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6 We examine the transfer of electronic excitation (an exciton) along a chain of electronically coupled

7 monomers possessing internal vibronic structure and which also interact with degrees of freedom of

8 the surrounding environment. Using a combination of analytical and numerical methods, we

9 calculate the time evolution operator or time-dependent Green’s function of the system and thereby
10 isolate the physical parameters influencing the electronic excitation transport. Quite generally, we
11 show that coupling to vibrations slows down and inhibits migration of electronic excitation due to
12 dephasing effects on the coherent transfer present without vibrations. In particular, coupling to a
13 continuous spectrum of environment states leads to a complete halting of transfer, i.e., a trapping of
14 the exciton. © 2009 American Institute of Physics. [DOI: 10.1063/1.3176513]

15
16 |. INTRODUCTION

17 The problem of the time dependence and character of
18 electronic excitation transport (EET) along aggregates of at-
19 oms, molecules, or other monomeric quantum objects is en-
20 joying renewed interest in the light of refined experimental,
21 device fabrication, and molecular manipulation techniques.
22 Apart from traditional quantum aggregates, such as those
23 composed of organic molecules, e.g., crystals,l_4
24 dendrimers,’ J—aggregates,6 photosynthetic units,” ! new
25 types of aggregate, such as cold atom'>™™ or quantum dot
26 assemblies, ~ mixed aggregates of metal nanoparticles, and
27 organic molecules,'® are being studied. New, more sophisti-
28 cated probing and detection techniques allow studies on EET
29 with increasing spatial and temporal resolutions. In some
30 cases, the nature of EET on such aggregates is considered to
31 be due to the quantum coherence embodied in the very con-
32 cept of the delocalized exciton. This coherence is affected
33 strongly by the interaction with the “environment,” usually
34 in the form of nuclear vibrations, and hence such interac-
35 tions, leading to decoherence, alter the nature and probability
36 of migration of electronic excitation along the aggregate.

37 In this paper we will concentrate on the molecular Fren-
38 kel exciton problem, considering molecular aggregates com-
39 posed of monomers whose absorption bands show broad vi-
40 brational structure. Since the molecules in weakly bound
41 aggregates largely retain their character, we will use the lan-
42 guage of molecular rather than solid-state physics. In a mo-
43 lecular aggregate, usually studied in solution, the electronic
44 excitation interacts with various types of vibration, as classi-
45 fied in Ref. 17. First and foremost, there are the intramolecu-
46 lar vibrational excitations directly accompanying light ab-
47 sorption due to a shift of the equilibrium position of the
48 nuclei on electronic excitation. These primary intramolecular
49 vibrations we call internal modes (IMs). They are evident in
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the absorption spectra of isolated monomers and usually 50
dominated by one or a few normal modes. At low tempera- 51
tures, these modes can clearly be seen.'® In large organic 52
molecules, these primary vibrations couple to many other 53
IMs so that the absorption spectrum consists of many vi- 54
bronic lines. In solution, the intramolecular vibrations inter- 55
act with a myriad of lower frequency modes (arising from 56
the increase in the mass of the vibrators) representing 57
phonons on the aggregate itself or vibrational, rotational, and 58
translational degrees of freedom of the surrounding liquid 59
molecules. We will call such external modes, specified usu- 60
ally only by a continuous mode density, EMs. In addition, 61
there is a broadening due to local variations in the electronic 62
interaction of a given monomer with the surrounding mol- 63
ecules. 64

The objective of this paper is to study the propagation of 65
an initially localized electronic excitation along a molecular 66
aggregate, interacting with both IM and EM vibrations. The 67
relevant time scales are then (a) the typical time Ty, for trans- 68
fer of electronic excitation due to intermonomer coupling 69
and (b) the typical time T, for the onset of electronic- 70
vibrational coupling. In the energy picture these times corre- 71
spond to the half-width B=#/T,, of the exciton band and the 72
width o=#%/T,;, of the monomer vibronic absorption spec- 73
trum. 74

