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In this letter, we describe an analytically solvable model of quantum decoherence in a nonequi-
librium environment. The model considers the effect of a bath from equilibrium by, for example,
an ultrafast excitation of a quantum chromophore. The nonequilibrium response of the environ-
ment is represented by a nonstationary random function corresponding to the fluctuating transition
frequency between two quantum states coupled to the surroundings. The nonstationary random
function is characterized by a Fourier series with the phase of each term starting initially with a
definite value across the ensemble but undergoing random diffusion with time. The decay of the
off-diagonal density matrix element is shown to depend significantly on the particular pattern of
initial phases of the terms in the Fourier series, or equivalently, the initial phases of bath modes
coupled to the quantum subsystem. This suggests the possibility of control of quantum decoherence
by the detailed properties of an environment that is driven from thermal equilibrium.

Quantum interference and coherence are phenomena
that set the dynamics of molecular scale systems in dis-
tinct contrast with the behavior of the macroscopic clas-
sical world [1]. In chemical physics applications, the cre-
ation, evolution, and destruction of quantum coherence
plays a central role in a range of physical processes, such
as the harvesting and transport of electronic energy in
photobiological systems [2–8], the design and interpre-
tation of nonlinear spectroscopies [9], the coherent con-
trol of molecular processes [10–12], the manipulation and
storage of quantum information [13, 14], and many others
[15–17].

Quantum coherence exists and is most pronounced in
simple few body systems. Decoherence—irreversible de-
struction of quantum coherence—is a phenomenon that
is associated with complex systems and the resulting in-
teractions between a coherent subsystem and a many-
dimensional environment or bath. System-bath interac-
tions can never be eliminated completely, and so deco-
herence is in principle always at work eroding quantum
superpositions to their incoherent statistical limits. In
most formal approaches to dissipative quantum dynam-
ics, the assumption is made that the environment is in
thermal equilibrium characterized by a Boltzmann dis-
tribution at temperature T [19, 20]. This is a reasonable
approximation in most contexts, and greatly simplifies
the theoretical analysis.

We conjecture, however, that there are situations
where nonequilibrium bath effects may be important. For
example, light-induced ultrafast coherent electronic pro-
cesses in chemical or biological systems may occur on
time scales that are sufficiently short that initial nonequi-
librium states induced in the bath by the excitation may
not have a chance to regress to equilibrium. The tran-
sient nonequilibrium bath dynamics may undergo non-
trivial interplay with the coherent quantum evolution oc-
curring on comparable time scales. On these time scales,
the environment has the opportunity to influence the

quantum evolution in a manner that is more rich and
complex than simply acting to dissipate energy and ran-
domize and destroy quantum phases. Indeed, recent ex-
periments have suggested that the environmental protein
dynamics in light harvesting complexes may play an es-
sential role in enhancing quantum energy transport [2–8].
In the proposed picture, bath fluctuations aid quantum
energy flow by overcoming localization due to energy site
inhomogeneities, while at the same time acting to destroy
quantum phase coherence. The details of the process
matter.

Previous theoretical investigations of environmental ef-
fects on quantum coherent dynamics have taken a de-
scription of the environment as a thermal reservoir, usu-
ally with Markovian statistical properties [9, 19, 20].
While this is an important limiting case that undoubtedly
describes many dissipative quantum processes quite ade-
quately, we believe that nonequilibrium bath effects lead-
ing to nonstationary statistics offer a broad and richly ex-
panded range of possible dynamical effects in some cases
of ultrafast quantum transport. Life could have exploited
these effects in the design of quantum processes by evo-
lution.

In this letter, we investigate the dynamics of quan-
tum decoherence in nonequilibrium environments. We
consider a two level quantum system in a nonequilibrium
bath, modeled by random perturbations with nonstation-
ary statistics. Our model allows an approximate analytic
solution for the time evolution of the off-diagonal density
matrix element ρ12 of the density operator describing the
two level quantum system interacting with the environ-
ment. By introducing a simple and specific ansatz for the
dependence of the initial oscillator phases on frequency in
terms of a single adjustable parameter, we demonstrate
that significant modification of the decoherence process
can result from variations of this parameter.

Our model consists of a two level quantum system de-

scribed by density operator ˆρ(t) [9, 19, 20] with energy
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gap E2(t)− E1(t) = h̄ω(t) that fluctuates due to the ef-
fect of the environment, where Ej(t) (j = 1, 2) is the
instantaneous energy of state j as perturbed by the sur-
roundings. The bath is modeled by a random function of
time. This function represents the transition frequency
of the two state quantum system ω(t), and the Fourier
components of the time series represent the modes of mo-
tion of the bath. In contrast with the usual treatment
[9, 19, 20], the statistical properties of this random func-
tion are nonstationary, corresponding physically to im-
pulsively excited phonons of the environment with initial
phases that are not random, but which have a sharp re-
lation at t = 0. The distribution of phases then spreads
with time over the interval (0, 2π) under a diffusion equa-
tion. Well-defined initial phases of a phonon bath could
result, for instance, by an ultrafast excitation of a quan-
tum system that abruptly changed its size or charge dis-
tribution at t = 0, leading to systematic and reproducible
mode-specific short time bath response.

