,42] in which a pseudo-
inverse is obtained according to

R21
q � �R†R 1 q2�21R†

; �63�
where, again,q plays the role of a regularization para-
meter. With such a regularization the singularity in the
denominator is removed as�R†R 1 q2� is a Hermitian
and positive definite matrix.

Eq. (58) can now be evaluated by solving the regu-
larized Hermitian least-squares problem,

�R†R 1 q2�X�s� � R†C; �64�
and then using

I t�s� � CTX�s�2
itc0

2
: �65�
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Although the Tikhonov regularization is much
faster than an SVD-based regularization, the fact
that there is no saving if it is implemented for different
values ofq, makes it less attractive.

5.3. The status of RRT

The spectral estimation given by Eqs. (58), (60) and
(62) (or Eqs. (64) and (65)) has a status of a “trans-
form” (like DFT), while a “method”, e.g. the Filter
Diagonalization Method, would refer to a procedure
that would generally be less obvious to use. More
precisely, Eq. (58) corresponds to a direct nonlinear
transformation of the time signal to the frequency
domain. Unlike most other nonlinear spectral estima-
tors, RRT is very stable with the regularization para-
meterq controlling both the stability and resolution,
whether used in Eq. (62) or (63): a biggerq suppresses
the spectral artifacts, decreases the resolution, and
therefore leads to a more uniform spectral estimate.
These effects occur more smoothly as a function ofq
than in the truncated SVD approach.

Since RRT approximates the infinite-time DFT, the
latter can be replaced by the former. Just like DFT, the
RRT, while being amazingly stable and easy to use,
has some drawbacks: (i) it is a spectral estimator and
as such does not automatically provide one with a line
list; (ii) generally, one has difficulties in constructing
absorption mode spectra in multi-dimensional spec-
tral estimation (see below) when a single purely phase
modulated data is processed, while in FDM various
types of spectra are easily constructed using the
computed spectral parameters.

6. Fourier basis for local spectral analysis

Being very simple both KBDM and RRT imple-
mented with Krylov basis of sizeM � N=2 have at
least one very serious problem, namely, they scale
cubically with respect to the sizeN of the signal.
This means that they cannot be applied, on a regular
basis, to signals of size more than, say, a few thousand
data points. Fortunately, the problem is not so severe
as it seems because there are ways to avoid the global
fit of a huge signal by breaking the spectral analysis
problem into small windows. In FDM this is done by
implementing a Fourier filter [1] to the basis func-
tions. Note that theU-matrices have a very special

Hankel structure. There exists a unitary transforma-
tion corresponding to certain Fourier basis [2] that can
be implemented efficiently. The resulting matrices
have much better structure and can be diagonalized
in a block fashion.

To be absolutely fair, the idea of making the high-
resolution spectral analysis local, calledbeamspacing
in the engineering literature, has been known for a
long time (see, for example, Ref. [47]) and has been
widely exploited in various contexts. However, to the
best of our knowledge, the developed beam space
methods are hardly known in the NMR community
and are not designed for the specific problems of
NMR data processing, although note that a variant
of the beam space idea has been implemented in
conjunction with LP [48]. The latter method, called
LP-ZOOM, has not been used much in the NMR data
processing, so there is not enough information to eval-
uate its performance.

FDM is certainly one of possibly many ways to
tackle the problem, but is well tested, robust, compu-
tationally efficient and generalizable to the multidi-
mensional case.

To this end, our goal here is, for a given small
spectral window, to construct a small set of basis
functions that form a locally complete basis. In
other words, for an eigenvaluev k of V̂ inside the
specified window, we want the corresponding eigen-
function uv k) to be a linear combination of only a few
basis functions. As such consider the discrete Fourier
transformation of the Krylov basis,

uw j� �
XM 2 1

n�0

eintwj un� ;
XM 2 1

n�0

eint�wj 2V̂ �u0�: �66�

To remove the ambiguity in the choice of thew j

values we can consider an equidistant grid,

wj � 2jp
Mt

; j � 1;…;M: �67�

For this choice the transformation from the Krylov
basis {un�} ; n� 0;…;M 2 1; to the Fourier basis
{ uwj�} ; j � 1;…;M; is unitary. More importantly,
each basis functionuw j) is localized in the frequency
domain, i.e. it is a linear combination of only those
eigenfunctionsuv k) of V̂ for whichvk , wj . This can
be checked by evaluating the sum in Eq. (66)
analytically and using the spectral representation of
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V̂ :

uw j� � 1 2 eiMt�wj 2V̂ �

1 2 eit�wj 2V̂ � u0�

,
X

vk,wj

1 2 eiMt�wj2vk�

1 2 eit�wj2vk� �vku0�uvk�;

and noticing that only a few terms withvk , wj are
significantly contributing touw j). This also implies
that we can consider a small subset of, say,Kwin p

M valuesw j in the frequency region�vmin;vmax� so
that

uvk� <
X

vk,wj

� ~Bk�j uwj�; �68�

where here and throughout the rest of the article the
tilde identifies the use of the Fourier basis. NowÛ can
be diagonalized in the Fourier subspace correspond-
ing to some pre-specified frequency window to yield
the eigenvalues and eigenvectors from this window.
(Alternatively, the RRT spectrum can be evaluated
directly using the resolvent̂Gt�s� represented in the
same small Fourier basis.) By choosing another
window one can obtain another subset of converged
eigenvalues and eigenvectors, and so on. Note that the
extraction of the eigenfrequenciesv k to a high preci-
sion only requires that the local completeness condi-
tion,

r�wj� <
Nt

4p
$ r�vk�; �69�

be satisfied for the density of the grid pointsw j,
defined by the information density in the frequency
domain contained in the data of sizeN, and the density
of the complex polesv k. In other words, the signal
lengthN should be sufficient to justify the use ofKwin

basis vectorsuw j) in the interval �vmin;vmax� that
dominates the number of the eigenvaluesv k in this
interval. The local spectral analysis not only avoids
problems of estimating the total rankK of the signal
subspace, but, to certain extent, is also insensitive to
the spectral properties outside�vmin;vmax�:

The use of a narrow-band basis is the essence of the
original Neuhauser’s filter diagonalization for extract-
ing the spectra of large Hamiltonian matrices [17],
although the form of Eq. (66), as introduced in Ref.

[2], is both simple and numerically more efficient than
the Fourier basis of Ref. [1].

To proceed further let us define the matrix elements
of Ûp in the Fourier basis

� ~Up�jj 0 � �wj uÛ
puwj 0 �: �70�

Since the vectorsuw j) defined by Eq. (66) are linear
combinations of the primitive Krylov vectorsun), the
matrix ~Up is a functional of only the {cn} sequence
and does not depend explicitly on either of the auxili-
ary objectsÛ; uv k) or u0). Inserting Eq. (66) into Eq.
(70) for the matrix elements of~Up and using the result
of Eq. (49) we have

� ~Up�jj 0 �
XM 2 1

n0�0

XM 2 1

n�0

eintwj ein0twj 0 cn1n01p: �71�

This double sum can be simplified to a single sum by
changing the variables from�n;n0� to �l � n 1 n0;n0�
and then summing overn0, which, after some algebra,
gives:

� ~Up�jj 0 � Ŝ
X

s�0;1

eis�tM�w j 02wj �1p�

1 2 eit�wj 02wj �

×
X�s1 1��M 2 1�

n�sM

eintw j cn1p; �72�

where Ŝ defines a symmetrization operator over the
indicesj and j 0.

Ŝgjj 0 � gjj 0 1 gj 0 j : �73�
Eq. (72) is, in principle, correct for all choices ofw j

andw j 0 except for the singularity arising atwj � wj 0 :

To obtain a numerically practical expression for this
singular case we evaluate thewj ! wj 0 limit leading to

� ~Up�jj �
X2M 2 2

n�0

eintwj �M 2 uM 2 n 2 1u�Cn1p: �74�

Notably and quite importantly, the resulting
matrices~Up have a sinc-like structure with, as antici-
pated, generally large diagonal and decaying off-diag-
onal terms. The latter become much smaller than the
former onceMtuwj 2 wj 0 u q 2p: It is this structure
which justifies the possibility of either performing
the eigenvalue calculation or the direct spectral esti-
mation by RRT in a smallKwin × Kwin block fashion
for possibly largeM. Fig. 1 shows the “z-plane” of the
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evolution operator with its eigenvalues that are
assumed to be inside the unit circle. A small frequency
window to be used in the FDM calculation is also
shown with the region around it where one could
expect to obtain the converged eigenvalues.

Using Eqs. (51) and (66) the amplitudesdk can be

easily computed using���
dk

p � ~BT
k
~C; �75�

where the coefficients of the 1× Kwin column vector~C
are computed using FT of the original 1× M signal
arrayC:

� ~C�j �
XM 2 1

n�0

eintwj cn; j � 1;…;Kwin: �76�

7. Spectral estimation using the FDM line list

7.1. Multi-window implementation of FDM

In a single run FDM can obtain results only for a
particular small window, in which the most accurate
are generally the narrow poles and the ones close to
the center of the window. As first noted in Ref. [1] in
order to describe the overall spectrum one has to
implement multiple overlapping windows and throw
away the results at the edges of the windows.

