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The system of crystal structure has a major effect on the physical and chemical properties of Li-ion sili-
cate cathodes. Hence, the prediction of crystal system has a vital importance to estimate many other
properties of cathodes for applications in batteries. Three major crystal systems (monoclinic, orthorhom-
bic and triclinic) of silicate-based cathodes with Li–Si–(Mn, Fe, Co)–O compositions were predicted using
wide range of classification algorithms in machine learning. The calculations are based on the results of
density functional theory calculations from Materials Project. The strong correlation between the crystal
system and other physical properties of the cathodes was confirmed based on the feature evaluation in
the statistical models. In addition, the parameters of various classification methods were optimized to
obtain the best accuracy of prediction. Ensemble methods including random forests and extremely ran-
domized trees provided the highest accuracy of prediction among other classification methods in the
Monte Carlo cross validation tests.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The advancements in numerical methods to calculate electronic
structure of materials besides the rapid improvements in the com-
putational power have provided the opportunity of computing
physical and chemical properties of a wide range of novel and com-
plex materials [1–3]. Consequently, researchers have access to
enormous amount of information about the estimated properties
of materials. As an example, Materials Project [4–6] offers an open
web-based access to the calculated physical and chemical proper-
ties of known and predicted materials derived from density func-
tional theory (DFT) calculations of electronic structure. DFT
calculations are powerful methods for the estimation of electron
density and band structure of materials. The progression in devel-
opment of exchange–correlation potential has led to many precise
computations of physical properties for many diverse types of
materials including Li-ion batteries [7–10]. Subsequently, the huge
amount of information about materials should be analyzed to
achieve an improved understanding of materials properties. Gener-
ally, the complex correlations between different physical proper-
ties are hard to discover using traditional statistical models.
However, advanced machine learning (ML) methods have the
potential to discover the complex correlation between crystal
structure and different physical and chemical properties. ML has
been used for solving many complex classification and regression
problems in numerous scientific felids such as prediction of phys-
ical properties [11], corrosion rate [12], lattice parameter [13],
crystal structure [14,15], 3D reconstruction of cells in microscopy
[16], and many applications for Li-ion batteries [17–20].

Cathode materials with Li–Si–(Mn, Fe, Co)–O compositions are
in great interest for research due to their applications in Li-ion bat-
teries. For example, compounds with orthosilicate structure (Li2-
XSiO4, X = Mn, Fe, Co) are one of the major candidates as suitable
cathodes for Li-ion batteries because of their low production cost
and providing high capacity and safety [21,22]. Crystal structure
of cathodes have a significant effect on the properties of Li-ion bat-
teries [23]. Therefore, investigation and development of suitable
computational and experimental methods for the characterization
of cathodes are fundamental for the better understanding of their
physical and chemical properties.

In this research, various classification algorithms are investi-
gated to predict the three major types of crystal system (CS) (mon-
oclinic, orthorhombic and triclinic) of cathode materials with Li–
Si–(Mn, Fe, Co)–O compositions using the data from Materials Pro-
jects. The majority of DFT results for predicted or known cathodes
are available for these three classes. The ML methods to build the
models are linear, quadratic and shrinkage discriminant analysis,
neural networks, support vector machines, k-nearest neighbors,
random forests and extremely randomized trees. The performance
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of classification methods are evaluated based on Monte Carlo cross
validation tests on the dataset.

It should be emphasized that the features (properties) are
dependent on the crystal structure as the main input for DFT calcu-
lations. Hence, the correlation between the predicted values for
features and CS is anticipated. However, the main goal of the pre-
sented approach is to answer these questions: (1) is it possible to
predict the CS having other materials properties? (2) what features
are more important for this prediction? The answer to the first
question is positive; although, the prediction can be achieved using
proper statistical learning methods as described in this paper. The
presented approach in this study can be useful for other research-
ers to consider the correlations between features in the results
derived from high performance calculations. In fact, this type of
investigation can lead to a better insight regarding the relationship
between various features of materials.
2. The dataset