An initial coherence between the two states
〈1|ρ̂(t)|2〉 = ρ12(t) will decay due to the environ-
ment according to the expression [9, 19, 20]

ρ12(t) =

〈
e
−i
∫ t

o
δω(s)d s

〉
e−iωot ≡ F (t)e−iωot, (1)

where ω(t) = ωo + δω(t) and 〈. . .〉 represents a nonequi-
librium average over the nonstationary random bath.
The term ωo represents the average frequency difference,
while the average of the fluctuating term δω(t) is zero.
This defines the function F (t), which we will use in our
analysis.

The time-dependent frequency is written in the form
ω(t) = ωo + δω(t), where

δω(t) =

∞∑
k=1

ck cos(ωkt+ θk(t)). (2)

The Fourier components ck are positive constants related
to the spectral density of the environment and the cou-
pling of the bath modes to the quantum system. In
this model the randomness enters only through the non-
stationary distribution of random phases θk(t). These
phases are given by

θk(t) = θk(0) + xk(t). (3)

The random function xk(t) is described by a time-
dependent probability distribution Pk(xk, t) that obeys
a diffusion equation

∂Pk(x, t)

∂t
= Dk

∂2Pk(x, t)

∂x2
, (4)

where Dk is the diffusion constant. The initial state con-
sists of a distribution localized at x = 0: Pk(x, 0) = δ(x).
The quantity x is an angle, so P (x + 2π, t) = P (x, t) is

a periodic function of x with period 2π. A 2π-periodic δ
function can be written in Fourier series form as

δ(x) =
1

2π
+

1

π

∞∑
n=1

cos(nx). (5)

The time-dependent probability distribution for compo-
nent k that solves Eq. (4) with this initial condition is

Pk(x, t) =
1

2π
+

1

π

∞∑
n=1

e−n
2Dkt cos(nxk). (6)

Physically, the phase of each component of the random
force is not random at t = 0, when an impulsive ex-
citation creates a quantum coherence in the system, but
decays to a uniform 1/2π distribution under diffusive evo-
lution with diffusion constant Dk. The bath is thus not
initially at equilibrium.

In Fig. 1 we show for illustration an example of a non-
stationary random function described by the phase diffu-
sion model in Eq.(2). An ensemble of 500 realizations of
the random time series is generated, and the minimum
and maximum resulting functions span the shaded re-
gion. The width of this region is initially zero but grows
with time, illustrating the diffusive loss of initial phase
memory. Representative evolution of the probability dis-
tribution P (x, t) is shown in Fig. 2.
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FIG. 1. Illustrative example of a nonstationary random func-
tion described by the phase diffusion model in Eq.(2). An
ensemble of 500 realizations of the random time series is gen-
erated, and the minimum and maximum resulting functions
span the shaded region. The width of this region is initially
zero but grows with time, illustrating the diffusive loss of ini-
tial phase memory.

We now evaluate the time evolution of the off-diagonal
density matrix element. The nonequilibrium averaged
coherence is given by

ρ12(t) =

〈
e
−i
∫ t

0
ω(s)d s

〉
=
∏
k

〈
e
−i
∫ t

0
δωk(s)d s

〉
e−iωot.

(7)
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FIG. 2. Evolving probability distribution P (x, t) for the vari-
ation of the oscillator phase θ(t) = θ(0)+x(t) given by Eq. (6)
for D = 0.1, at times t = 0.05, 1, 5, and 20.

We consider a typical factor fk(t) = exp(−
∫ t
o
δωk(s)ds).

Performing the time integral gives∫ t

0

δωk(s)d s ' zk [sin(ωkt+ θk(0) + xk(t))− sin(θk(0))] ,

(8)
where ck/ωk ≡ zk. This is an approximate expression,
due to the dependence of the integrand on the random
function xk(t); we adopt it here for simplicity. Alter-
natively, we could take Eq. (8) as the definition of our
nonstationary stochastic time series representing the evo-
lution of the phase.

We now evaluate the average of exp(−izk sin(ωkt +
θk(0) + xk)) over the probability distribution Pk(xk, t):

fk(t) =
〈
e−izk sin(ωkt+θk(0)+xk)

〉
eizk sin(θk(0)), (9)

which gives

fk(t) = eizk sin(θk(0))

×
∞∑

n=−∞
(−1)nJn(zk)ein(ωkt+θk(0))e−n

2Dkt, (10)

where Jn(z) is a Bessel function of order n and argument
z. As t → 0 we see that fk(0) = 1, as it should. For
t → ∞ we find that fk(t) → J0(zk)eizk sin(θk(0)). This
is a number whose absolute value is less than unity, so
the product of factors

∏∞
k=1 fk(∞) → 0 as the number

of factors goes to infinity, as expected for a correlation
function.