In Fig. 2 we show an example of spectral construc-
tion by combining the results from several overlap-
ping windows with 50% overlap. For each single
window �v�r�min;v

�r�
max� labeled by index r all the

frequenciesv�r�k and amplitudesd�r�k are retained and

used to construct the spectrumI �r��s� only inside this
window by either Eq. (13) or Eq. (14). The overall
spectrum is then constructed by

I �s� �
X

r

g�r��s�I �r��s�; �77�

where g�r��s� is an appropriate weighting function
which is non-zero only inside therth window
�v�r�min;v

�r�
max�: From our numerical tests we found that

any reasonable choice satisfying
P

r g�r��s� � 1 works
well. For example, one can implement

g�r��s� � 1
2

1 2 cos 2p
s2 v�r�min

v�r�max 2 v�r�min

 !" #
; �78�

also used in Fig. 2.
Note that in RRT implemented with a Fourier basis

[14] the spectra computed for different windows are
combined in a similar fashion.
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Fig. 1. Schematic plot in the “z-plane” of the eigenvaluesuk �
e2itvk of the evolution operatorÛ � e2itV̂ (shown with open
circles) for the case of strictly decaying signal. Only a small portion
(in the shadowed region) of the eigenvaluesuk are extracted by
FDM using the gridw j in the small frequency interval�vmin;vmax�:

Fig. 2. Decomposition of the spectrum (upper trace) into the over-
lapping windows using the cosine-weighting functions (Eq. (78))
shown with dotted lines.



7.2. To flip or not to flip? I�s� or I t�s�?

The narrow band Fourier basis makes FDM a very
powerful tool for high-resolution spectral analysis of
the time domain data well described by the form of
Eq. (11). However, one could wonder if the method is
sufficiently stable and robust even when the latter is
not the case. To answer this question we can consider
the quite simple example of an NMR signal that has a
relatively large background spectrum and is relatively
noisy (see Fig. 3). As seen in the second trace the
FDM ersatz spectrum obtained by Eq. (13) does not
reproduce correctly the converged FT spectrum. The
reason is that the parameters of very broad poles
responsible for the global shape of the noisy baseline
cannot be accurately computed when a narrow band
Fourier basis is used. The latter works well only for
narrow peaks localized in the window, while the non-
localized broad spectral features in the presence of
noise are not “seen” by the narrow band Fourier
basis. Very surprisingly, the same set ofv k and dk

used with Eq. (14) (the third trace of Fig. 3) repro-
duces the correct baseline of the DFT spectrum!

Any experienced parameter estimator knows about
the subtlety hidden in HIP, Eq. (11), when dealing

with non-ideal signals. This subtlety is associated
with the possibility to have in the line list a polevk ;
nk 2 igk with negative “width”, i.e. gk , 0: This
formally corresponds to the unphysical exponential
increase of the time signal. Since most experimental
signals are not ideal one often faces a dilemma on
what to do with such a pole? There are several possi-
bilities:

1. Do nothing.
2. Flip the unphysical negativeg k to make it positive

and pretend that nothing has happened.
3. Throw away the unphysical entry with negativeg k

and pretend that nothing has happened.

The first possibility is usually rejected as
“obviously wrong” and the choice is made between
(2) and (3).

An argument for choice (2) is that ifgk , 0 is
small, and caused by numerical errors in calculating
the width of a very narrow line, the corresponding
peak in the absorption spectrum will have the wrong
sign. Flippingg k then makes the appearance of this
peak correct.

An argument for choice (3) is that the entry with
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Fig. 3. 1D proton NMR absorption spectrum of progesterone for a representative spectral region of a noisy signal of lengthN � 2000 and
spectral width SW� 4 ppm (2 kHz) computed by, respectively, from the top to the bottom: DFT; Eq. (13) with spectral parameters {dk;vk}
obtained by FDM; Eq. (14) using the same set {dk;vk} ; Eq. (13) with {dk;vk} obtained by the multi-scale FDM. No attempt was made to get rid
of the noise by throwing away the small entries from the line list. These results demonstrate the following points. (i) Eq. (13) is dangerous to use
if there are interfering polesvk ; nk 2 igk with both positive and negative “widths”gk and big amplitudesdk. With the slightly wrong formula
(Eq. (13) rather than Eq. (14)) the negative contributions are not correctly canceled by the positive ones leading to the baseline distortions. Such
interference effects are minimized in the multi-scale FDM which removes the spurious entries and, in particular, Eq. (13) does not fail.



negative and largeg k is spurious and has to be elimi-
nated as there seems to be no reason to keep it.

Once FDM is concerned, we have to take into
account the following considerations. When thedk

are computed by solving a least squares problem
using Eq. (11) with pre-computed set of thev k (as,
to the best of our knowledge, is the case for most
parameter estimators, but not FDM), anv k with nega-
tive g k can blow up all the amplitudes. Numerical
instability is not an issue only ifgk , 0 has a small
magnitude. Thus, generally, one retains thev k with
smallg k flipping the negativeg k values, while thev k

with large and negativeg k values are rejected. The
amplitudesdk together with the frequenciesv k can
then, in principle, be used in Eq. (13) to construct
I �s�: Unfortunately, the resulting spectrum is often
unstable and sensitive to various adjusting para-
meters. Throwing away a polev k, even if it is not
narrow, may lead to a missing peak in the spectrum,
while keeping a too broad pole may lead to numerical
instabilities. As a consequence, for instance, in most
applications of LP, the computed spectral parameters
are only used to extrapolate the truncated time signal
to somewhat longer times and process it with the
conventional DFT.

In FDM the situation is quite different as the ampli-
tudes dk are computed simultaneously with the

frequenciesv k using, respectively, the eigenvectors
and eigenvalues of the generalized eigenvalue
problem. Therefore, in FDMgk , 0 does not neces-
sarily lead to any numerical instability in the calcula-
tion of thedk. In our early applications of FDM [2,7]
we always used Eq. (13) to construct the spectrum
I �s�: As discussed above a narrow peak with negative
g k will appear upside-down in the absorption spec-
trum, which is easily fixed by flipping the sign of
g k. However, because of the local nature of the Four-
ier basis, which is manifestly incomplete, some
computed pairs�vk; dk� may have large and negative
g k with large dk values. Those entries would often
result in a noticeable baseline distortion when used
with Eq. (13) as shown in Fig. 3. Neither throwing
away such a “spurious” entry nor flipping theg k

would fix the baseline. In the spirit of the LP applica-
tions it is possible to correct the FDM imperfections in
the construction ofI �s� by using hybrid methods
[1,11] in which, for instance, narrow poles produced
by FDM are retained, while the residual time signal,
~cn � cn 2

P
k dk e2intvk ; that contains only rapidly

decaying components, is processed by DFT. This,
however, does not allow one to obtain a consistent
line list. Furthermore, the hybrid methods are not
easy to generalize to the multidimensional case
where the spectral construction appears to be a very
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Fig. 4. An example of a multi-scale basis set and the spectrum obtained using this basis for the same signal used in Fig. 3.Kwin� 10 narrow band
and Kc � 20 coarse basis functions (indicated by an impulse at eachw j) were used. The coarse functions are distributed non-uniformly
according to the displacement from the window: the farther away from the window, the sparser the distribution of the values.



difficult problem. A much more consistent approach is
to use a global basis [11] that, in addition to the
narrow band Fourier basis describing a narrow
frequency domain in high resolution, contains a
broad band “coarse” basis vectors covering much
broader spectral region (see Fig. 4). Such amulti-
scalebasis still has a small overall size while being
able to produce a line list {vk;dk} with no spurious
entries of the type described above. Such a line list
when used in Eq. (13) leads to a stable result.

The unexpected finding shown in the third trace of
Fig. 3, that Eq. (14) with the line list {vk;dk} contain-
ing some “spurious” entries leads to the correct spec-
trum with undistorted baseline, can be explained by
the fact that it is theI t�s�; not I �s�; which is invariant
to the basis set representation. Due to the existence of
very delicate interferences and cancellations of the
contributions with large values of bothdk andg k in
Eq. (14) the instabilities do not occur if one keeps all
the entries produced by FDM when using Eq. (14).
This also explains the stability of the RRT which
relies on the same infinite-time DFT based expression.
Clearly, if Eq. (14) gives the correct baseline in the
presence of such poles, Eq. (13) must fail as the two
expressions are quite different for largeg k. Conse-
quently, when possible

• The spectral estimation should be done using the
discrete-time expression, Eq. (14).

• All the poles with significant amplitudesdk must be
retained in the sum.

• Only narrow poles withgk , 0 should be flipped:
gk ! 2gk:

Even though the spectrum is correct, the corre-
sponding broad poles with negativeg k and largedk

do not correctly describe the time domain data. There-
fore, for obtaining a line list consistent with the decay-
ing time signal and with minimized cancellation
effects the use of multi-scale FDM is advantageous.

7.3. Multi-scale Fourier basis

Our goal here is for a given small spectral window
to construct a sufficiently small basis, which is not
only locally complete for the narrow poles inside
the window, but also adequately describes the non-
localized spectral features. Roughly speaking, the

basis should allow us to look at the whole spectrum
in a low resolution and, simultaneously, zoom into the
chosen small spectral region. A narrow band Fourier
basis does not satisfy this criterion. However, one can
extend the local basis set to a non-local one by adding
appropriate coarse basis functions with wide band-
width that are capable of describing the overall spec-
trum at low resolution [11].

There are several ways to introduce a coarse basis.
The most straightforward is to use the Krylov vectors
un) up to n� Mc that are added to the narrow band
Fourier basis vectors for each single window calcula-
tion. Clearly, this method would be applicable only if
Mc does not have to be bigger than, say, 102. That is,
the Krylov type coarse basis is generally applicable to
relatively small data sets with relatively simple
spectra.

A more consistent strategy is to implement a multi-
scale Fourier basis by considering a non-uniform
distribution of thew j and allowing theM in Eq. (66)
to be a function ofj, essentially defined by the local
densityr�wj� of thew j values,

Mj � 2p
t

r�wj�: �79�

Thus, for a multi-scale Fourier basis Eq. (66) is
rewritten as

uwj� �
XMj 2 1

n�0

eintwj un�; j � 1;…;Kc 1 Kwin; �80�

whereKc 1 Kwin is the total size of the basis including
both the coarse and narrow band Fourier basis vectors
for a given small spectral window. An example of
such a non-uniform distribution of the basis vectors
in the frequency domain is shown in Fig. 4.

