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Abstract

Please don’t distribute and please let me know if you find mistakes/typos.
1 Multipole Expansion

I find the geometry of these light harvesting complexes interesting. I want to
know if the fact that the FMO structure is almost 2D makes it more efficient.
The picture of 7 dipole moments talking to each other is a complicated one,
so I will start with two dipole moments, where I consider one dipole sitting in
the electric field of the other. I then argue what the classical and quantum
mechanical expressions for multiple dipoles should be. I will apply the theory
to quantum dots.

This is based on chapter-4 of the classic book of Jackson: Classical Electro-
dynamics (third edition). I follow Jackson in using SI units, so sorry about the
47 and €ps floating around.

In the spirit of modelling a cow as a sphere (with the head, legs and tail
as small perturbations), I will consider the charge of an entity that has an
electron-hole pair density due to photons as a charge distribution p(x), which is
nonvanishing only inside a sphere of radius R. The potential outside the sphere
(spherically symmetric problem, so the first thing that comes to mind is to span
using Spherical Harmonics) is
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the notation is used for convenience (will come back to this), Y,,,(0,¢) are
the usual Spherical Harmonics (see section below for their form). The above
potential is said to be written in multipole expansion: the [ = 0 term is monopole
term, [ = 1 termS are the dipole terms, etc.




Now for a given charge distribution p (x), what are the coefficients g, in
the above expansion? Since
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according to the addition theorem of Spherical Harmonics (page-110 of Jack-
son for example)
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now one can see that is mdeed the reason for the form of the multipole
expansion and this ties the whole story together in the following way:
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therefore simple comparison with
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gives me the "multipole moments"

Gim = / () ¥ (8, 8o ).

Symmetries of the Spherical Harmonic functions can be used to show that
Gi—m = (—1)™q},,. Let me play with these
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for the total charge ¢. Let me put this back in the first term of ®(x)
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as

Moving on to the dipole terms
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for p = / x'p(x")dx’, the electric dipole moment.
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note: qi—1 = [&] 12 (pz +1ipy). Of course the scalar potential ®(x) is define

E(x) = —V(x).



Lets consider a dipole p along the z-axis (at xg), then working through the
differentiation (there is actually a very subtle point as pointed out by Jackson
on page 147-148), one gets the electric field at point x due to this dipole (n is
the unit vector directed from xg to x)
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(I think, the last term originates from Gauss’s law and it insures that integral

over the electric field / E(x)dx = —p/3ep ). In any event, we have the electric
r<R

field due to an electric dipole, which is a happy occasion, because we can ask,
what happens if you put another dipole in the vicinity of the first dipole, i.e. in
the above electric field. Basically the way I remember how to do this problem
is through a combination of intuition and dimensional analysis (a much more
elegant derivation is given on page 150 of Jackson).

Imagine a charge particle in an electric field (can be easily generalized to
electromagnetic field), the force on the particle is then (I never know what

convention of the sign of e is being used, so be careful with my signs)
F = —cE
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the electrostatic energy (work done on the particle, in the case of an EM field)
is

W = F.r=—eE-r=-E-p
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Then the electrostatic energy of a dipole ps sitting (at x2) in a field (given
above) due to a dipole p1(at x1) is
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where n is the unit vector directed from x; to x2 (X1 # X2), which is the equation
I was after. This is the dipole-dipole coupling energy that we have been talking
about between two dipoles. If I ask, what is the electrostatic energy when I put
n—1 dipoles p; (at z;, i = 2...n) in the electric field of a dipole p; sitting at x1,
then I would argue that the classical electrostatic energy of the system would
be

W = ZWM
=2
Wi — 1 Pi-p; 3(n~p1)(n~pi)
Li 471'60 |Xi — X1‘3 |X1' — X1|3

4



To make a quantum mechanical calculation couplings ”.J”, one then makes
the above energy a part of the Hamiltonian by simply making it an operator (the
usual procedure of constructing quantum mechanics from classical mechanics)
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~ denotes an operator. This is then written using the spectral resolution of
identity for the system
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for the couplings
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In principle the fact that maybe nature has found optimal ways of
orienting dipoles for energy transfer would be hidden in the geome-
try of the above expression. In another set of notes I will apply the above
equation to quantum dots, where one should be able to use the spatial symme-
try of the Hamiltonian (Hermite polynomials) to find simple relations between
different dipole interaction terms.

Then I should be able to answer questions such as: Can I construct quantum
dot arrays for which the quadrupole interaction is very strong? I am not going
to touch the quadrupole stuff for now, because it gets very messy? I will focus
on the dipole interaction and try to vary the size of the QDs (and perhaps the
effective mass, i.e. the material). This analysis (generalization of it) would
also work for 2DEG quantum dots, although other interactions will become
important there as well.

2 Spherical Harmonics

The Spherical Harmonics (which in my opinion should always be held close to
one’s heart):
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are normalized
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