By performing a Taylor series expansion of fk(t) in
powers of zk and keeping only the most slowly decay-
ing terms, a simple but accurate approximation can be
derived:

fk(t) ' exp(iuk(t)− vk(t)). (11)

Here,

uk(t) = −zk(e−Dkt sin(ωkt+ θk(0))− sin(θk(0))) (12)

and

vk(t) =
z2
k

4

(
1− 2e−2Dkt +Wk(t) cos[2(ωkt+ θk(0))]

)
,

(13)
where

Wk(t) = e−2Dkt − e−4Dkt. (14)

We note that the more rapidly decaying term with time
dependence of e−4Dt must be retained to give |fk(0)| = 1.

The modulus function |F (t)| is given by

|F (t)| =

∣∣∣∣∣∏
k

fk(t)

∣∣∣∣∣ ' e−β(t), (15)

where

β(t) =
1

4

∫ ∞
0

dωg(ω)z(ω)2 (16)

×
(

1− 2e−2D(ω)t +W (ω, t) cos[2(ωt+ θ(ω))]
)
.

Here, g(ω) is the spectral density of the environment,
and a continuum limit

∑
k . . .→

∫∞
0
g(ω) . . . d ω has been

taken.
We now investigate the dependence of the coherence

dynamics and decoherence on the detailed nature of the
initial bath excitation. To explore the general question
of sensitivity of dephasing to these initial phases in a
concrete example, we consider one simple model. We
make a simple Gaussian approximation to the product of
density of states and squared coupling, and take

g(ω)z(ω)2 =
A√
2πωc

e−ω
2/2ω2

c , (17)

where A = Neffz
2
eff ; here Neff is the effective number of

bath modes, zeff is the effective coupling, and ωc is a
measure of the frequency range of the bath modes. We
also take D(ω) = D, a constant independent of ω. The
key quantity to consider in terms of the effect of the initial
phases of the bath modes is the function θ(ω). There are
of course a wide range of possible forms this can take. We
adopt a very simple one parameter linear dependence of
θ(ω) on ω, and take

θ(ω) = −λω. (18)

Within this narrow set of possible phase relations, we
explore the ability to control dephasing by varying the
single parameter λ.

Evaluating the integral for β(t) for this model yields

β(t;λ) =
1

8
Neffz

2
eff

×
[
1− e−2Dt

(
1− e−2ω2

c(t−λ)2
)

− e−4Dte−2ω2
c(t−λ)2

]
(19)
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This result demonstrates an element of controllabil-
ity of the coherence ρ12(t), whose modulus |F (t)| =
exp(−β(t;λ)). The modulus drops from its initial value
of unity toward its asymptotic value |F (t → ∞)| =
exp

(
− 1

8Neffz
2
eff

)
at the intermediate time t = λ, but

then rephases back to the slowly decaying envelope
exp

(
− 1

8Neffz
2
eff

[
1− e−2Dt

])
. As λ becomes large and

positive, or assumes negative values, the decay ap-
proaches the envelope function without the nonmono-
tomic “dip”. This behavior is illustrated in Fig. 3.
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FIG. 3. Comparison of |F (t;λ)| vs. t for λ = 1 (blue), λ = 3
(red) and λ = 5 (green). The parameters are Neff = 100,
zeff = 0.5, D = 0.1, and ωc = 1. Note the dip around t = λ,
showing nonmonotonic decay of the coherence controllable by
varying λ.

The simple relation θ(ω) = −λω is an idealized and
minimalistic model allowing the nature of the relative
oscillator phases to be varied systematically. Much more
rich and variable relations can be contemplated, which
in turn will undoubtedly allow more elaborate control
of the decoherence dynamics. This will be explored in
future work.

In conclusion, we have shown that the decoherence be-
havior of a two state quantum system interacting with
an initially nonequilibrium bath can be controlled by
manipulating the nature of the relative initial phases of
the bath modes. In this work, we have treated a sim-
ple model of a special case for illustration. The general
phenomenon of environmental modes prepared initially
with a well-defined initial phase by optical excitation of
a system chromophore seems to be a situation in many-
body ultrafast dynamics that has received little atten-
tion. By engineering these initial phases, the character,
and in particular, the dephasing, of subsequent quantum
dynamics can potentially be controlled, in a manner rem-
iniscent of a coherent control experiment using shaped
pulses [10–12]. Here, however, the control field is de-
rived not from a shaped laser pulse but rather from the
well-defined phase relations between the modes of the

many-body bath. In living systems, ultrafast quantum
dephasing in a nonequilibrium environment provides an-
other possible handle on biophysical processes that could
be exploited by natural selection, and it is of interest to
explore whether the signature of this optimization can be
found in the quantum dynamics of, for example, biologi-
cal light harvesting systems.
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