The matrix elements of̂Up between any two basis
functionsuw j) anduwj 0 � can be evaluated (see Ref. [11]
for details) leading to

� ~Up�jj 0 � Ŝ
X

s�0;1

eits�Mj 0 �wj 02wj �1p�

1 2 eit�wj 02wj �

×
Xs�Mj 0 2 1�1 Mj 2 1

n�sMj 0
eintwj cn1p �81�

for j ± j 0 and the diagonal matrix elements defined by
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Eq. (74). Note that ifMj � Mj 0 ; Eq. (81) becomes
equivalent to Eq. (72), as it should.

The most simplified implementation of a multi-
scale Fourier basis would correspond to using just
two scales, i.e.M � N=2 and Mc p M where N is
the signal size available, with the two equidistant
grids of values {w�c�j } ; j � 1;…;Kc; and {w j}, j �
1;…;Kwin: Note that some contraction of the coarse
basis is possible by simply retaining only those
vectorsuw j) for which a low-resolution Fourier spec-
trum is greater than some pre-specified threshold
value.

Finally, we note that the total size of the coarse
basis set can significantly be reduced by a contracting
procedure in which FDM is first applied to a short
signal with size 2Mc and some large spectral window
that includes the small window of interest. After Eq.
(48) is solved, only those eigenvectors~B�c�k are
retained for which the amplitudesd�c�k are larger than
some pre-specified threshold value. These eigen-

vectors are then added to the narrow band Fourier
basis and Eq. (48) is solved again. Clearly, this pro-
cedure can be implemented in a “renorm group”
fashion, if one wants to make it very complicated.

More detail about the multi-scale FDM with some
numerical examples can be found in Ref. [11].

7.4. Cheating or resolution enhancement

Needless to say, the spectral representation of the
line list is much simpler and more appealing than the
table format, especially, to a visually oriented person.
It is difficult for a human operator to analyze the line
list which contains many entries with broad and
narrow poles with high and low amplitudes, etc.
However, the line list contains much more informa-
tion than the conventional spectrum. For example,
some spectral lines are not necessarily singlets, they
just happened to appear as singlets because the under-
lying peaks are broad and strongly overlap. It should
be emphasized that the ersatz spectrum of Eq. (14) is
just one possible representation of the line list. Of
course, it is a very special representation as it esti-
mates the infinite time Fourier sum ofcn. In the frame-
work of the Fourier spectral analysis it is possible to
achieve some resolution enhancement by implement-
ing aggressive filters, such as the “pseudo-echo” [40]
that could improve the resolution of the peaks at the
expense of severe distortion of their amplitudes and
enhancement of the noise artifacts. Once we believe
that the spectral peaks are Lorentzians, even if they
overlap, we can construct another spectral representa-
tion of the line list using, e.g. Eq. (14) but with the
Lorentzians narrower by some factor [7], 1/cheat. 1,

vk ; nk 2 igk ! nk 2 i·cheat·gk: �82�
We call this spectral representationcheatingas it may
lead to wrong conclusions in cases of non-Lorentzian
lineshapes, where a single peak would be represented
by several interfering Lorentzians. Typical values of
the parameter “cheat” are between 0.1 and 1 (note that
for cheat� 1 Eq. (82) the widths are unchanged).
Even when the Lorentzian assumption is adequate a
too aggressive cheating may lead to significant distor-
tions of the baseline as the amplitudesdk of the over-
lapping Lorentzians may be complex. Some
ambiguity of the individual amplitudes does not affect
the appearance of the spectrum due to the mutual
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Fig. 5. FDM ersatz spectra of a fluorinated ribose derivative. Both
the FDM and FFT (not shown) spectra are absolutely converged
with respect to the size,N, of the signal in the sense that further
increase ofN does not improve the resolution. However, when Eq.
(82) is used with cheat� 0.2 the doublet structure, hidden in the
conventional spectral representation because of the overlapping
Lorentzians, is uncovered for all the peaks in the two multiplets
shown in the upper traces.



cancellations of the overlapping Lorentzians in Eq.
(14), while it may cause significant spectral distor-
tions in Eq. (82), especially because of the non-zero
Im{ dk} leading to the dispersion lineshapes. Thus to
improve the appearance of the enhanced spectrum Eq.
(19) can be implemented, instead of Eqs. (14) and
(17), to reinforce the pure absorption lineshapes and
then using eitheruAt�s�u or Re{At�s�} for a real-valued
absorption mode spectrum.

Interestingly, unlike the resolution enhancement
methods based, for instance, on the sine-bell weight-
ing of the time signals, cheating preserves the peak
weights since they are defined by the amplitudes,dk,
which are unaffected, and not by the widths.

Fig. 5 shows an interesting part of a proton NMR
spectrum of a fluorinated ribose derivative. The over-
all spectral width was 10 kHz and the size of the
signal N � 8192 (see Ref. [5] for more details).
Both FFT (not shown) and FDM spectra are abso-
lutely converged in the sense that further increase of
N does not improve the resolution. The use of Eq. (82)
with cheat� 0.2 allows us to uncover some splittings,
hidden in the conventional spectral representation.
The peaks, appearing in the latter as singlets, turn
out to be doublets. However, one should always be
cautions when trying to interpret such a result, as there
is no guarantee that the splittings are real and not
caused by the ambiguity of the Lorentzian fit of
non-Lorentzian lines.

7.5. Phase correction

Due to various reasons the first few data points may
be corrupted or missing resulting in both the phase
and amplitude distortions in the calculated spectra.
Therefore, construction of an absorption spectrum
requires to correct the distorted phase. If only a couple
of data points are missing this can be usually done
quite reliably by a linear phase correction of the FT
spectrum. However, for long time delays the usual
linear phase correction routines cannot eliminate the
“phase roll” to flatten the baseline. The usual LP
approach to the problem is to first “backward predict”
the corrupted time domain data points from the uncor-
rupted data and then compute the FT spectrum.

Given a line list {vk; dk} ; another approach (see,
e.g. Refs. [28,49]) may be to assume that each
frequency v k describes a well-converged narrow

Lorentzian line with amplitudedk that has a wrong
phase. These phases can then be set to zero, i.e.

dk ! udku: �83�
Note, however, that such a phase correction is very
dangerous in cases of either strongly overlapping lines
or non-Lorentzian lineshapes or both, when a particu-
lar lineshape could be a result of interference and
mutual cancellations of many Lorentzians. A much
less aggressive procedure based on the same assump-
tion that all amplitudesdk must be positive is to use
Eq. (19) with uAt�s�u to approximate the absorption
spectrum. However, this approach cannot be applied
for a general case when the amplitudes may have
different signs. Here we discuss how the time delay
correction can be carried out more consistently in the
frame of FDM [7]. LetDt be the time delay, corre-
sponding to the first point of the time signal used, i.e.

cn � c��n 1 D�t�; n� 0;…;N 2 1: �84�
When the HIP, Eq. (11), is solved for such a signal,

ideally, the extracted frequenciesv k should not be
affected by the time delay, while the amplitudes
dk�Dt� � dk e2iDtvk will be modulated by the
frequency-dependent factors. Therefore, to correct
an extracted amplitudedk�Dt� one can simply use
the expression

dk � dk�Dt� eiDtvk : �85�
Such a correction will be accurate if both the extracted
frequencyv k and amplitudedk�Dt� are reliable, which
under certain conditions is the case. However, one
should realize that the correction factor eiDtvk can
easily be very large if the widthgk � 2Im{vk} of
the kth pole is large. In such a case a small number,
dk�Dt�; is multiplied by a huge number, eiDtvk ; leading
to numerical instabilities. The errors of the calculated
spectral parameters,v k and dk�Dt�; are not the only
sources of instability, because the line list obtained by
FDM does not only represent the true spectrum. In
fact, there always are some noise poles, whose
phase correction does not make much sense. More-
over, the widths of the noise poles are not necessarily
small, so their time delay “correction” may result in
huge baseline distortions. The time delay correction
works only if such poles can be identified and
removed from the further analysis, for instance, by
using a cutoff parameter forg k. The problem will
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occur when such a separation of the signal from noise
is not possible.

To this end Eq. (85) has certain limitations. That is,
FDM will be a perfect method for correcting the
phases distorted by possibly very long time delays
but only for lines with Lorentzian lineshapes that
are not too broad and do not overlap too strongly
with other lines.

Note also, that the said instability in the spectral
estimation using the corrected line list can be
suppressed by FDM averaging as was done in Ref.
[7]. We will discuss the averaging procedure in
Section 10.1 in a more general framework of multi-
dimensional spectral construction, where numerical
instability is the rule rather than an exception.

Finally, we demonstrate here that the spectrum
itself can be corrected in the framework of RRT
avoiding reference to the line list and, therefore,
avoiding some instability problems of the line list
correction. This can be done by inserting the time
delay evolution operator̂U2D in the expression for
the uncorrected spectrum (e.g. Eq. (39)):

I t�s� � �0uĜt�s�Û2Du0�

; �0u
it

ÛD 2 eitsÛ11D
2

1

2ÛD

� �
u0�; �86�

where the second term shifts the spectrum only by a
frequency-independent constant and is not essential.
For integerD the numerical implementation of this
expression by RRT requires evaluation of the matrices
of the operatorsÛD and Û11D using Eqs. (72) and
(74). Some preliminary results obtained using this
approach are very encouraging [50], showing that it
overperforms FDM in its robustness. A reason for the
stability of the time delay correction based on Eq. (86)
is the absence of the diverging terms associated with
back extrapolation of rapidly decaying signals.