In the specific case of molecular aggregates, this EET 75
problem has been tackled using two rather distinct sets of 76
approximation to the full problem, which lead to two differ- 77
ent pictures of the transfer process. 78

(I)  On the one hand, and by far the most popular approach, 79
the intramolecular vibrations are not considered explic- 80
itly and interest is centered on the influence of coupling 81
to the surroundings. This follows the methods of solid- 82
state physics and usually the language is that of second 83
quantization and linear exciton-phonon coupling. In the 84
zeroth order, an aggregate is taken to consist of mono- 85
mers with only a single sharp electronic transition line. 86
Due to coupling to the surrounding, each monomer at a 87
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different site along the aggregate is subject to fluctuat-
ing forces, which leads to a change in the effective
electronic transition energy and/or in the strength of
electronic coupling to neighboring monomers. The
shifts and coupling changes are then treated statistically
according to some prescription. A distinction between
IM and EM is not made usually, all being treated sim-
ply as phonons. Indeed, often the precise origin of
monomer transition energy fluctuations, whether from
changed electronic interaction with fluctuating sur-
roundings, from local inhomogeneities, or from interac-
tion with vibrations, rotations, or translations of the en-
vironment, need not be specified. Rather, those
fluctuations are treated as distributions whose character
can be assumed and whose effect can be described via
fit parameters to explain the experimental data. This
disorder model has been applied extensively in the en-
ergy domain (as examples see Refs. 19-22), beginning
with the works of Schreiber and Toyozawa19 and
Knapp.23 The main effect of disorder in the transition
energies is to localize the otherwise delocalized purely
electronic excitonic wave functions. This effect is illus-
trated clearly in the works of Malyshev and
co-workers.>*® When transfer in the time domain is
considered in this model, the varying excitation energy
barriers between monomers lead to trapping of excita-
tion in these localized regions. Finite temperature may
provoke a jumping over these barriers and renewed
transport.27’28 The final picture is one of hopping be-
tween these localized regions with essential destruction
of coherent exciton transfer except within the limited
domains of the localized wave functions.

On the other hand, which is the approach of the present
paper, one uses the molecular language of wave func-
tions and Green’s functions built from them. First one
recognizes that all organic molecules possess rich inter-
nal vibrational structure. Then one must take the in-
tramolecular IM modes of identical monomers explic-
itly into account. Transitions into and out of the
electronically excited state as the exciton propagates
are accompanied by transitions, weighed by Franck—
Condon (FC) factors, into and out of vibrational states.
This leads to an effective dilution of the electronic cou-
pling and effective variations in the transition energies.
The influence of the surroundings is then taken into
account by considering their vibrational states to be
continuously distributed, corresponding to coupling to
an open system, and leading to a continuous absorption
spectrum. Now there is essentially a continuous distri-
bution of vertical transition energies and a continuous
distribution of electronic monomer-monomer coupling
strengths via the continuous FC factor. Hence the pic-
ture of transport which emerges is much more compli-
cated than that of pure electronic excitation transfer.

The monomer models appropriate to the method de-

143 scribed in (2) are illustrated in the sketch of Fig. 1. We con-
144 sider a ground-state Born—Oppenheimer (BO) potential well.
145 When the monomer absorption spectrum exhibits some dis-
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FIG. 1. Sketch of the lower and upper monomer BO potential curves:
(a) with discrete levels in the upper potential (reflected wavepacket) and
(b) with a continuum (outgoing wavepacket).

crete IM structure, the left figure (a) is applicable, in which
absorption is to discrete states of the upper BO potential. A
popular simplification is to take the ground and upper BO
potentials to be of the same harmonic form, giving vibra-
tional spacing iw but with the minimum of the upper poten-

tial shifted by an amount Q from that of the ground state.
Then the FC factors can be expressed in a closed form. For
example, when absorption is from the lowest state of the
ground BO potential to vibrational states « of the upper po-
tential, one has the FC factor fj with

If6l* = %exp(— X), (1)

i.e., a Poisson distribution of FC factors. Here X is the di-

mensionless Huang—Rhys factor X=wQ?/ 2#.% In this case
the absorption band has width (standard deviation) =X in
units of the vibrational energy quantum 7% w.

