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Modeling the multistep flow of energy in light-harvesting dendrimers presents a considerable
challenge. Recent studies have introduced an operator approach based on a matrix representation of
the connectivity between constituent chromophores. Following a review of the theory, detailed
applications are now shown to exhibit the time development of the core excitation following pulsed
laser irradiation and the steady-state behavior that can be expected under conditions of constant
illumination. It is also shown how energy capture by whole dendrimers can be analytically related
to chromophore pair-transfer properties and, in particular, the spectroscopic gradient toward the
core. Indicative calculations also illustrate the consequences of tertiary folding. In each respect, the
model affords opportunities to derive new, physically meaningful information on the photophysical
and structural features of dendrimeric systems. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2785175�

I. INTRODUCTION

The science of energy harvesting has recently seen dra-
matic growth in the development of molecular materials spe-
cifically designed to emulate some of the key structural and
mechanistic principles that operate in biological photosys-
tems. Dendrimers �multibranched polymers with a constant
repeat motif� are a prime example of these new materials,1–13

in common with photosynthetic complexes, each kind com-
prises an array of chromophores with broad, intense absorp-
tion bands, held together in a molecular superstructure. Fol-
lowing the absorption of light, excitation energy is efficiently
conveyed through the system by a series of ultrafast steps.14

Each such step generally progresses toward a unit that ab-
sorbs at a longer wavelength, conferring significant direc-
tionality as the energy advances through a series of different
chromophores.15,16 Eventually, at a trap or reaction center,
the energy of captured light serves to trigger a process such
as electron transfer. Applications include solar energy
conversion,10,11 illumination devices,11 luminescence
detectors,4 analyte-specific sensors,8 nonlinear optical
materials,7 and photodynamic therapy.9,11

In a typical dendrimer, the mechanism for each inter-
chromophore step, in the flow of energy toward the core, is
resonance energy transfer.17 The fundamental electromag-
netic nature of each such move is well understood; however,
modeling the overall multistep flow presents a considerable
challenge.18 To this end some recent exploratory studies19,20

have introduced an operator approach, based on an adjacency
matrix representation of the chemical connectivity between
chromophores. Preliminary results have already indicated a
promising potential for accurately representing the net en-

ergy flow, together with a capacity to interpret kinetic data in
terms of new, physically meaningful quantities with a clear
molecular interpretation. Other forms of matrix representa-
tion, also used to describe the intramolecular energy
redistribution,1,21 have proved to be amenable for some spe-
cific cases. For example, in the work by Blumen et al.,21 an
exact solution is derived for hyperbranched fractal polymers
in which all chromophores have the same absorption cross
section, and all rates of transfer between nearest neighbors
are equal. Other more radical approaches to the problem
have also been attempted, such as modeling the diffusion of
the excitation under a constant force as a continuum
process22 or using the Eyring �membrane permeation� model
to treat the energy flux as diffusion in a potential energy
landscape with thermal barriers.23

In this paper, following a brief review of the adjacency
matrix model in the specific form we have previously intro-
duced, more detailed applications are developed and shown
to exhibit: �i� the time development of the core excitation
following pulsed irradiation, �ii� steady-state behavior that
can be expected under conditions of constant illumination,
�iii� the significance of a spectroscopic gradient in driving
excitation toward the core, and �iv� the dynamical effects of
solvent-induced tertiary folding. In each respect the new
model offers a means of determining valuable new informa-
tion on the photophysical and structural features of dendrim-
eric systems.