7.6. Reference deconvolution

Reference deconvolution is a powerful addition to
FDM. The first weakness an experimentalist notices
with Eq. (11) is the assumption of a Lorentzian line-
shape. This is important to the algorithm as a Lorent-
zian line can be fit by a single entry�dk;vk�; while a
non-Lorentzian line has to be fit by more than one
interfering entries, reducing the efficiency of the

FDM. In an NMR experiment the Lorentzian line-
shapes may be distorted by either the magnetic field
inhomogeneities caused by an imperfectly shimmed
magnet, or chemical exchange, or other dynamic
processes. In Ref. [51] Morris introduced the idea of
reference deconvolutionimplemented in the case of
inhomogeneous broadening which is unique over the
whole spectrum and which corresponds to convolu-
tion of the undistorted spectrum with some unknown
function. Due to the convolution theorem this is
equivalent to the assumption that the measured FID
Cexp�t� is a product of the perfect FIDCexact�t� and
some unknown smooth instrumental function of
time f �t�; plus some experimental noisey�t�;
Cexp�t� � Cexact�t�f �t�1 y�t�: �87�

As suggested in Ref. [51] the instrumental function
f �t� can be obtained by analyzing an isolated reference
line such as TMS whose exact lineshape, e.g. in terms
of the parameters {dexact

k ;vexact
k } ; is known. In the

frame of FDM this can be realized by processing the
measured data and retaining only the entries
{ dexp

k ;vexp
k } that represent the distorted reference line:

f �t� � CTMS
exp �t�

CTMS
exact�t�

�

X
k

dexp
k e2itvexp

kX
k

dexact
k e2ivexact

k
: �88�

Then simply dividing the full FID byf �t� accom-
plishes the desired deconvolution of the signal,

Cdeconv�t� � Cexp�t�=f �t� � Cexact�t�1 y�t�=f �t�: �89�
Apparently, even when we knowf �t� it is impossible
to exactly uncoverCexact�t� due to the noise term.
Moreover, sincef �t� is typically an exponentially
decaying function of time andy�t� does not decay,
the term y�t�=f �t� exponentially increases in time.
That isCdeconv�t� has a noisy exponentially increasing
tail, which makes the problem non-trivial. For exam-
ple the Fourier integral of such a signal diverges,
while an attempt to regularize the Fourier integral
by apodization would contradict the deconvolution
idea. At the same time, processing the deconvoluted
signal Cdeconv�t� by FDM will result in a line list

{ ddeconv
k ;vdeconv

k } with both negative and positivegk �
2Im{vk} : The latter represent the correct
deconvoluted lines, while the former represent the
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exponentially amplified noise that can be sorted out
(for more detail see Ref. [7]).

8. Multi-dimensional FDM: a “naive” approach

8.1. Multi-dimensional versus 1D spectral analysis

After the previous section, one can safely conclude
that the theory of 1D FDM with the addition of the 1D
RRT is essentially worked out and there might only be
some secondary problems left for future studies. This
is not the case for multidimensional FDM, although it
might appear that the latter is a straightforward exten-
sion of the 1D method. The difficulties arise in both
areas, the problem of obtaining a meaningful line list
and spectral construction. While generally working
(but often time consuming) solutions are found for
the latter problem, the former still lacks good ideas.

A 2D case might seem to be simpler than a general
D-dimensional case, but due to the vector notations
the latter requires just a minor modification of the
former. Thus, we start by introducing a general
complex valued D-dimensional time signalc~n ;
c�n1t1;n2t2;…;nDtD�; where ~n is the time vector,
defined on an equidistant rectangular time grid of
sizeNtotal � N1 × N2 × …× ND:

The total number of the experimental points,Ntotal,
is only limited by the instrument time and computer
disk capacity and does not usually exceed a gigabyte
of data. While the number of the running time points
N1 (we use this convention as it is more convenient for
multidimensional signals) may include many points
(say, of the order ofN1 , 103–104�; the number of
time points in each of the other dimensions is a strictly
limited by the total experiment time, and so is usually
far fewer.

The original formulation of multidimensional FDM
[3,6,8] is applicable only to signals with high SNR.
However, since it is a very straightforward general-
ization of the ideas and equations of the 1D FDM, we
briefly present it here before describing a more robust
but complicated approach.

8.2. Multi-dimensional FDM

A fully integrated D-dimensional HIP, can be
defined as the following parametric fit of the full

D-dimensional data setc~n;

c~n �
XK
k�1

dk e2i~n~vk ;
XK
k�1

dk

YD
l�1

e2inltlvlk ; �90�

where ~vk ; �v1k;v2k;…;vDk� are vectors of
unknown complex frequencies,vlk � nlk 2 iglk; and
dk, unknown complex amplitudes. The total number of
unknown complex parameters in theD-dimensional
line list { ~vk;dk} with K entries is, therefore,
�D 1 1�K:

Generally speaking, Eq. (90) corresponds to a non-
linear optimization problem. However, just like the
1D HIP (11), it can be cast into a linear algebraic
problem or, more precisely, a family of generalized
eigenvalue problems. Again, similarly to the 1D case,
K is not an adjusting parameter but rather defined by
Ntotal, the information content of the signalc~n: More-
over, since the spectral analysis is performed locally,
Ntotal unambiguously defines the average local density
of spectral features used to fit the data locally in the
frequency domain.

A complete line list {~vk; dk} can be used for spec-
tral estimation. For example, theD-dimensional
complex DFT spectrum,

I t�s1;…; sD� �
X∞
nl�0

l�1;…;D

YD
l�1

�itl� 1 2
dnl0

2

� �
einltl sl

( )
c~n

�91�
is estimated by analytic evaluation of the infinite-time
DFT of c~n represented by Eq. (90):

I t�s1;…; sD� �
X

k

dk

YD
l�1

Gtl
lk�sl� �92�

with Gtl
lk�sl� defined byv lk as in Eq. (16). Apparently,

aD-dimensional absorption mode spectrum cannot be
derived from a single complex spectrumI t�s1;…; sD�;
no matter whether the amplitudes are all phased or
not. It is though representable in terms of the line list:

At�s1;…; sD� �
X

k

dk

YD
l�1

dtl
lk�sl� �93�

with dtl
lk�sl� � Im Gtl

lk�sl�:
Generalization of the 1D quantum ansatz, Eq. (44),

is as straightforward as writing the signal in the form
of the D-dimensional quantum autocorrelation
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function,

c~n � �0u~n�; �94�
where the Krylov vectors are

u~n� � Û�~n�u0� �95�
and the multi-time evolution operator,

Û�~n� ;
YD
l�1

Ûnl
l ;

YD
l�1

e2itl nlV̂ l ; �96�

corresponding to a set ofD commuting complex
symmetric HamiltoniansV̂ l : For the associated
evolution operatorŝUl � e2itl nl V̂ l we can write:

Ûl uvlk� � ulk uvlk�; l � 1;…;D; �97�
with the eigenvaluesulk � e2itlvlk : In the “naive”
approach we assume that: (i) there are no degenerate
eigenvalues so that the eigenvectorsuv lk) are uniquely
defined; and (ii) the eigenvectors can be reordered so
that uvlk� � uv1k�; i.e. {uv1k�} is simultaneously the
eigenbasis of all the evolution operatorŝUl : With
these assumptions the quantum multi-time autocorre-
lation function of Eq. (94) satisfies the form of theD-
dimensional HIP, Eq. (90), withdk � �0uv1k�2
(compare with Eq. (37)).

Just like in the 1D case, theU-matrices are avail-
able in the Krylov basis:

�U~p�~n0~n ; �~n0uÛ�~p�u~n� � c~n1~n01~p: �98�
Thus the signalc~n with Nl � 2Ml points in thelth
dimension will correspond to the Krylov basis of
size MKrylov � M1 × M2 × …× MD � Ntotal × 22D

:

Now assuming the eigenfunctionsuv lk) can be
expanded in the Krylov basis,

uvlk� �
XMr 2 1

nr�0
r�1;…;D

�Blk�~nu~n�; �99�

we can convert theD operator eigenvalue problems,
Eq. (97), into D matrix generalized eigenvalue
problems,

UlBlk � ulkU0Blk; l � 1;…;D; �100�
whereUl for l $ 1 is the matrix representation of̂Ul

and U0, the overlap matrix. The orthonormality of
uv lk) implies the orthonormalization condition for

the eigenvectors of Eq. (100):

BT
lk 0U0Blk � dkk0 : �101�

The eigenvalues in Eq. (100) yield the frequenciesv lk

and the normalized eigenvectors, the amplitudes,���
dk

p � BT
lkC; �102�

where we used matrix notation for theM1 × …× MD

part of the signal arrayC with elementsc~n; which
makes Eq. (102) look very similar to Eq. (51) used
in the 1D case.

If the Krylov basis {u~n�} is complete, i.e. Eq. (99)
holds, Eq. (100) for differentl will result in the same
set of eigenvectorsBlk � B1k: This, in particular,
means that, theoretically, only one of theD general-
ized eigenvalue problems has to be solved for the
eigenvectors: all the required eigenvalues can then
be evaluated using

ulk � BT
1kUlB1k: �103�

One can generate a model signalc~n by evaluating
Eq. (90) using some pre-specified set of spectral para-
meters, {~vk ; �v1k;…;vDk�;dk} ; k � 1;…;K; and
check that the method works, at least in principle:
when the conditionMKrylov � Ntotal × 22D $ K (i.e.
the basis size is greater than the rank of the operators
Ûl� is satisfied, the spectral parameters can be recov-
ered to many significant digits by solving Eq. (100)
(see an example in Ref. [3]).