The dataset contains the results of DFT calculations for 339
cathode materials with Li–Si–(Mn, Fe, Co)–O compositions using
the data from Materials Project. In Materials Project [4–6], the
DFT calculations and optimizations are performed using VASP soft-
ware [24]. The exchange–correlation potentials for DFT calcula-
tions in Materials Project are generalized gradient approximation
(GGA) or GGA + U [4]. Materials Project is based on a high-
throughput process. Many of the crystal structures for DFT calcula-
tions in Materials Project are from inorganic crystal structural
database (ICSD) containing positions of atoms and lattice parame-
ters of crystals [6]. The optimization of atomic positions are also
performed on available or generated structures. The initial DFT cal-
culations can be based on available data from ICSD, previous calcu-
lations, modified structure by chemical substitution and
contributions from user community of the project [4]. More infor-
mation about the details of calculations can be found in the paper
by Jain et al. [4].

The dataset contains the chemical formula, space group, forma-
tion energy (Ef), energy above hull (EH), band gap (Eg), number of
sites (Ns), density (q), volume of unit cell (V) and CS of each cath-
ode. The aforementioned properties in the dataset can be defined
according to the glossary of Materials Project as follows. Ns and q
are the number of atoms in the unit cell of crystal and the density
of bulk crystalline materials, respectively. To build ML models only
variable V is used given that V ¼ M=q (M is the atomic mass). Also,
EH is defined as the energy of decomposition of material into the
most stable ones [6]. It should be noticed, the calculation of forma-
tion energy and other properties are at the temperature of 0 K and
ambient pressure. Eg and V can be dependent on temperature and
pressure of system; however, for our calculations the temperature
and pressure are considered constant. Table 1 shows the data for
some selected silicate cathodes from the dataset. The dataset con-
Table 1
Data for some selected silicate cathodes from the dataset.

Formula Space group Ef (eV) EH (eV) Eg

Li2MnSiO4 Pc �2.699 0.006 3
Li2Mn2(SiO3)3 P21/c �2.769 0.077 3
Li2Co2(SiO3)3 P21/c �2.598 0.069 2
Li2FeSi3O8 P21 �2.84 0.069 3
LiMn(SiO3)2 Pbca �2.824 0.036 0
LiFeSiO4 Pn21a �2.604 0.018 2
Li2Co2Si2O7 C2cm �2.453 0.072 2
Li7Mn11(Si3O16)2 P1 �2.439 0.092 0
LiFeSi3O8 P1 �2.896 0.032 3
LiCo3(SiO4)2 P1 �2.25 0.076 0
tains a wide range of complex structures and various chemical
compositions.

Fig. 1 shows the pair plots of the properties of silicate cathodes
in the dataset. The diagonal plots are the histogram plots for the
distribution of each feature of cathodes. As it can be seen, generally
there is no evident correlation between the features and the CSs.
This complexity makes the classification problem hard to be solved
by conventional methods. It should be mentioned the results of
calculations in the Materials Project are prone to change because
of performing new optimizations or using novel potentials.

3. Methods of classification for machine learning

Classification is a method in ML to split the dataset into certain
classes. Since the CSs (monoclinic, orthorhombic and triclinic) are
specified, the ML is called a supervised learning. Also, the accuracy
of classification is defined as the portion of correct prediction of
classes. The feature matrix, X, with n �m dimensions and the
response matrix, Y, as a one dimensional matrix with length n
and K different classes are used for the supervised classification.
Here n is the number of observations (samples) and m is the num-
ber of features. For this study n, m and K are 339, 5 and 3, respec-
tively. CS can be defined as a function depending on other variables
as: CS ¼ f ðV ; Eg ;Ns; Ef ; EHÞ. In fact, based on five variables of V, Eg, Ns,
Ef and EH the class of CS can be estimated using ML methods. In this
section, the applied classification methods on the dataset to build
the models are concisely introduced. The mathematical details of
applied methods can be found in the cited papers.