II. DESCRIPTION OF THE MODEL

By processes to be examined below, the illumination of a
light-harvesting dendrimer results in a photoexcitation of the
core, which is a function of the intensity of the light, the
absorption cross section of the dendrimer and its component
chromophores, and the characteristics of energy transfer be-
tween those chromophores. As described in our previous
work,20 the model for our calculations is cast in the form of
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an adjacency matrix representation of the propensities �prob-
abilities associated with an arbitrary but constant time inter-
val� for energy migration between the individual chro-
mophores comprising the dendrimer. This matrix operates
upon a vector representation of the �arbitrary� initial popula-
tion conditions; iteration of the procedure models the tempo-
ral evolution of energy flow. We assume that successive gen-
erations of the polymer are built with a repeating structural
motif, characterized by a vertex degree �, signifying the
number of chemical links to each chromophore; it is also
assumed that all the chromophores in a given shell are of the
same type—the term “shell” being used to signify the set of
monomer units having the same number of branches in its
chemical bonding to the core. The core acceptor or trap thus
has � equivalent chromophores in the first generation shell
surrounding it; in each successive generation, the number of
chromophores in the shell grows by a factor of �−1. Figure
1 illustrates various first generation dendrimers with different
vertex degrees �.

For clarity, we begin by illustrating the adjacency matrix
for a first generation symmetric dendrimer with �=3, corre-
sponding to the architecture of many of the most common
�1,3,5� trisubstituted benzene dendrimers,

C =�
1 − a − 2f f f �−1a

f 1 − a − 2f f �−1a

f f 1 − a − 2f �−1a

a a a 1 − 3�−1a − �
� .

�1�

The first three elements in the diagonal of the matrix are
written in a form that reflects energy conservation �i.e., the
sum of elements in each column of the matrix is unity�: a is
the propensity for the energy to be transferred from any chro-

mophore in the shell to the core, and f represents transfer
between chromophores in the same shell. In the last column
of matrix C the propensity for back transfer, from the core to
any chromophore in the shell, is written as �−1a �correspond-
ing to b in Ref. 20�, where � is the ratio of propensities for
inward and outward energy transfers. In passing, we note
that the latter parameter has been the subject of another re-
cent study,24 where its detailed dependence on spectral over-
lap has been explored. Finally, the parameter � is introduced
to signify possible losses associated with emission or irre-
versible energy utilization at the core. In this simple case, the
initial state can be represented by the vector,

s = �1 0 0 0�T, �2�

where the first three elements denote the excited state popu-
lations of the donors �only one is assumed to be excited� and
the fourth element is the population of the acceptor. Through
a progression of n repeated operations of C upon the column
matrix �Eq. �2��, we obtain the full time evolution of the
energy flow up to a time n�t, where �t is the increment of
time for which the propensities in the matrix �1� have been
defined. The extent of core excitation after the nth iteration
is, therefore, given by

Gn = �Cns�4, �3�

where the index on the right designates the fourth �core�
element of the resulting column matrix. the result is a poly-
nomial in a, of order n; explicit expressions for the first few
iterations are as follows:

G1 = a , �4a�

G2 = �2 − ��a − �1 + 3�−1�a2, �4b�

G3 = �3 − 3� + �2�a − �3 − � − 6�−1� + 9�−1�a2

+ �1 + 6�−1 + 9�−2�a3, �4c�

G4 = �4 − 6� + 4�2 − �3�a − �6 − 4� + �2 − 24��−1

+ 9�2�−1 + 18�−1�a2 + �4 − � − 12��−1 − 27��−2

+ 24�−1 + 36�−2�a3 − �1 + 9�−1 + 27�−2 + 27�−3�a4,

�4d�

G5 = �5 − 10� + 10�2 − 5�3 + �4�a − �10 − 10� + 5�2 − �3 − 60�−1� + 45�−1�2 − 12�−1�3 + 30�−1�a2

+ �10 − 5� + �2 − 60�−1� − 18�−1�2 − 135�−2� + 54�−2�2 + 60�−1 + 90�−2�a3

− �5 − � − 18�−1� − 81�−2� − 108�−3� + 45�−1 + 135�−2 + 135�−3�a4 + �1 + 12�−1 + 54�−2 + 108�−3 + 81�−4�a5. �4e�

Although the parameter f in Eq. �1� generally enters the cal-
culation of energy transfer between arbitrarily chosen chro-
mophores, it is important to note that the result for the core
excitation is independent of f , i.e., it is not in any way influ-
enced by any transfer between chromophores in the same

shell. �This is readily verified not only for this first genera-
tion case but also for dendrimers of any higher generation.�
Figure 2 illustrates the development of the core population as
a function of time �the iteration count representing time in
arbitrary units� for various values of the parameters a, �, and