8.3. Solution of the multi-dimensional HIP locally in
the frequency domain using a Fourier basis

Clearly, solving Eq. (100) in the Krylov basis is
unfeasible for any reasonable sizeD . 1 NMR signal
asMKrylov � Ntotal × 22D will be too large. Thus, here
the local spectral analysis is not an option but a neces-
sity. A D-dimensional Fourier basis is constructed by
a straightforward generalization of Eq. (80). Although
the advantage of using a multi-scale basis over the
single-scale one has not been demonstrated yet for a
more than 1D case, we use it here as it is more generic:

uwj� �
XMrj 2 1

nr�0
r�1;…;D

ei~n~w j u~n� �104�

with ~w j ; �w1j ;…;wDj�; j � 1;…;Kc 1 Kwin; and
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Mrj � 2p=r�wrj � being a function of the local density
atw rj, r � 1;…;D: With an appropriate choice for the
grid points ~w j the total sizesKwin and Kc of, respec-
tively, the window and coarse bases can both be small.
A simple and numerically efficient setup could corre-
spond to having two direct-productD-dimensional
grids: {~w j ; �w1j1;…;wDjD�} ; jr � 1;…;Krwin; with
total size Kwin � K1win × …× KDwin; and {~w �c�j ;
�w�c�1j1

;…;w�c�DjD
�} ; jr � 1;…;Krc; with total sizeKc �

K1c × …× KDc: In each dimension two independent
1D grids of values {wrj r

} ; jr � l;…;Krwin; and
{w�c�rj r

} ; jr � 1;…;Krc, have to be implemented, corre-
sponding to the narrow band Fourier basis withMrj �
Mr and coarse basis withMrj � Mrc; the latter being
generally much smaller than the maximum allowed
orderMr � Nr =2 of the Krylov basis in therth dimen-
sion, dictated by the signal lengthNr in this dimension.

The numerical expressions for the matrix elements
of ~Ul ; l � 0;…;D, in the D-dimensional multi-scale
Fourier basis are obtained by using the 1D result of
Eq. (81):

� ~U~p�jj 0 �
X

sr�0;1
r�1;…;D

YD
r�1

Ŝr
eitrsr �Mrj 0 �wrj 02wrj �1p�

1 2 eitr �wrj 02wrj �

( )

×
Xsr �Mrj 0 2 1�1 Mrj 2 1

nr�sr Mrj 0
r�1;…;D

ei~n~w j c~n1~p; �105�

whereŜr defines the symmetrization operator over the
subscriptsrj and rj 0 as in Eq. (73). The matrix
elements corresponding towrj � wrj 0 are computed
according to Eq. (74). For example, forw1j � w1j 0

we have

� ~U~p�jj 0 �
X

sr�0;1
r�2;…;D

YD
r�2

Ŝr
eitrsr �Mrj 0 �wrj 02wrj �1p�

1 2 eitr �wrj 02wrj �

( )

×
X2M1j 2 2

n1�0

�M1j 2 uM1j 2 n1 2 1u�

×
Xsr �Mrj 0 2 1�1 Mrj 2 1

nr�sr Mrj 0
r�2;…;D

ei~n~w j c~n1~p �106�

with similar expressions to treat other singularities.

Finally, for ~w j � ~w j 0 ; i.e. the diagonal elements of
the U-matrices, we have

� ~U~p�jj �
X2Mrj 2 2

nr�0
r�1;…;D

XD
r�1

�Mrj 2 uMrj 2 nr 2 1u�
( )

ei~n~w j c~n1~p

�107�
Now by expanding the eigenvectors in the Fourier

basis,

uvlk� �
X

j

� ~Blk�j uwj�; �108�

Eqs. (100) and (101) are rewritten as

~Ul
~Blk � ulk

~U0
~Blk; ~BT

lk
~U0

~Blk � 1 �109�
for l � 1;…;D: The amplitudes are then obtained
from the eigenvectors as���

dk

p � ~BT
lk
~C; �110�

where the coefficients of the 1× �Kwin 1 Kc� column
vector ~C are computed using the followingD-dimen-
sional FT of the original signal arrayC:

� ~C�j �
XMrj 2 1

nr�0
r�1;…;D

ei~n~w j c~n; j � 1;…;Kwin 1 Kc: �111�

Although the numerical bottleneck of theD-dimen-
sional FDM is usually associated with the solution of
the generalized eigenvalue problems, Eq. (109), an
intelligent programming of the expressions to
compute theU-matrices is desirable. For example,
the use of globally equidistant grids allows one to
evaluate all theD-dimensional Fourier sums using
certain fast FT algorithms which have the FFT scaling
even when the signal size is not a power of two (e.g.
FFTW, the Fastest Fourier Transform in the West
[52]), making the overallU-matrix construction for
all the windows scale as FFT. An additional saving
is possible if one takes advantage of the fact that some
of the Fourier sums are related to each other via
simple recursion relations (see Refs. [11,12]). Also
note, that even unintelligently programmed, Eqs.
(105)–(107) will scale as, Ntotal × �Kwin 1 Kc� for
a single window, which is still acceptable.
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8.4. Why does the naive D. 1 FDM “fail” for noisy
data?

Unlike the 1D FDM where a failure would be a rare
exclusion from the rule, its naiveD-dimensional
generalization would typically fail for a general
input data, the method being successful only when
the signal is strictly of the form of Eq. (90) with
high SNR and the local completeness relation
(compare with Eq. (69)),

r�~w j� <
YD
l�1

Nltl

4p
$ r� ~vk�; �112�

satisfied for the densityr�~w j� of the grid points~w j and
the densityr� ~vk� of poles ~vk:

Firstly, construction of aD-dimensional line list
requires uniqueness of the set {~B1k} ; which is not
the case for degenerate frequencies. However, the
NMR signals often contain degenerate frequencies
(the cross peaks) which makes the degenerate case
general for NMR.

Secondly, even if the spectrum is not degenerate,
the assumption that the eigenvectors~Blk are the same
for different values ofl is hardly applicable to noisy
data. Practically, for low SNR the sets of the eigen-
vectors corresponding to differentl might not even be
close to each other. Apparently, there is no easy way
to “couple” the frequenciesv lk obtained by solving
Eq. (109) with differentl. That is, at a time one can
only have any particular projection of the line list
{vlk;dlk} with the amplitudes����

dlk

p � ~BT
lk
~C; �113�

but not the whole line list {~vk; dk} ; as was originally
assumed. This, in turn, implies that Eq. (92) is gener-
ally not very useful for an accurate spectral estimation
as it relies on the existence of a coupled and accurate
line list.

Thirdly, it might appear that Eq. (103) can be used
to couple the frequencies. However, Eq. (103), albeit
theoretically correct, is practically quite useless as it is
not variational with respect to the eigenvaluesulk.
That is, errors in the eigenvectors~B1k cause unaccep-
table errors in the eigenvaluesulk estimated by Eq.
(103) with l ± 1:

A somewhat complicated procedure of coupling the
frequencies in 2D FDM was used in Refs. [3,5,6] with

relative success. This procedure, based on diagonali-
zation of more than two different evolution operators,
e.g. Û1; Û2 and Û~p � Û1Û2; would result in three
independent line lists with frequencies {v1k} ; {v2k}
and {v~pk} ; respectively. Coupling these sets of
frequencies into an integrated 2D line list can be
carried out by finding such an ordering of frequencies
for which

P
k uv1k 1 v2k 2 v~pku is minimized. Unfor-

tunately, this method is only reliable for signals with
sufficiently high SNR.

In Ref. [8] an interesting idea of “simultaneous
diagonalization” of all the U-matrices that occur in
Eq. (109) was explored for the 2D case. Roughly
speaking, the idea is to find a unitary transformation
applied simultaneously to all theU-matrices that
would minimize the sum of all the off-diagonal
elements. As such one can obtain a complete coupled
line list by sacrificing the accuracy of the frequencies
(eigenvalues) and amplitudes (eigenvectors). The
obvious drawback of this method is that instead of
using the existing eigen-solver algorithms one has to
solve a nonlinear optimization problem, i.e. what we
have been trying to avoid by using linear algebra.

9. The resolvent formulae for multi-dimensional
spectral estimation

The method of spectral estimation presented in this
section avoids the problem of constructing the
coupledD-dimensional line list. That is, here we are
not trying to solve theD-dimensional HIP of Eq. (90).
Although we still assume the quantum mechanical
ansatz of Eq. (94) to be valid and the Hamiltonians
V̂ l to commute, but we let the eigenbases {uv lk)} be l-
dependent. This, in particular, covers the case of
degenerate spectra, but, most importantly, avoids the
necessity of generating a unique eigenbasis.

Just as in the 1D case (see Eq. (38)), the spectral
function formally defined as aD-dimensional FT of
the signal (Eq. (92)) can also be written in terms of the
resolvent operators,

I t�s1;…; sD� � �0uĜt1�s1�…ĜtD�sD�u0�: �114�
Since eachĜtl �sl� can be represented using Eq. (30),
expression (114) is representable byv lk and ~Blk; that
can, in turn, be obtained by solving theD general-
ized eigenvalue problems (109), independently for
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eachl � 1;…;D; because�vlk uvl 0k0 � � ~BT
lk
~U0

~Bl 0k0 and
�0uvlk� �

����
dlk
p

; ~CT ~Blk: For instance, one can use the
following expression,

I t�s1;…; sD� �
X

k1;…;kD

~CT ~B1k1
~BT

1k1
~U0

~B2k2
…

× ~BT
�D21�kD21

~U0
~BDkD

~BT
DkD

~C
YD
l�1

Gtl
lkl
�sl�:

�115�

Eq. (115) can be used instead of the conventional
D-dimensional FT to estimate theD-dimensional
complex spectrum. AD-dimensional absorption
mode spectrum can be defined by modifying Eq.
(114) using the spectral density operators (32):

At�s1;…; sD� � �0ud̂ t1�s1�…d̂ tD�sD�u0�; �116�

which after using the spectral representation becomes

At�s1;…; sD� �
X

k1;…;kD

~C
T ~B1k1

~BT
1k1

~U0
~B2k2

…

× ~BT
�D21�kD21

~U0
~BDkD

~BT
DkD

~C
YD
l�1

dt1
lkl
�sl�:

�117�

Note, that this expression leads to absorption line-
shapes no matter whether or not the signal was phased
prior to the processing.At�s1;…; sD� is, in principle, a
complex valued function, although in the case of all
real amplitudes it becomes purely real. Note that the
above spectral representations are not unique as simi-
lar expressions can be obtained by permutations of the
indices. The absorption mode formula, Eq. (117), is
meaningful only if the different peaks with absorption
shapes are not overlapping too much, i.e. the interfer-
ence effects are not significant.