3.1. Linear, quadratic and shrinkage discriminant analysis

Linear discriminant analysis (LDA) is based on the estimation of
the distribution of predictors (X) in the response classes, i.e.
f kðXÞ � PrðX ¼ xjY ¼ kÞ where f kðXÞ is the density function of X
for the class k [25]. Afterward, using Bayes’ theorem the probabil-
ities of occurring the response in each class (PrðY ¼ kjX ¼ xÞ) are
calculated. So LDA based on Bayes’ theorem can be formulated as
[25]:

PrðY ¼ kjX ¼ xÞ ¼ pkf kðxÞ
XK
l¼1

plf lðxÞ
,

ð1Þ

where pk is the prior probability of class k. LDA uses normal distri-
bution for estimation of f k and assumes the covariance matrix is the
same for each class [26]. In contrast to LDA, quadratic discriminant
analysis (QDA) presumes each class can have different covariance
matrix leading to possibly a better classification accuracy [26].

Shrinkage discriminant analysis (SDA) is based on LDA or diag-
onal discriminant analysis (DDA) [27]. DDA is an special case of
LDA when covariance matrix is diagonal [28]. In fact, LDA and
DDA act as the ranking predictors and SDA uses feature selection
for the enhancement of accuracy of classification [27,28]. The sda
(eV) Ns q (g/cm3) V (Å3) CS

.462 16 2.993 178.513 Monoclinic

.188 64 2.517 929.064 Monoclinic

.727 64 2.739 872.856 Monoclinic

.081 28 2.665 351.384 Monoclinic

.037 80 3.343 850.626 Orthorhombic

.961 28 2.89 355.979 Orthorhombic

.84 26 3.579 278.304 Orthorhombic

.361 56 3.909 566.407 Triclinic

.342 26 2.76 330.953 Triclinic

.005 42 3.318 552.402 Triclinic



Fig. 1. The pairs plot of different properties of Li–(Mn, Fe, Co)–Si–O cathodes based on the extracted data from Materials Project. The red, yellow and blue circles indicate the
monoclinic, orthorhombic and triclinic crystal systems respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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library in R [28] was used is based on James-Stein-type shrinkage
estimators for correlation matrix [29] and variances [30]. So, the
shrinkage intensities for SDA are correlation matrix and variances.
The value of shrinkage parameter can change between 0 and 1 and
the LDA classifier was used for SDA.
3.2. Artificial neural networks

Artificial neural networks (ANN) are one of the most versatile
and effective methods in ML for classification and regression prob-
lems [31]. However, the high degree of flexibility can make the
process of finding the optimal values of parameters difficult. In this
study for the simplicity in the approach, feed-forward neural net-
works with a single hidden layer [32] was used. Feed-forward neu-
ral networks have three different type of layers including input,
hidden and output layers; though, the number of hidden layer is
limited to one [33,34]. For our classification, the main parameter
for optimization was number of unites in the hidden layer. The
activation function was considered the logistic sigmoid function
and maximum conditional likelihood was used as fitting criterion
[32].
3.3. Support vector machines

Support vector machine (SVM) methods work on the idea of
splitting the training data based on the finding the hyper-planes
with the maximum margin. The hyper-plane is defined as [35]:
wT/ðxiÞ þ b, where w is the normal vector to the hyper-plane, xi

is the training dataset and /ðxiÞ maps the training data to the fea-
ture space. To find the optimal solution of maximum margin, the
following optimization problem should be solved [36]:
minðw; b; nÞ : 1
2
wTwþ C

XN
i¼1

ni

subject to : yiðwT/ðxiÞ þ bÞ P ð1� niÞ; ni P 0

ð2Þ
where N is the number of training data, yi 2 f�1;1g indicating the
positive and negative values for separation and C > 0 is a regular-
ization parameter as a cost evaluation that puts penalty based on
the amount of the training error and the complexity of model
[35]. Also, ni is used to obtain the soft margin of the classifier.
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The hyper-planes can be linear or non-linear. The non-linearity
of hyper-planes is introduced to the SVM classifier using kernel
function, K, and Lagrange multiplier, ai, as below [35,37]:

max :
X
i

ai � 1
2

X
i;j

aiajyiyjKðxi; xjÞ

subject to :
X
i

aiyi ¼ 0; 0 6 ai 6 C; i ¼ 1; . . . ;N
ð3Þ

where Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi. For this study, the radial basis func-
tion was used as the kernel function with the following formula
[38]:

Kðxi; xjÞ ¼ expð�ckxi � xjk2Þ ð4Þ
where c is a regularization factor that controls the kernel function.
Finally, the classifier can be obtained as follows [36]:

f ðxÞ ¼ sgn
XN
i¼1

yiaiKðxi; xÞ þ b

 !
ð5Þ

It should be noticed that the data for training are scaled to have
mean and variance equal to zero and one, respectively.