FIG. 1. First-generation dendrimers, ��a�=3, ��b�=4, and ��c�=5.
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� in the matrix �1�. The uppermost curve, corresponding to
the set of values a=0.1, �=0, and �=�, exhibits the simplest
case, where there are no losses and no back-transfer pro-
cesses, and the core works most effectively as an energy trap;
in a second case �a=0.1, �=0, and �=10�, also loss less, a
steady state is reached where the energy is distributed within
the molecule, the exact form of that distribution being deter-
mined by the parameters a and b. In all such cases where
losses can be neglected, the asymptotic value of the core
excited state population is

G� =
1

1 + 3�−1 , �5�

as can trivially be shown by imposing the limiting condition
that operation of the adjacency matrix C regenerates the ex-
isting energy distribution. Clearly, the state population in this
limit depends only on the spectral overlap for forward and
backward transfers.24

Returning to Fig. 2, one can observe in the lower two
curves the very substantial differences in behavior that occur
when losses are present. Both curves—one with back
transfer �a=0.1, �=0.1, and �=10� and the other without
�a=0.1, �=0.1, and �=��—exhibit the patterns of flow in a
molecule where energy, once transferred to the core, is irre-
versibly expended or harvested. A comparison between these
latter curves shows that allowing a small degree of back
transfer is largely inconsequential. It is apparent from the
graphs that the model can properly simulate the flow of en-
ergy through dendrimeric systems with a range of photo-
physical characteristics. Moreover, application of the results
will enable information on the individual propensity param-
eters to be obtained from experimental measurements of the
core excitation.

When higher generation dendrimers are studied it is
more convenient to consider each shell as an effective donor
or acceptor, significantly reducing the dimensionality of the
transfer matrices. For a three-generation dendrimer, for ex-
ample, the corresponding matrix in the shell basis may be
written as follows �see the Appendix�:

C̃ =�
1 − a3 2�3

−1a3 0 0

a3 1 − a2 − 2�3
−1a3 2�2

−1a2 0

0 a2 1 − a1 − 2�2
−1a2 3�1

−1a1

0 0 a1 1 − 3�1
−1a1 − �

� , �6�

where ai is the propensity for transfer from a chromophore in
the ith shell to another, to which it is chemically bonded, in
the �i−1�th shell �or to the core, if i=1�, �i is the ratio of
efficiencies for inward and outward energy transfers between
the same pair of chromophores, and � again signifies possible
losses associated with emission or irreversible energy utili-
zation at the core. Here and below, the tilde is employed to
denote the reduced, shell-based representation. One ancillary
advantage of this representation is that it obviates any need
to consider the chromophores of any given shell as equiva-
lent in their individual propensities, i.e., it is no longer nec-
essary to assume a rotational symmetry that chemical con-
nectivity would suggest. This is a facet, that is, of particular
relevance when issues of folding are to be entertained.

To continue with the three-generation example, an initial
population vector similar to Eq. �2� can also be written in
this case, where the elements of the vector s̃ are now the
excited state populations of the entire shells and the core,

s̃ = �1 0 0 0�T. �7�

This representation of the initial state, in which only the
excitation of an outer chromophore is entertained, again re-
flects the strongest probability for photons to be absorbed in
the outermost shell, due to the larger number of chro-
mophores it contains.

III. STEADY-STATE BEHAVIOR

The model as previously described is an approximation
in which the excited state populations are not continuous
functions of time; energy is transferred between donors and
acceptors on every iteration—which can be associated with a
finite time interval �t. The fidelity of this representation is
improved if the transfer propensities are decreased in value

FIG. 2. Extent of core excitation as a function of the iteration count, for
different values of propensities a, �, and � in the matrix �1�.
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�thus requiring a larger number of iterations�; in this sense,
the above calculations in Sec. II have an improved accuracy
over our earlier work.20 Clearly, the best representation is
where the energy flow is continuous in time, i.e., when the

propensities are redefined for infinitesimal time intervals, as
will be assumed in the following. For example, for a three-
generation dendrimer, we can write the adjacency matrix in
the form

C̃ =�
1 − wa3dt 2�3

−1wa3dt 0 0

wa3dt 1 − 2�3
−1wa3dt − wa2dt 2�2

−1wa2dt 0

0 wa2dt 1 − 2�2
−1wa2dt − wa1dt 3�1

−1wa1dt

0 0 wa1dt 1 − 3�1
−1wa1dt − �dt

� , �8�

where wai is the rate of rotational energy transfer �RET� corresponding to the propensity ai in Eq. �6� and � is the rate of
energy utilization by the core.