Clearly the establishment of discrete vibronic structure
requires multiple reflections of the wavepacket on the upper
potential, as illustrated schematically in Fig. 1(a). Interaction
with EM corresponds to suppression of 100% reflection at
the outer turning point and a broadening of the vibronic line.
The limit of continuous broadening is mimicked by effec-
tively moving the outer turning point to infinity, giving a
purely outgoing vibrational wavepacket. Then, in the region
of FC overlap, the upper potential can be modeled by a linear
potential, as sketched in Fig. 1(b). As shown in Appendixes
A and B (see also Refs. 30 and 31), this gives rise to a single
continuous monomer absorption peak. Also this procedure
corresponds to taking a particular limit of the discrete spec-
trum in Fig. 1(a). This limit is X—o%,w—0 in the upper
electronic potential such that the spectral width VXAw re-
mains constant. This will be used later in numerical work to
represent a continuously broadened absorption spectrum.

We have applied extensively the approach described in
(2) in the energy domain mainly to calculate aggregate ab-
sorption spe:ctra.32_37 However, the theory, which uses an
energy-dependent Green’s function approach, could also be
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vibrational modes.”**® The results showed a clear curtail-
ment of exciton propagation length depending on the
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1-3 Energy transfer on a quantum aggregate

187 monomer-monomer coupling. Here we return to this problem
188 but treat it explicitly in the time domain by the use of the
189 time-dependent Green’s function (time propagator) for the
190 vibronically coupled aggregate including both discrete IM
191 vibrations and continuous environment EM.

192 The plan of the paper is as follows. In Sec. II we define
193 the vibronic Hamiltonian of the aggregate and introduce the
194 time-dependent and time-independent Green’s operators
195 (propagators) of both monomer and aggregate. The main aim
196 of the paper is to examine first the influence of IM alone on
197 EET and then to extend consideration to the additional cou-
198 pling to a broad continuum of EM. In this way we isolate the
199 effects of discrete and continuous modes. However, the ex-
200 plicit effect of energy dissipation due to coupling with the
201 surroundings and the related effect of changing temperature
202 will largely not be taken into account. That is, we will as-
203 sume that the vibrational state of an excited molecule is not
204 changed due to vibrational interaction but only due to elec-
205 tronic interaction.

206 In this paper, strong and weak couplings will be defined
207 according to the criterion introduced by Simpson and
208 Peterson™ as the ratio between the exciton band half-width B
209 and the width o of the monomer absorption spectrum. This
210 dimensionless Simpson—Peterson (SP) parameter will be
211 called SP=B/o=T,;,/ T,,. Strong coupling occurs when this
212 value is much greater than unity and weak coupling when
213 much less than unity. All other cases are designated as inter-
214 mediate coupling.

215 In Sec. IIT we consider an exciton on a one-dimensional
216 aggregate coupled to a single IM mode of the monomers.
217 First, the problem is treated exactly in that the full aggregate
218 vibronic Hamiltonian is represented by expansion in a suit-
219 able set of vibronic basis states, chosen large enough to en-
220 sure convergence. Then the time-dependent Schrodinger
221 equation is solved by propagation numerically in time. This
222 allows calculation of the probability P,,(z) that electronic
223 excitation, initially localized on monomer zero, has arrived
224 at monomer n at time z. Due to limits on computer storage,
225 the exact calculations are restricted to rather short aggre-
226 gates. However, we also calculate P,y(¢) in the “coherent
227 exciton scattering” (CES) approximation.3 33 In this approxi-
228 mation, only the ground vibrational state of the ground elec-
229 tronic state is taken into account. With this limitation, calcu-
230 lations are possible for very large aggregates. In Sec. III we
231 show that the CES approximation gives generally good
232 agreement with the exact calculations. Hence in the rest of
233 the paper, the CES approximation is used.