In many cases the full dimensionality spectra
are not always desired as they might have too
many details, be too difficult to visualize, interpret
and store. Various reduced dimensionality spectral
projections are often used to simplify the problem
of interpreting the data. As a particular example
we here give expressions for 2D standard
projections of theD-dimensional spectra (where

D $ 2�:
I t�s1; s2� �

X
k1;k2

~C
T ~B1k1

~BT
1k1

~U0
~B2k2

~BT
2k2

~C

× Gt
1k1
�s1�Gt

2k2
�s2�; �118�

At�s1; s2� �
X
k1;k2

~CT ~B1k1
~BT

1k1

~U0
~B2k2

~BT
2k2

~C

× dt1k1
�s1�dt2k2

�s2�: �119�
Note that the expressions in Eqs. (115)–(119) are
not numerically as expensive as they might seem:
the multiple summations can be evaluated succes-
sively.

9.1. 2D RRT

Similarly to Eq. (56) it is also worth rewriting the
spectral projection in a matrix form that does not
necessarily require evaluation of the eigenvectors
and eigenvalues of the generalized eigenvalue
problems [14], for example,

I t�s1; s2� � ~CT
{ ~R1q�s1�21 ~U0

~R2q�s2�21

2
i
2
�t2

~R1q�s1�21 1 t1
~R2q�s2�21�}

× ~C 2
t1t2c0

4
(120)

with ~Rlq�sl�21
; l � 1;2; defining two regularized

inverses of the matrices

~Rl�sl� �
~U0 2 eitl sl ~Ul

itl
; l � 1;2: �121�

The regularization may now be carried out by either
SVD (Eqs. (60) and (62)) or by Tikhonov regulariza-
tion (63). With the latter one can proceed by first
computing the two frequency-dependent vectors
~Xl�sl�; l � 1;2; by solving the two regularized
Hermitian least-squares problems,

� ~Rl�sl�† ~Rl�sl�1 q2� ~X l�sl� � ~Rl�sl�† ~C; �122�
with regularization parameterq, and then using

I t�s1; s2� � ~X1�s1�T ~U0
~X2�s2�2

t1t2c0

4

2
i
2
~CT�t2

~X1�s1�1 t1
~X2�s2��: �123�

V.A. Mandelshtam / Progress in Nuclear Magnetic Resonance Spectroscopy 38 (2001) 159–196186



Note that the total number of the linear systems to be
solved for each 2D frequency window is equal to
Ns1

1 Ns2
; whereNs1

andNs2
are the numbers of the

frequency grid points,s1 ands2, to plot the spectrum in
the window.

Some numerical examples of implementing the 2D
RRT can be found in Ref. [14].

10. Regularization of multi-dimensional FDM

Our first applications of 2D FDM dealt with signals
with relatively high SNR and essentially no dangerous
degeneracies that could complicate the line list
construction [3,5,6]. So the early successes of the

“naive” version of the 2D FDM might appear a little
bit misleading. The resolvent formulae [9,10,12] have
made FDM spectra more stable with respect to both
noise and degeneracies, but these spectra would
generally be unsatisfactory for relatively low SNR
signals where the FT could still provide quite high
resolution, given the signals of sufficiently large
size. An instability in the 1D FDM could occur only
for exotic signals and is completely eliminated by the
use of multi-scale basis. Unlike the 1D case, in the
D . 1 FDM the instability is rather the rule and is
difficult to eliminate. A typical example is shown in
the upper left panel of Fig. 6 where an absorption 2D
HSQC spectrum of progesterone was computed by
FDM without any regularization using a purely
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Fig. 6. A non-regularized�q� 0� and regularized�q . 0� spectra using FDM2k (see Eq. (129)) applied to a purely phase modulated 2D signal,
generated by an HSQC pulse sequence applied to progesterone (see Refs. [6,13] for more detail). The data set processed consisted ofN1 × N2 �
600× 64 in the proton and the carbon-13 dimensions, respectively. Only a small crowded region of the spectrum is shown, the spectral widths
being SW1� 2000 Hz and SW2� 8625 Hz. The spectra were generated by combining the results of eight small overlapping windows, each
described byKwin � K1win × K2win � 24× 12� 288 Fourier basis functions.



phase modulated 2D signal. The pulse sequence and
other details of this particular NMR experiment can be
found in Refs. [6,13]. The spectrum has a high resolu-
tion character, however it is contaminated by various
artifacts, such as spurious spikes randomly distributed
over the frequency domain and poorly converged
genuine peaks. Moreover, this artifact pattern is very
sensitive to both the small variations in the input data
and the parameters of the FDM calculation.

At this point it is still not absolutely clear what
exactly causes instability in the 2D FDM. One possi-
ble explanation is based on the comparison between
the 1D and 2D implementations of FDM. In the 1D
FDM a signal of sizeN leads (with the Krylov basis)
to a generalized eigenvalue problem of rankMKrylov �
N=2; which, in turn, yieldsN/2 pairs of�vk;dk�; i.e.
totally N parameters. This means that the solution
of the HIP, Eq. (11), is unique with the total number
of equations exactly matching the total number of
unknowns, i.e. in principle, no other regularization
constraints are needed. In the 2D case the situation
is different. In Krylov basis the total rank of the U-
matrices is MKrylov � N1N2=4; resulting in N1N2=4
frequenciesv lk for each generalized eigenvalue
problem, Eq. (109). If, according to the form of Eq.
(90) with D � 2; we assume the total number of 2D
Lorentzian peaks (each characterized by two frequen-
ciesv1k andv2k and an amplitudedk) to beMKrylov, we
will have to deal with an overdetermined problem
with totally N1N2 equations and�3=4�N1N2 unknowns.
Therefore, for general fixed size arraycn1;n2

the exact
solution of the 2D HIP using the number of para-
meters consistent with the FDM procedure, strictly
speaking, does not exist, however, when solving the
2D HIP by FDM we implicitly assume that the data set
can be fit by the parametric form of Eq. (90), i.e. we
assume that this datais not generic.

The above explanation does not pretend to be abso-
lutely correct but at least it confirms that there is
something wrong with the 2D HIP, or, in other
words, the 2D HIP is anincorrectly posed problem,
which requires someregularization.

Apparently, an ill-defined linear system,RX � C;

can be regularized in a very straightforward fashion,
as discussed in Section 5, by either SVD or Tikhonov
regularization. At the same time, there seems to be no
obvious extension of such techniques to the case of
generalized eigenvalue problems encountered in

FDM. As pointed out by Møler and Stewart [45],
when the two matrices in the left- and right-hand
sides of Eq. (109) have a common null space (as is
the case in FDM), the problem has unusually patho-
logical properties. In particular, it was not recom-
mended to apply SVD toU0 (in order to get rid of
the null subspace) for the reason that the eigenvalues
and eigenvectors become very sensitive to the
assumed rank of the range subspace, introducing an
element of arbitrareness. On the other hand, the QZ
algorithm developed in Ref. [45] was argued to
provide accurate eigenvalues and eigenvectors in
terms of two numbers,uk � ak=bk; the accuracy of
which is not affected by the ill-conditioned structure
of the matrices. It was also argued that the “unreli-
able” eigenvalues could be identified by smallness of
both a k and b k. Our experience with 2D FDM is
somewhat contradictory to the recommendations of
Møler and Stewart as according to the above discus-
sion these accurate eigenvalues and eigenvectors are
generally useless, while the truncated SVD ofU0 may
help in removing the artifacts, although the ambiguity
in deciding how many basis vectors should be retained
remains a major problem. For the latter reason the use
of the truncated SVD was not extensively exploited in
our publications.

10.1. Signal averaging

The ambiguity in choosing the regularization para-
meter, especially in the truncated SVD, may appear
quite unfriendly. A simple solution to avoid it was
suggested in Refs. [9,10]. It takes advantage of the
randomness of the artifacts appearing in the spectrum
upon changing the signal size when no (or very mild)
regularization is implemented. That is, when suffi-
ciently large number of FDM spectra calculated
using differentN1 are summed together, these artifacts
magically average out. We call this method thesignal
size averaging. It may be applicable in situations
where the signal is sufficiently long in at least one
dimension, e.g. the running time. Assuming the arti-
facts in different spectra to be uncorrelated, the aver-
aging will improve the SNR of the FDM ersatz
spectrum by a factor of

�������
NFDM
p

: One should though
realize that only the artifacts caused by imperfections
of FDM are removed by such an averaging, not the
actual noise present in the signal. An example of such
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an averaged spectrum is shown in Ref. [13]. Note also,
that the spectra in Figs. 7 and 8 were obtained by
signal size averaging.

An obvious and major drawback of the method is
that NFDM , 10–100 (rather than one) FDM calcula-
tions have to be performed, significantly increasing
the overall numerical effort. Another serious draw-
back is that an averaged spectrum does not correspond
to a compact line list. It is the latter reason, though,
which explains the averaging phenomenon. Namely,
the huge number of parameters from different FDM
calculations used to construct the averaged spectrum
eliminate the overdeterminicity problem of a single
solution of the 2D HIP.

10.2. Pseudo-noise averaging

Here we describe another way to perform regular-
ization by averaging [12] which could also be very
useful in cases when the processing time is not a big
issue. Instead of changing the signal length we can
exploit the great sensitivity of the output spectrum
to small variations of the input signal of fixed size.
This sensitivity may be observed by, e.g. comparing
FDM spectraA�s1; s2� obtained from a 2D signal
perturbed by different realizations of a small
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Fig. 7. An example of direct calculation of a 1D 458-projection and
multiplet cross-sections by FDM. The spectra were obtained using a
purely phase modulated 2D-J signal of ditryptophan tripeptide [9]
with just N2 � 4 points along theJ-dimension.NFDM � 20 calcula-
tions with different number of points along the running time dimen-
sion in the rangeN1 � 11000–12000 were added together to obtain
artifact free spectra (see Section 10.1). Only a small part of the
spectrum is shown, while the two spectral widths are
SW1� 8 kHz and SW2� 80 Hz.

