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Abstract

Please don�t distribute and please let me know if you �nd mistakes/typos.

1 Multipole Expansion

I �nd the geometry of these light harvesting complexes interesting. I want to
know if the fact that the FMO structure is almost 2D makes it more e¢ cient.
The picture of 7 dipole moments talking to each other is a complicated one,
so I will start with two dipole moments, where I consider one dipole sitting in
the electric �eld of the other. I then argue what the classical and quantum
mechanical expressions for multiple dipoles should be. I will apply the theory
to quantum dots.
This is based on chapter-4 of the classic book of Jackson: Classical Electro-

dynamics (third edition). I follow Jackson in using SI units, so sorry about the
4� and �0s �oating around.

In the spirit of modelling a cow as a sphere (with the head, legs and tail
as small perturbations), I will consider the charge of an entity that has an
electron-hole pair density due to photons as a charge distribution �(x), which is
nonvanishing only inside a sphere of radius R. The potential outside the sphere
(spherically symmetric problem, so the �rst thing that comes to mind is to span
using Spherical Harmonics) is

�(x) =
1

4��0

1X
l=0

lX
m=�l

4�

2l + 1
qlm

Ylm(�; �)

rl+1

the notation is used for convenience (will come back to this), Ylm(�; �) are
the usual Spherical Harmonics (see section below for their form). The above
potential is said to be written in multipole expansion: the l = 0 term is monopole
term, l = 1 termS are the dipole terms, etc.
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Now for a given charge distribution � (x), what are the coe¢ cients qlm in
the above expansion? Since

�(x) =
1

4��0

Z
�(x0)

jx� x0jdx
0

according to the addition theorem of Spherical Harmonics (page-110 of Jack-
son for example)

1

jx� x0j = 4�
1X
l=0

lX
m=�l

1

2l + 1

(r0)
l

rl+1
Y �lm(�

0; �0)Ylm(�; �)

now one can see that is indeed the reason for the form of the multipole
expansion and this ties the whole story together in the following way:

�(x) =
1

4��0

Z
�(x0)

jx� x0jdx
0

=
1

4��0

Z "
4�

1X
l=0

lX
m=�l

4�

2l + 1

(r0)
l

rl+1
Y �lm(�

0; �0)Ylm(�; �)

#
�(x0)dx0

=
1

�0

" 1X
l=0

lX
m=�l

1

2l + 1

Z
(r0)

l
Y �lm(�

0; �0)�(x0)dx0

#
Ylm(�; �)

rl+1

therefore simple comparison with

�(x) =
1

4��0

1X
l=0

lX
m=�l

4�

2l + 1
qlm

Ylm(�; �)

rl+1

gives me the "multipole moments"

qlm =

Z
(r0)

l
Y �lm(�

0; �0)�(x0)dx0:

Symmetries of the Spherical Harmonic functions can be used to show that
ql�m = (�1)mq�lm. Let me play with these

q00 =

Z
Y �00(�

0; �0)�(x0)dx0

=
1p
4�

Z
�(x0)dx0 =

1p
4�
q

for the total charge q. Let me put this back in the �rst term of �(x)

�00(x) =
4�

�0

1p
4�
q
Y00(�; �)

r

=
q

�0

1

r
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Moving on to the dipole terms

q10 =

Z
r0Y �10(�

0; �0)�(x0)dx0

=

�
3

4�

�1=2 Z �
r0 cos �0

�
�(x0)dx0

=

�
3

4�

�1=2 Z
z0�(x0)dx0

=

�
3

4�

�1=2
pz

�10(x) =
1

3�0
q10
Y10(�; �)

r2

=
1

4��0
pz
cos �

r2

for p =
Z
x0�(x0)dx0, the electric dipole moment.

q11 =

Z
r0Y �11(�

0; �0)�(x0)dx0

= �
�
3

8�

�1=2 Z
r0e�i� sin ��(x0)dx0

= �
�
3

8�

�1=2
(px � ipy):

�11(x) =
1

3�0
q11
Y11(�; �)

r2

=
1

8��0
(px � ipy)

ei� sin �

r2

�1�1(x) =
1

4��0

4�

3
q1;�1

Y1�1(�; �)

r2

=
1

8��0
(px + ipy)

e�i� sin �

r2

note: q1�1 =
�
3
8�

�1=2
(px+ ipy). Of course the scalar potential �(x) is de�ne

as

E(x) = �r�(x):
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Lets consider a dipole p along the z-axis (at x0), then working through the
di¤erentiation (there is actually a very subtle point as pointed out by Jackson
on page 147-148), one gets the electric �eld at point x due to this dipole (n is
the unit vector directed from x0 to x)