3.4. k-nearest neighbors

k-nearest neighbors (kNN) is a simple and effective method that
can be used for classification. kNN resolves the class of a new
observation based on finding the closest observation in the dataset
by evaluation of similarity using the measurement of distance
[25,39]. Hence, the number of nearest neighbors and the method
for measuring distance are the two key parameters in kNNmethod.
For this study, the distance was measured using Minkowski dis-
tance as below [40]:

dðxi; xjÞ ¼
Xd
s¼1

jxis � xjsjp
 !1

p

ð6Þ

where d is the size of vector x. Euclidean and absolute distance with
p = 2 and p = 1 are two special cases of Minkowski distance. For the
calculations, the optimal value of p was determined in Monte Carlo
cross validation tests using weighted kNN classifier. In weighted
kNN method, after standardization of distances, kernel function is
used to transform distances to weights [40]. The details of weighted
kNN can be found in the paper by Hechenbichler and Schliep [40].
The inversion kernel (1=jdj) was used as the kernel function for
kNN classification.

3.5. Random forests and extremely randomized trees

Random forests (RF) and extremely randomized trees (ERT) are
both ensemble ML methods based on building decision trees. RF is
based on bagging method which makes a variety of decision trees
by means of bootstrap sampling from the training data and averag-
ing to build the total decision tree [41]. The classification is based
on the majority vote after averaging. However, to improve the pro-
cess of decorrelation of variables and increasing the chance of
building better decision trees, variables are selected randomly at
each split [42]. The random selection of variables decreases the
variance and improves the overall accuracy of prediction. The
default number of randomly selected values (mv) for RF is equal
to the square root of number of predictors in the training data
[25]. Although, this number can be different and mv ¼ 3 was
selected for this study due to providing the highest accuracy. Sim-
ilar to RF, ERT [43] uses the random selection of predictors at each
node. Though, the major dissimilarity is that RF utilizes the best
cutting (discretization) threshold but ERT selects this cut randomly
with values not smaller than a specified threshold [44,45]. This
extra level of randomness can improve the process of decorrelation
and can lead to better accuracy of prediction by the classifier. In
addition, the whole training dataset is used for making various
decision trees in ERT instead of using bootstrap sampling in RF
[46].
4. Results and discussions

Building ML models and calculations were performed using R
language and the related packages for classification [47]. The fol-
lowing libraries were used for calculations: MASS for LDA and
QDA, sda for SDA, nnet for ANN, e1071 for SVM, kknn for kNN, ran-
domForest for RF and extraTrees for ERT. The details about the
libraries can be found at Ref. [47].

Monte Carlo cross validation (MCCV) or called repeated random
sub-sampling method was used for the evaluation of the accuracy
of models. MCCV has been used by many other researchers for esti-
mation of the prediction error and selecting best models [48–51].
MCCV is based on dividing dataset into two subset of training
and testing randomly [50]. The process is repeated and for each
generated sub-sample the accuracy of prediction by classifier is
calculated. A good estimation of the overall accuracy of prediction
can be computed by having large enough number of repetitions in
MCCV tests [50].

It is worth to mention for a true random sampling, each time
first the dataset was shuffled randomly and then it was divided
into two subsets. MCCV has the benefit of being asymptotically
consistent [48–50] and have a good chance of choosing the best
model with precise prediction of accuracy [51]. It should be
noticed for generation of 100 random samples 100 random seeds
corresponding to 100 states of random number generator were
used. Hence, the 100 samples are identical for all the classifiers
providing the ability of one-to-one comparison of the results.