If a dendrimer is irradiated with constant intensity light, then a steady state is reached when the energy expended in the
core equals that captured by the dendrimer during the same time interval. The state populations become independent of time
and may be expressed as follows:

s̃ = �G�4�, G�3�, G�2�, G�1�� , �9�

�
i=1

4

G�1� = 1. �10�

This distribution of excitation is subject to the recursive condition,

s̃ = p̃ + C̃s̃ , �11�

in which p̃ represents the incremental extent of excitation, due to the light, in the interval dt,

p̃ = G�1�Z�dt�N4��4�, N3��3�, N2��2�, N1��1�� . �12�

Here the normalizing factor Z is defined by

Z−1 = �
i=1

4

Ni�
�i�, �13�

and ��i� signifies the individual absorption cross-section for each of the Ni chromophores in the �i−1�th shell. Substituting Eqs.
�8�, �9�, and �12� in Eq. �11� and using Eq. �10�, the state population in the core of the molecule is expressed as

G�1� =
1

�1 +
3

�1
�1 +

2

�2
�1 +

2

�3
			 + �� P1

wa3
+

P2

wa2
�1 +

2

�3
	 +

P3

wa1
�1 +

2

�2
�1 +

2

�3
			 , �14�

where

P1 = ZN4��4�,

P2 = Z�N4��4� + N3��3�� ,

P3 = Z�N4��4� + N3��3� + N2��2�� . �15�

It is interesting to consider a limiting case where �, the rate
of energy loss by the core, can be neglected. �In fact, since
the practical objective of an energy-harvesting dendrimer is
delivery to the core specifically in order for the energy to be
expended there, the exclusion of � is consistent with a focus
on the efficiency of excitation arrival.� Equation �14� reduces
still further if it is assumed that all the directional efficien-

cies, �, between chromophores in adjacent shells, are equal.
Then, the core population can be written as

G�1� = �1 + 3�−1 + 6�−2 + 12�−3�−1. �16�

In order to compare the core populations of different
dendrimeric systems, under the conditions described for Eq.
�16�, it is necessary to account for the different net absorp-
tion cross sections of these systems—which can be assumed
to vary in proportion to the total number of chromophores N
which they comprise. Figure 3 shows the suitably scaled ex-
tent of core excitation NG�1� as a function of the directional
efficiency, for three-, four-, and five-generation dendrimers.
The result shows the rapid increase in the extent of total core
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excitation with the growth of successive generations; as can
be physically expected, the asymptotic behavior for large �
corresponds to the total number of chromophores.

IV. SPECTROSCOPIC GRADIENT

It is interesting to illustrate the transparent linkage af-
forded by the present model, between the light-harvesting
properties of a dendrimer entity, and the detailed optical
properties of the constituent chromophores. To this end we
focus on the critical role of a spectroscopic gradient, the
progressive bathochromic shift that enhances efficient fun-
neling of energy from the peripheral chromophores to the
core.25 A general relationship between the relative directional
efficiency � and the spectroscopic gradient has recently been
established.24 In the simplest case, where the spectral bands
of the chromophores are represented by Gaussian functions
of similar width and where the absorption and fluorescence
maxima are separated by a constant Stokes shift, this rela-
tionship is as follows:

� = 2�8�C�S/��1/2
2� = e�̃G�̃S. �17�

Here ��1/2 is the full width at half maximum, �G is the
absorption frequency shift between successive generation
chromophores, and �S is the Stokes Shift. The simplified
expression on the right-hand side of Eq. �17� is obtained by
rewriting in terms of �̃S= �2
2 ln�2� /��1/2��S and �̃G

= �2
2 ln�2� /��1/2��G, dimensionless measures of the
Stokes shift and spectroscopic gradient, respectively. To il-
lustrate the effect of the spectroscopic gradient, we plot the
core excitation of a three-generation dendrimer as a function
of the spectroscopic gradient �̃G, in Fig. 4, based on an ex-
cited state population given by Eq. �16�. The figure shows
the sensitive dependence of the light-harvesting efficiency on
the spectroscopic gradient, a feature which also increases in
importance with the Stokes shift exhibited by the
chromophores.