Fig. 8. Thesinglet-HSQC spectrum of progesterone obtained using the pulse sequence of Ref. [13]. All the proton multiplets are collapsed into
singlets! The 3D purely phase modulated signal consisted ofN1 × N2 × N3 � 600× 64× 2 points in the proton, carbon-13, and protonJ
dimensions, respectively. The same, as in Fig. 6, small and crowded spectral region is shown and the same FDM parameters for the windows
and basis sizes were used. Here, the regularization was carried out by adding togetherNFDM � 50 calculations with different number of points
along the running time dimension in the rangeN1 � 500–600 to obtain an artifact-free spectrum (see Section 10.1).



uniformly distributed noise:

c~n ! c~n 1 qy~n �124�
with ky~nl � 0; kuy~nu2l � 1 and q, the level of the
pseudo-noise.

Most surprisingly, ifq is sufficiently large, an arti-
fact free spectrum may be obtained by Monte Carlo
averaging ofAt�s1; s2� over sufficiently many different
realizations ofy~n:

Note, that the signal size averaging has essentially
no free parameter and is limited by the maximum
signal size (i.e.NFDM is limited), while the pseudo-
noise averaging converges similarly with respect to
the number of samplesNFDM, but NFDM can be arbi-
trary. The fact that the pseudo-noise amplitudeq can
be varied may be considered as both an advantage
(since the result as a function ofq can be very useful)
and a disadvantage (since one has to figure out an
optimal q).

Interestingly, the pseudo-noise averaging can also
be implemented at the stage of solving Eq. (109) by
adding pseudo-noise to theU-matrices computed
from the original unperturbed signal. The qualitative
explanation is that theU-matrices are linear func-
tionals of the input signalc~n and, therefore, a variation
in the signaly~n transfers linearly into the variation of
the U-matrices:

~Ul ! ~Ul 1 q ~Y; �125�
where ~Y is a complex symmetric matrix with inde-
pendent random coefficients satisfyingk� ~Y�jj 0l � 0;
ku� ~Y�jj 0 u2l � 1:

To this end, we describe the simplest implementa-
tion of the pseudo-noise averaging to obtain a 2D
double-absorption spectral projection from a purely
phase modulated signal. We first rewrite Eq. (119)
in the form

At�s1; s2� � ~X1q�s1�T ~U0
~X2q�s2�; �126�

where the absorption-mode vectors~X lq�sl� are
computed independently for eachl � 1;2 using the
eigenfrequencies and eigenvectors of the correspond-
ing perturbed generalized eigenvalue problems,

� ~Ul 1 q ~Y� ~Blk � ulk
~U0

~Blk; �127�
and then averaged over a sufficient number,NFDM, of

realizations of the random perturbation~Y as

~X lq�sl� �
X

k

dtl
lk�sl� ~Blk

~BT
lk
~C

* +
~Y

�128�

Obviously,q here plays the role of a regularization
parameter. We found that the behavior of the spectra
regularized by the pseudo-noise averaging as a func-
tion of q for the signal processed in Fig. 6 to be very
similar to that displayed in the figure. However, we
believe that the pseudo-noise averaging is a much
more general regularization procedure, than that
implemented in Fig. 6, and may be used in many
different contexts with, yet, the two serious draw-
backs, the high computational cost and inability to
construct a line list. Therefore, when these aspects
are crucial, one wants to implement a regularization
in the spirit of the truncated SVD.

10.3. Optimistic regularization: FDM2k

A rather more attractive method than the truncated
SVD seems to be the procedure, reminiscent to the
Tikhonov regularization, in which Eq. (109) for
eachl � 1;…;D is modified as [15]

~U†
0
~Ul
~Blk � ulk� ~U†

0
~U0 1 q2� ~Blk; �129�

with regularization parameterq. The new generalized
eigenvalue equations have a Hermitian and positive
definite right-hand side matrix, which may be advan-
tageous for numerical solution. It is very tempting to
treatq as the “noise power”, just like in the Maximum
Entropy applications [44]. Indeed, it can be demon-
strated semi-quantitatively [15], that the spectral
features with amplitudesdk of order ofq and below
are smoothed out, while the stronger peaks remain
essentially unaffected. However, how the spectra are
distorted (regularized) byq is still not fully under-
stood. Quite surprisingly, the results of using Eq.
(129) for some 2D [15] applications are very encoura-
ging, although the element of ambiguity in the choice
of q is still the main issue. It is, therefore, recom-
mended to generate a family of spectra as a function
of q, treating the latter as a parameter of the method,
just like the form of apodization function in DFT.

The regularization corresponding to the use of Eq.
(129) has been tested for some 2D HSQC spectra and
showed good results. It had been named FDM2k [15]
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to honor the new Millennium. FDM2k is demon-
strated in Fig. 6. The spectra change very smoothly
with the regularization parameterq, when the latter
varies by an order of magnitude. A smallq gives
highly resolved multiplets but also retains some
small spikes. Whenq is increased the spectrum
becomes more uniform and smooth with decreasing
resolution. With large values ofq the multiplet struc-
ture is unresolved and some generally weak peaks
disappear in the contour-plot as they are effectively
broadened by the regularization. Note that the spec-
trum corresponding toq� 0:01 is much better
resolved than that in Ref. [6] where a “naive” 2D
FDM was used. Also note that in Ref. [6] the signal
was much shorter in the running time dimension to
simplify the frequency identification procedure,
which is completely avoided here due to the use of
the resolvent formulae.

10.4. Pessimistic and complicated regularization to
compute double-absorption spectra

FDM2k allows one to compute a double-absorption
spectrum from a purely phase modulated signal using
a simple and inexpensive trick, Eq. (129). Note,
however, that the regularization ofU0 does not
completely remove the singularities of~R�sl�; which
can still have some accidental singularities leading to
artifacts in the spectrum. Therefore, most consistent,
but pessimistic, approach is to regularize~R�sl� itself
for every frequencysl, as in RRT. However, the 2D
RRT expressions, presented above, allow one to
estimate only a complex infinite-time 2D DFT,
while calculating a double-absorption spectrum by
2D RRT is not as straightforward as using 2D FDM.
The reason is that the convenient structure of a matrix
pencil, ~U0 2 z~Ul ; (which has a spectral representation
in terms of the eigenvalues and eigenvectors of the
corresponding generalized eigenvalue problem) is
destroyed in the regularized resolvent. Here we
demonstrate how this difficulty can be circumvented
using the definition of the imaginary part of an opera-
tor (31), albeit significantly increasing the numerical
effort. For example, a 2D double-absorption RRT
could be written as

At�s1; s2� � ~CT ~d1�s1� ~U0
~d2�s2� ~C; �130�

where the matrices

~dl�sl� �
X

k

Im
1
rlk

2
it
2

� �
~Blk

~BT
lk; l � 1;2; �131�

have originated from the spectral density operators
~d tl �sl� and can be evaluated by solving (in the worst
scenario, at each frequencysl) the following general-
ized eigenvalue problems,

~Rlq�sl� ~Blk � rlk
~U0q

~Blk; ~BT
lk
~U0q

~Blk � 1; �132�
where, as before, the additional subscriptq stands for
regularized matrices.

Eqs. (130)–(132) are new. Their efficient numerical
implementation is not obvious as one seems to have to
compute an expensive SVD of~Rl�sl� for different
values of the frequency argumentsl and then solve
the corresponding eigenvalue problems (132) with
the regularized matrices~Rlq�sl� and ~U0q:

Since ~Rlq�sl� is a function ofsl, in principle, bothrlk

and ~Blk are functions ofsl. However, approximately,
~Blk is a very smooth functions ofsl, while rlk can be
parameterized as

rlk <
1 2 eitl �sl2vlk�

itl
�133�

with v lk, a smooth function ofsl. This circumstance
can be utilized to reduce the computational burden,
which will be explored in our future publications.

11. 458-Projections in 2D, 3D and 4D experiments:
singlet-proton, singlet-HSQC and singlet-TOCSY
spectra

Besides the trivial projections, such as Eq. (119),
obtained by integrating out in Eq. (117) some of the
frequency dependencies in, one can consider non-
trivial projections. Examples of the latter include the
458 projections in the 2D-J experiments [9,10] and
their 3D and 4D analogs [12,13]. Another interesting
projection was considered in Ref. [16] where the 2D
DOSY spectra were plotted as a function of the
conventional proton and non-conventional “diffusion”
dimension formally corresponding to the imaginary
frequency argument.

Let ~p� �p1t1;…; pDtD� be a general vector in the
D-dimensional time space along which we seek to
construct a spectral projection. In principle,pl could
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be complex numbers (as in Ref. [16]). The~p-projec-
tions of the frequencies could be defined as

v~pk � ~p~vk

t1
;
XD
l�1

pltl

t1
vlk: �134�

The normalization term 1=t1 is arbitrary and not
essential since it only changes the scale. We can
now define the complex and absorption-mode spectral
~p-projections as

I~p�s� �
X

k

dkG~pk�s�; �135�

A~p�s� � Im{ I~p�s�} ; �136�
where we used the integral Fourier spectral represen-
tation rather than the discrete one as the latter would
unlikely be advantageous for a non-trivial projection.
We also used the simplest expression to evaluate the
1D absorption spectrum that assumes all amplitudes
to be real.