Fig. 2 demonstrates effect of percentage of training data on (a)
the overall average accuracy (OAA) of prediction and (b) the stan-
dard deviation (SD) of OAA in MCCV tests using all the 8 ML meth-
ods. OAA is the average accuracy of classification for each ML
method based on MCCV for 100 random samples. As it can be seen,
increasing the percentage of training data continuously improves
OAA of prediction and increases the SD. RF and ERT gave the high-
est accuracy with �75% and �76% respectively using 90% of data
for training the model. The increase of SD of OAA is expected
because decreasing the number of testing data leads to the increase
of SD. However, methods with highest OAA such as RF and ERT
show relatively low SD at high percentage of training data. This
can be a result of flexibility of RF and ERT as ensemble methods
to obtain the highest accuracy for each random sample and reduce
the SD of prediction. Increase of the percentage of training data
does not improve the accuracy of prediction for LDA and QDA con-
firming the two methods are not appropriate for the classification
of CS in this study. This means the normal distribution assumption
is not valid for the estimation of the distribution of variables in the
response classes. More details about the optimized parameters of
classifiers are discussed in Figs. 4–10.

Since MCCV was used for the testing the accuracy of ML models,
the effect of random number generator (RNG) is also important to
consider due to the stochastic nature of the process. To examine
the effect of RNGs, 6 RNG methods were used to generate random
seeds. Random seeds are vectors of numbers that can estimate the
properties of a random sample. The random seeds (pseudo-random
numbers) are predefined as different states and they can be iden-
tified by their state. The process of using specific random seeds is
essential for many stochastic simulations because the results can
be reproduced. The RNG used to generate the random seeds are



Fig. 2. Effect of percentage of training data for building ML models on (a) the overall average accuracy (OAA) and (b) SD of OAA using 100 random samples in MCCV tests.

Fig. 3. Effect of different RNGs on the OAA of ML methods based on results
presented in Table 2.
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Wichmann–Hill, Marsaglia-Multicarry, Super-Duper, Mersenne-
Twister, Knuth-TAOCP-2002 and L’Ecuyer-CMRG from random
seeds in R library [47]. All the 6 RNG have very large cycle length
and there is a very low probability for having the same random
samples. More details about the algorithms and their cycle length
can be found at [47].

Table 2 and Fig. 3 show the results of different RNGs on the OAA
of 100 random samples. The results are based of 80% of data for
training the model and 20% for testing. Generally for a certain
ML method the average accuracies are very close and the SDs are
small. This confirms by using proper RNGs the average accuracies
of models can be reproduced and the accuracy of models is mainly
related to the algorithms not the random sampling process. It
should be noticed that Mersenne-Twister was used as the RNG
for the random seeds for all the other results represented in Figs. 2
and 4–10.

Fig. 4 illustrates the histogram and density plots of the accuracy
of different applied classification methods. The results in Fig. 4 are
based on using 90% of each random sample for training and 10% for
validation of the model. As it can be seen, LDA, QDA and SDA did
not provide a good accuracy of prediction. In some cases LDA and
QDA have the prediction even less than the average null prediction
(44.9%). This means discriminant analysis method does not work
very well for the estimation of CS in the dataset. Although, using
SDA improves the average accuracy about 7% in comparison to
LDA and QDA. ANN and kNN provided accuracies higher than
69% proving the flexibility of the methods. The OAA of SVM is less
than the OAA of ANN and kNN. This can be resulted from the fact
that optimization of C and c in the kernel function is intricate since
their values can vary in a wide and continues range. The ensemble
methods (RF and ERT) gave the highest accuracy. In addition, only
Table 2
Effect of different RNGs on OAA (%) of ML methods based on 100 random samples using 8

Wichmann–Hill Marsaglia-Multicarry Super-Duper

LDA 45.9 45.0 46.1
QDA 46.4 46.2 45.8
SDA 51.6 50.3 51.5
kNN 67.0 66.7 66.1
ANN 63.9 64.6 64.0
SVM 59.1 59.6 58.9
RF 70.3 69.9 69.3
ERT 71.5 70.8 70.0
ERT granted predictions with accuracies higher than 90%. The large
variation of OAA emphasizes the importance of selecting proper
methods for the classification. In addition, the optimization of
the parameters of classifiers has a significant effect on the overall
accuracy. For example without optimization of parameters, we
have seen 10–20% decrease in OAA in MCCV tests. The optimized
parameters for different ML methods are presented in Figs. 5–10
using 90% of data for the training of models.