V. DISCUSSION

In this paper, we have developed a comprehensive
framework for the theory of energy flow in dendrimeric
polymers. In Sec. II, a more compact form has been secured
for the basic adjacency matrix representation of energy flow.
The methodology has been shown to offer a robust represen-
tation that can accommodate a variety of chemically and
photophysically significant parameters—especially the rela-
tive propensities for inward and outward energy flows, itself
a sensitive function of the spectral overlap for the donor
emission and acceptor absorption curves. In Sec. III, it has
been shown how to determine the steady-state behavior, rep-
resenting equilibrium conditions that will arise under condi-
tions of constant illumination, and where the directional ef-
ficiency again proves a key determinant of the core
excitation. Bridging two levels of theory, Sec. IV has exhib-
ited the connections that can be made, using the matrix
theory, between the light-harvesting characteristics of a den-
drimer and the detailed spectroscopic properties of the con-
stituent chromophores.

In conclusion, it is interesting to outline how the overall
dendrimer efficiency may depend on tertiary folding. As has
been established, the radial flow of energy in dendrimers is
extremely sensitive to the separation between successive
shells, due to the inverse sixth-power distance dependence of
the resonance energy transfer propensities. It is therefore im-
portant to register the fact that most dendrimer compounds
have a degree of intrinsic flexibility, a feature that grows in
significance as the number of generations increases and ter-
tiary folding occurs. This is a facet of the three-dimensional
structure that is at present only amenable to empirical mod-
eling. A physical manifestation of the effect is the observa-
tion that dendrimer radii prove to be sensitively dependent
on both chemical structure and solvent, and a variety of func-
tional forms for the dependence of radius on generation has
been found to operate under different conditions.25–28 In
many cases, the dependence is close to linearity for low gen-
eration polymers, suggesting that the separation between
successive shells is approximately constant.

It is instructive to visualize the possible effect of this

FIG. 3. Core excited state population scaled by the total number of chro-
mophores N in dendrimers of vertex degree �=3, plotted as a function of the
directional efficiency of intershell RET, for three-, four-, and five-generation
dendrimers.

FIG. 4. Core excitation G of a three-generation dendrimer �described by
Eqs. �16� and �17��, plotted as a function of �̃G �measure of the spectro-
scopic gradient� for different values of �̃S �the relative Stokes shift�.
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flexibility on the energy flow. To this end, we can recast the
propensities in Eq. �6� in a form that expresses their depen-
dence on the distance between shells as ai=ai� /ri

6, where ri is
a dimensionless metric of the distance from the ith to the
�i−1�th shell �or the core if i=1�, and ai� is a corresponding,
effective spectroscopic factor. Taking this approach essen-
tially reflects the fact that the energy flow is dominated by
transfers between near-neighbor chromophores in adjacent
shells. For indicative purposes, let us assume that solvent
coordination reduces the distance between successive shells
of the dendrimer �and between the first shell and the core� by
a constant proportion, i.e., in a geometric progression. Figure
5 shows the effects on the time evolution of the core excited
state population for two-, three-, and four-generation den-
drimers and the corresponding increases per iteration count.
The initial population is as given by Eq. �7� and its counter-
parts, always featuring one initial excitation in the outermost
shell. For comparison, results are shown for the cases where
the distance between shells is ri=1.0, and also where the
effect of a solvent or other folding process reduces the dis-
tance to ri=0.8; we assume that the core is an energy trap
imposing the conditions �1=� and �=0, and that the direc-
tional efficiency between chromophores in different shells
and the core is unity; �i=1 and ai�=1	10−3 s−1 for all the
inward transfer.