Rather than constructing the projected line list out
of the completeD-dimensional one, a much less
demanding approach is to follow Ref. [12] where
the frequency~p-projections are defined as the eigen-
values of the projected Hamiltonian

V̂ ~p � ~p ~V

t1
;
XD
l�1

pltl

t1
V̂ l �137�

and

V̂ ~puv~pk� � v~pkuv~pk�; �138�
Here as before the eigenfunctionsuv~pk� of V̂ ~p depend
on ~p (because of either degeneracies or noise or both),
although we still assume that̂V ~p commutes withV̂ l

for any l. The corresponding resolvent expression for
the spectral~p-projection is

I~p�s� � �0uĜ~p�s�u0�: �139�
To this end the 458-projection of a 2D-J spectrum

corresponds to~p� �t1;2t1�; in which the proton
multiplets collapse to single peaks at the frequencies
of the proton chemical shifts. In the FFT framework
construction of absorption-mode 458-projections is
impossible, so only a skew 458 projection of an abso-
lute value 2D-J spectrum [39] can be used.

The procedure of calculating the~p-projections
developed in Ref. [9] for the 2D-J experiment is

generalized in Ref. [12] to the case of arbitrary~p
and D.

Given matrix representations~Ul for l � 0;…;D in a
Fourier window basisuw j), Eqs. (105)–(107), a
numerical procedure of calculating a~p-projection
can be based on the following steps:

(i) Solve independentlyD generalized eigenvalue
problems (109) to obtain the eigenvaluesulk ;
e2itlvlk and eigenvectors~Blk:

(ii) Usev lk and ~Blk to construct a matrix represen-
tation of V̂ ~p in the basis ofuw j),

~V~p �
XD
l�1

pltl

t1

~V l �
XD
l�1

pltl

t1

X
k

vlk
~U0

~Blk
~BT

lk
~U0;

�140�
where ~V l are the corresponding matrix representa-
tions of V̂ l in the Fourier window basis.
(iii) Solve another generalized eigenvalue problem

~V~p
~B~pk � v~pk

~U0
~B~pk; ~BT

~pk
~U0

~B~pk � 1: �141�

(iv) The frequenciesv~pk and the amplitudesd~pk;

computed from the eigenvectors~B~pk by Eq. (110),
are then used in Eq. (135) (withdk replaced byd~pk�
to computeI~p�s�:

Note that there may be many degenerate frequen-
cies amongv~pk corresponding, for instance, to the
collapsed multiplets in the 458-projection of a 2D-J
spectrum. This though does not make eitherI~p�s� or
A~p�s� non-unique. Generally, if there are several
degenerate eigenvaluesv~pk corresponding to a parti-
cular collapsed multiplet the individual eigenvectors
~B~pk are not well defined. However, the whole degen-
erate subspace of these eigenvectors here called the
single-multiplet subspace, is unique, subject to an
orthogonal complex symmetric transformation within
this subspace. This is sufficient for the correct spectral
reconstruction using Eq. (135) because the sum of
amplitudes

P
k d~pk over the single-multiplet subspace

should be invariant under any orthogonal transforma-
tion of the eigenvectors~B~pk within the subspace.

Even though the eigenvectors within a degenerate
single-multiplet subspace are not defined, they can be
used to uncover the multiplet cross-section [9], e.g.
along the acquisition time dimensiont1, by solving the
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corresponding eigenvalue problem, Eq. (109), with
the matrices ~U1 and ~U0 evaluated in the reduced
basis of the single-multiplet subspace. The resulting
eigenvaluesu1k � e2it1v1k then all belong to this
multiplet while the eigenvectors~B1k according to
Eq. (110) define the individual amplitudesd1k:

These can be used to construct the multiplet cross-
section.

Because multi-dimensional FDM works with the
entire Ntotal � N1 × N2 × …× ND data set, useful
projections can be obtained in which a very short
additional time dimension is used to simplify a
lower-dimensionality spectrum. In Fig. 7 we repro-
duce an example of a 458-projection together with
the multiplet cross-sections of a 2D-J spectrum for
ditryptophan tripeptide [9]. The spectra were obtained
using just four time increments along theJ-dimension
and were averaged over several FDM calculations
with slightly different number of points along the
running time dimension (see Section 10.1 describing
FDM regularization by signal averaging). Note the
three overlapping multiplets at,7.1 ppm and two,
at ,7.4 ppm, which are successfully decoupled by
this technique.

The idea of proton decoupling by taking a 458-
projection of a 2D-J spectrum to simplify the 1D
proton spectrum is quite general and could be very
useful to simplify other than 1D proton spectra
[12,13]. For example, proton–carbon HSQC spectrum
can be condensed to asinglet-HSQC spectrum, in
which each CH pair gives rise to a sharp singlet, by
a 458-projection of a 3D HSQC-J spectrum. This
particular experiment makes no sense in the context
of FT processing because: (i) a large number of incre-
ments (e.g. 32–64) in theJ dimension would be
required to achieve a sufficiently high resolution, lead-
ing to an unacceptably long experiment time; and (ii)
the phase-sensitive 458-projection vanishes while the
absolute-value projection significantly degrades the
resolution. As such, each “singlet” in the FT spectrum
can give contours as wide as the original multiplet that
gave rise to it. By contrast, a usefulsinglet-HSQC
spectrum can be obtained using onlytwo time points
in theJ dimension when FDM is employed [13]. Very
narrow absorption-mode resonances are obtained,
increasing the resolution substantially. As it is unne-
cessary to record both N- and P-type spectra, thesing-
let-HSQC spectrum can in fact be obtained in the

same total time as a conventional phase-sensitive
HSQC spectrum (using FT processing).

As absorption modesinglet-HSQC spectrum can be
expressed in terms of the spectral density operators as

A�s; s2� � �0ud̂ ~p�s�d̂ 2�s2�u0� �142�
where the subscript~p ; �t1;0;2t1� stands for the
458-projection in the 2D-J plane with V̂ ~p �
V̂ 1 2 V̂ 3; while “2” corresponds to the projection
along the carbon-13 chemical shift dimension. Imple-
mentation of these equations is straightforward and is
described explicitly in Refs. [12,13] together with
several examples. One of those is reproduced in Fig.
8. This spectrum is a 3-1D simplification of HSQC
spectrum of progesterone shown in Fig. 6.

Analogous ideas apply to a double projection of a
4D spectrum resulting in a simplified 2D spectrum.
For example, as shown in Ref. [13] asinglet-TOCSY
spectrum, in which the 2D multiplets are decoupled,
collapsing to singlets, can be obtained by recording
two additional data sets with a singleJ increment in
one of the two dimensions and then using a double
458-projection.

12. Remaining problems

Both 1D FDM and RRT (that emerged from FDM)
are essentially developed and well-tested techniques
that are generally as reliable as FFT, sufficiently fast,
and can often deliver resolution beyond the FT uncer-
tainty relation if the data can be well represented by
Lorentzians and is not very noisy.

FDM provides one with an effective evolution
operatorÛ whose eigenvalues and eigenvectors are
directly related to the spectral parameters. However,
the difficulties associated with the construction of a
meaningful line list for data of poor quality (i.e. not
characterized by Eq. (11)) exist. These difficulties are
not associated with the lack of a reliable algorithm of
selecting the “genuine” poles and throwing away the
“noise” poles from the full list of complex eigenvalues
of V̂ ; but are rather conceptual caused by the ambi-
guity of the line list for a general data set that, a priori,
does not fit any particular parametric form.

The multi-dimensional spectrum cannot be gener-
ally constructed from the multi-dimensional line list
as the latter is very hard to obtain. Fortunately, various
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spectra can be obtained by avoiding the line list
construction and using the resolvent expressions.
The resolvent operator formalism appears to be very
convenient since it allows to construct various types
of spectra including absorption-mode spectra, non-
trivial spectral projections (e.g. 458-projections of
2D-J spectra, or 2D singlet-HSQC and singlet-
TOCSY spectra, or imaginary frequency projections
used in DOSY). The main computational problem
associated with the implementation of the resolvent
formulae is that one typically deals with very ill-
conditioned matrices causing the spectrum to be
very unstable with respect to both the FDM para-
meters and small variations of the input data. Thus,
unlike the 1D case, there are major problems to be
solved in the multi-dimensional versions of both FDM
and RRT. For instance, for a typical 2D NMR data set,
even with relatively high SNR, one has difficulties in
constructing two adequate commuting effective
evolution operatorsÛ1 and Û2 describing the 2D
signal. This, in turn, makes it difficult to construct
an adequate 2D line list corresponding to Eq. (4).
We believe that this problem is, as in the 1D case, a
consequence of the ill-defined nature of Eq. (4),
although the additional requirement thatÛ1 and Û2

commute makes the problem much worse than in 1D.
Clearly, the key issue ofD . 1 FDM is to find a
general computationally inexpensive and robust
procedure that could be applied to regularize the
FDM equations. At the present stage the problem is
solved only partially. For example, it is possible to
regularize RRT which has the high resolution capabil-
ity of FDM. Unfortunately, RRT can be used only as a
spectral estimator and cannot easily overcome some
of the DFT limitations. Regularization of RRT is not
directly extendable to FDM, although several meth-
ods have already been developed, such as truncated
SVD of U0 or FDM averaging. Unfortunately, the
former is not generic, while the latter is computation-
ally very expensive and cannot be used to construct a
multidimensional line list. The most promising regu-
larization technique, at least for the 2D FDM, is that
based on the Tikhonov regularization ofU0 and
named FDM2k [15]. Its implementation is computa-
tionally very simple and inexpensive, although at this
stage it is not clear how general and reliable it is for
types of NMR data different from those in Ref. [15]
and Fig. 6.

To conclude, the main avenues for the future
research seem to be the following:

1. Given the matrix representations of the evolution
operators,Û1; Û2; etc., in a non-orthonormal basis,
to find a fast and reliable method of evaluating
various resolvents associated with these operators.

2. Given the matrix representations of the evolution
operators, to construct a set of commuting effective
HamiltoniansV̂ 1; V̂ 2; etc., whose eigenvalues and
eigenvectors yield the line list.

Both goals are associated with finding a reliable and
computationally inexpensive regularization.
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