Fig. 5 shows the histogram plots of best shrinkage values for the
correlation matrix and variances in SDA method for the different
0% training data.

Mersenne-Twister Knuth-TAOCP-2002 L’Ecuyer-CMRG SD

45.7 45.9 45.0 0.45
46.1 46.4 47.0 0.39
51.3 51.3 50.9 0.47
67.0 66.9 66.9 0.32
64.0 63.9 64.2 0.26
59.9 59.7 59.2 0.40
70.8 70.9 70.2 0.58
71.7 71.8 71.7 0.72



Fig. 4. Histogram and density plots of accuracy of applied classification methods for 100 random samples using 90% training data.

Fig. 5. The histogram plots of best shrinkage intensities for the correlation matrix
and the variances in SDA method derived from the results of optimized classifiers
for the 100 random samples.

Fig. 6. The distribution of best c for the radial basis kernel function in SVM for the
optimized classifiers.

Fig. 7. The distribution of best number of units in the hidden layer in feed-forward
neural networks with a single hidden layer.
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random samples. In contrast to LDA and QDA, SDA has the advan-
tage of more flexibility for tuning the parameters and this can be
the reason for about 7.4% higher accuracy in comparison to QDA.
As shown in Fig. 5, values of shrinkage for the correlation matrix
and variances are dependent on the samples. However, more than
70% of the shrinkage values for the correlation matrix and vari-
ances are smaller than 0.2 meaning that small shrinkage provides
the best results for the related samples. It should be noted a zero
and one shrinkage intensity indicate no shrinkage and a complete
shrinkage, respectively [52].

Fig. 6 presents the histogram plot of optimized values of c for
the radial kernel in SVM method in MCCV tests. The cost value
was selected from 1 to 50 with a 5 step length. The optimized value
of c is not the same for different samples and the optimization is
essential for achieving better accuracy. Optimization of SVM clas-
sifiers are computationally expensive because of the flexibility in
choosing c and cost since they can change in a wide and continues
range. Setting high value of cost does not guarantee higher accu-
racy of prediction i.e. by changing c and a different sample the
proper value of cost should be selected.

Fig. 7 shows the histogram for the best number of units in the
hidden layer of feed-forward neural networks with a single hidden
layer for the 100 random samples. The average value of the best
number of units is about 33; however, this value varies in a wide



Fig. 9. The distribution of best size of tree to reach highest precision of prediction
for the 100 random samples using (a) RF and (b) ERT methods.
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range. Number of units in the hidden layer was limited to 70 to
avoid over complexity of the model for calculations.

Fig. 8a demonstrates effect of parameter of Minkowski distance
(p) on the average accuracy of prediction in kNNmethod. The high-
est OAA was achieved at about p = 0.15. The variation of p changes
the distance function in Eq. (6). Hence achieving an optimal value
for p means that kNN algorithm provides the highest OAA of pre-
diction based on an optimized kernel function. It should be men-
tioned each point in Fig. 8a is the results of calculations for all
the 100 random samples, i.e. for each point MCCV tests have been
applied. The histogram plot of best number of neighbors to achieve
highest OAA for random samples is shown in Fig. 8b. As it can be
seen, the majority of the best number of neighbors are less than
5; although for some cases more than 15 neighbors was necessary
to achieve the highest accuracy.

Fig. 9 illustrates the histogram plots of the best number of trees
to accomplish the highest OAA in MCCV tests using RF and ERT
methods. As shown, using a very big size of tree does not guarantee
the highest accuracy. Forcing RF or ERT methods to grow an unnec-
essary large tree can cause some redundant splits in internal nodes
not leading to the maximum reduction in misclassification.