E(x) =
1

4��0

�
� p

jx� x0j3
+
3n(p � n)
jx� x0j3

� 4�
3
p�(x� x0)

�
(I think, the last term originates from Gauss�s law and it insures that integral

over the electric �eld
Z

r<R

E(x)dx = �p=3�0 ). In any event, we have the electric

�eld due to an electric dipole, which is a happy occasion, because we can ask,
what happens if you put another dipole in the vicinity of the �rst dipole, i.e. in
the above electric �eld. Basically the way I remember how to do this problem
is through a combination of intuition and dimensional analysis (a much more
elegant derivation is given on page 150 of Jackson).
Imagine a charge particle in an electric �eld (can be easily generalized to

electromagnetic �eld), the force on the particle is then (I never know what
convention of the sign of e is being used, so be careful with my signs)

F = �eE
[F ] = g:cm:s�2

the electrostatic energy (work done on the particle, in the case of an EM �eld)
is

W = F � r = �eE � r = �E � p
[W ] = g:cm2:s�2 = erg

Then the electrostatic energy of a dipole p2 sitting (at x2) in a �eld (given
above) due to a dipole p1(at x1) is

W12 = �E(x) � p2

=
1

4��0

�
p1�p2

jx2 � x1j3
� 3(n � p1) (n � p2)jx2 � x1j3

�
where n is the unit vector directed from x1 to x2 (x1 6= x2), which is the equation
I was after. This is the dipole-dipole coupling energy that we have been talking
about between two dipoles. If I ask, what is the electrostatic energy when I put
n�1 dipoles pi (at xi, i = 2:::n) in the electric �eld of a dipole p1 sitting at x1,
then I would argue that the classical electrostatic energy of the system would
be

W =
nX
i=2

W1i

W1i =
1

4��0

�
p1�pi

jxi � x1j3
� 3(n � p1) (n � pi)jxi � x1j3

�
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To make a quantum mechanical calculation couplings "J", one then makes
the above energy a part of the Hamiltonian by simply making it an operator (the
usual procedure of constructing quantum mechanics from classical mechanics)

Hdipole�dipole ==
1

4��0

�
p1�p2

jbx2 � bx1j3 � 3(n � p1) (n � p2)jbx2 � bx1j3
�

b denotes an operator. This is then written using the spectral resolution of
identity for the system

I =
X
i

jiihij

Hdipole�dipole =
X
ij

Jij jiihjj

for the couplings

Jij =
1

4��0
hij
�

p1�p2
jbx2 � bx1j3 � 3(n � p1) (n � p2)jbx2 � bx1j3

�
jji:

In principle the fact that maybe nature has found optimal ways of
orienting dipoles for energy transfer would be hidden in the geome-
try of the above expression. In another set of notes I will apply the above
equation to quantum dots, where one should be able to use the spatial symme-
try of the Hamiltonian (Hermite polynomials) to �nd simple relations between
di¤erent dipole interaction terms.

Then I should be able to answer questions such as: Can I construct quantum
dot arrays for which the quadrupole interaction is very strong? I am not going
to touch the quadrupole stu¤ for now, because it gets very messy? I will focus
on the dipole interaction and try to vary the size of the QDs (and perhaps the
e¤ective mass, i.e. the material). This analysis (generalization of it) would
also work for 2DEG quantum dots, although other interactions will become
important there as well.

2 Spherical Harmonics

The Spherical Harmonics (which in my opinion should always be held close to
one�s heart):

Ylm(�; �) = (�1)l
�
(2l + 1)!

4�

�1=2
1

2ll!

�
(l +m)!

(2l)!(l �m)!

�1=2
eim�(sin �)�m

dl�m

d(cos �)l�m
(sin �)2l

are normalized Z
Y �l0m0(�; �)Ylm(�; �)d
 = �ll0�mm0 :
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Y00(�; �) =

�
1

4�

�1=2
Y10(�; �) =

�
3

4�

�1=2
cos �

Y11(�; �) = �
�
3

8�

�1=2
ei� sin �

Y1�1(�; �) = +

�
3

8�

�1=2
e�i� sin �

::::

6