On inspection of Fig. 5, it is apparent that the time taken
for an excitation initially on the outermost shell to reach the
core grows with the number of generations, quantifying a
trend that can be qualitatively anticipated. In a future work,
an extension of the method to dendrimers of a higher gen-
eration should enable the detailed form of this dependence to
be elicited, accommodating a more general form for the
variation of shell radius with generation. The present results,
designed to illustrate the principles, show how dramatically
the nature of the energy flow changes when the distance
between successive shells is reduced, even by as little as
20%, suggesting a considerable solvent-induced enhance-
ment of the energy flow process. Clearly, for each dendrimer

in its folded conformation, compared to its unfolded form,
the time taken for excitation to reach the core is very mark-
edly reduced. It is striking that this effect is entirely geomet-
ric in its origin. Lastly, the fold-dependent changes in shape
in the curves �ii�, �iv�, and �vi� suggest a basis for interpret-
ing experimentally determined kinetics, based on pulsed la-
ser excitation, in terms of solvent-induced conformational
change. These generic results inspire confidence that appli-
cations of the theory to specific dendrimer systems will offer
considerable interpretive power.
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APPENDIX: ADJACENCY MATRIX DEPENDENCE
ON DENDRIMER BRANCHING

In the model previously developed, we showed that the
dimensionality of the adjacency matrix can be reduced by
considering the shells as effective, composite donors and
acceptors.20 In the following, we show the relationship be-
tween the propensities in both the original and reduced basis
matrices. It is simplest to introduce the relationship by refer-
ence to a simple first-generation dendrimer with connectivity
�=3. The matrix representation of the energy flow in the
molecule is given by Eq. �1�, and in general the initial exited
state population can be represented as a four-element popu-
lation vector s, whose elements are the degrees of excitation
in each chromophore. When the donor shell is considered as
a single effective donor or acceptor, we can write a transfer
propensity matrix in the form;

C̃ = �1 − a� ��−1a�

a� 1 − ��−1a� − ��
	 , �A1�

a� being the propensity for transfer from the shell to the core
and �� the ratio of propensities for inward and outward trans-
fers between these two effective chromophores. For the ma-
trix �A1� we can define a reduced population vector as fol-
lows;

s̃ = �G�2� + G�3� + G�4�,G�1��T, �A2�

where G�4�, G�3�, G�2�, and G�1� are, respectively, the first,
second, third, and fourth elements of s, whereas the first and
second elements of s̃ are the net excited state populations of
the shell and core, respectively. For consistency, the core
populations predicted by both models must be equivalent.
After one iteration of the usual procedure, by equating the
extents of core population delivered by each representation,
we have

�1 − 3�−1a − ��G�1� + a�G�2� + G�3� + G�4��

= �1 − ��−1a� − ��G�1� + a��G�2� + G�3� + G�4�� , �A3�

illustrating that the directional efficiency in the matrix �A1�
is three times smaller than in the matrix �1�, ��=� /3. Con-
sistently with previous works,29 for a G-generation den-

FIG. 5. Time evolution of the excited core population, for r=1.0 and 0.8, for
�i� two-generation, �iii� three-generation, and �v� four-generation dendrim-
ers, and their respective increases in core excitation per unit time �ii�,
�iv�, and �vi�. The parameter values are �1=�, �i=1 for i
1, �=0, and
ai�=1	10−3.
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drimer, we find that the nonzero elements of the adjacency
matrix in the shell basis are as follows:

C1,1 = 1 − aG,

Ci,i = 1 − ai − ��i+1
−1ai+1, 2 � i � G ,

CG,G = 1 − ��1
−1a1 − � ,

Ci−1,i = ��i+1
−1ai+1, 2 � i � G + 1,

Ci+1,i = ai, 1 � i � G ,

�A4�

where � is the number of chromophores bonded to the core
and � is the branch multiplicity from the first shell to the
periphery. If the central chromophore is identical to the chro-
mophores in each shell, it follows that �=�−1.
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