Fig. 10 presents the effect of the percentage of training data on
the average number of best size of trees to grow for the highest
OAA of predictions in RF and ERT classifiers. Generally, the average
number of trees required to grow to achieve the highest OAA
decreases by increasing the percentage of training data. This can
be explained by the fact that having more data to train for RF
and ERT classifiers increases the chance of building better decision
trees by proper splits. It should be mentioned for other optimized
parameters a significant trend was not observed by variation of the
percentage of training data.

Fig. 11 shows the feature importance evaluation of predictors in
building ERT models based on the optimized classifiers in MCCV
tests using 50% and 90% training data. The decrease in Gini impu-
rity was used as the criterion to evaluate the feature importance of
Fig. 8. (a) Effect of parameter of Minkowski distance (p) on OAA of prediction for
kNN method. (b) The distribution of best number of neighbors for the optimized
kNN classifiers.

Fig. 10. Effect of the percentage of training data on the average number of best size
of trees to achieve highest OAA for RF and ERT classifiers.
variables. The values of feature importance for ERT were generated
using the ExtraTreesClassifier in scikit-learn library [52]. Generally,
the difference between the importance of predictors are not signif-
icantly different. Hence, it can be inferred all the predictors from
the dataset have noteworthy effects for building ERT classifiers.
However among other features, the volume of unit cells have the
highest importance. The more important role of volume can be
related to more sensitivity of CS to the volume distribution. For
example, the average volume for monoclinic, orthorhombic and
triclinic in the dataset are 438.9, 538.1 and 398.5 (Å3) respectively.
Although, the maximum volume for monoclinic, orthorhombic and
triclinic are 1518.9, 1374.7, and 878.3 respectively. In addition,
generally by increasing volume Ns increases. Therefore Ns is also
an important feature in building ERT classifiers. Variation of per-
centage of training data does not change the importance of fea-
tures considerably as shown in Fig. 11.

In theory all the applied ML methods in this research can be
used for the multiclass classification problems. However, the
underlying assumptions and the flexibility of algorithms are the
main reasons for the better accuracy of predictions. For example,
LDA and QDA as parametric methods use the normal distribution
assumption for the estimation of the distribution of variables in



Fig. 11. Feature importance plots of ERT method based on the results of optimized classifiers in MCCV tests using 50% and 90% training data.
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the response classes. The validity of applied assumptions plays a
key role in the overall accuracy of parametric methods and when
the assumptions are not valid the methods fail to achieve a good
precision [25]. However, RF and ERT as non-parametric methods
are derived from building numerous trees based on the mentioned
criterions in Section 3.5. For this reason, the RF and ERT are flexible
and there is no need of assumption regarding the distribution of
variables in the response class.

It should be emphasized that the size of dataset plays an impor-
tant role for the improvement of accuracy. It is possible that the
accuracy of a method can be improved significantly by having
more data. However in this research, increasing the percentage of
training data did not change the superiority of a method to the
others. Having much more data could change this trend; on the
other hand, the number of available data for the silicate cathode
materials is limited. The main reason to employ MCCV was to gen-
erate much more sub-samples from the limited number of avail-
able DFT results to have a better estimation of the real accuracy
of ML methods.
5. Conclusions

A wide range of machine learning classification methods were
successfully used to determine the three major crystal systems
(monoclinic, orthorhombic and triclinic) of silicate cathodes with
Li–Si–(Mn, Fe, Co)–O compositions. Monte Carlo cross validation
was used for the evaluation of the accuracy of classifiers. It was
confirmed that the optimization of parameters of each classifica-
tion method has a significant effect on the overall average accu-
racy. Increasing the percentage of training data to build machine
learning models continuously increased the overall average accu-
racy of prediction. Random forests and extremely randomized
trees gave the highest overall average accuracy among other clas-
sifiers proving the power and flexibility of ensemble methods for
the classification of crystal system. Based on the feature impor-
tance evaluation in extremely randomized trees, the volume of
crystal and number of sites showed the highest effects to deter-
mine type of crystal system in the dataset. However, the other fea-
tures of silicate cathodes including formation energy, energy above
hull and band gap are also considerable for determination of crys-
tal system.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.commatsci.2016.
02.021.
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