234 The numerical solution of the time-dependent
235 Schrodinger equation is equivalent to a numerical evaluation
236 of the time-dependent propagator or Green’s function. In
237 Sec. IV we show first that in both limits of strong coupling
238 and extreme weak coupling, in the CES approximation the
239 time-dependent Green’s function can be evaluated analyti-
240 cally. This yields analytic forms for P,y(z), which are the
241 closed form expressions derived separately by Merrifield®
242 and Bierman.*’ Finally in CES approximation, P,(f) is
243 evaluated numerically for all coupling strengths and for large
244 aggregates, initially for monomers with only one IM discrete
245 mode of internal vibration and then for a more realistic case
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where continuous EMs are also included. In this latter case 246
we use a fit to a measured continuous monomer absorption 247
spectrum of the pseudoisocyanine (PIC) dye. Inclusion of 248
coupling to EM gives rise to a qualitatively new effect, 249
namely, trapping of the exciton. In Sec. IV D an approximate 250
analytic solution, originally due to Magee and Funabashi,' 251
is derived which allows the trapping phenomenon to be ex- 252
plained. A summary of results and our conclusions are given 253

in Sec. V. 254
Il. AGGREGATE HAMILTONIAN AND GREEN’S 255
FUNCTION 256

In this work, for simplicity, we will restrict discussion to 257
a one-dimensional aggregate consisting of N monomers. The 258
EET along the aggregate will be investigated in two ways. In 259
the numerically exact method, the aggregate state is propa- 260
gated in time by solving the time-dependent Schrodinger 261
equation 262

ihd|W(t)) = HW(t)), (2) 263

with the total aggregate vibronic Hamiltonian H expressed 264
on the basis of aggregate vibronic states (taking into account 265
enough states to ensure convergence). The solution of this 266
equation is equivalent to solving for the time-dependent 267
propagator, or time-dependent Green’s operator, 268

G(t) = exp(— iHt/h)O(r). (3) 269

In the second method, useful for analytic evaluation, the 270
time-dependent Green’s function, i.e., the operator G(r) ex- 271
pressed in a vibronic basis, is obtained in closed form, in 272
strong and weak-coupling limits, by using the CES approxi- 273
mation to the energy-dependent Green’s function, followed 274
by a Fourier transform to the time representation. 275

For very long aggregates, constraints on computer stor- 276
age oblige us to use an approximation also in the first method 277
when solving the time-dependent Schrodinger equation nu- 278
merically. The approximation we choose is equivalent to the 279
CES approximation, hence combining the two methods. 280

We adopt a model of an aggregate composed of mono- 281
mers with one excited electronic state and one vibrational 282
degree of freedom leading to a single vibrational progression 283
in monomer absorption from the ground state. The lower and 284
upper potential curves can, but do not have to, be harmonic 285
as in the standard approach. Simply we assume that the up- 286
per curve minimum is shifted from that of the ground elec- 287
tronic state to a larger distance. The nature of the vibrations 288
is then expressed solely in the discrete or continuous distri- 289
bution of FC factors describing transitions between vibra- 290
tional states of the lower and upper manifolds. The mono- 291
mers are coupled electronically and it is assumed that this 292
coupling is independent of vibrational coordinates. The 293
monomer and aggregate Hamiltonians are identical to those 294
described in detail in Refs. 32, 33, and 35, where the absorp- 295
tion spectra of J- and H-aggregates were presented. The 296
Hamiltonian and Green’s operators will be expressed in 297
terms of basis states in which electronic excitation is local- 298
ized on one monomer, i.e., we define 299
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| += i) 11 145,

m#n

(4)

300

301 where |¢%) and |¢) are the ground and excited electronic
302 states of monomer n, respectively (the monomers are taken
303 to be identical). In this basis, the Green’s operator has elec-
304 tronic matrix elements

Gnm(t) = <7Tn|G(t)|7Tm>’ (5)

306 which are still operators in the space of nuclear coordinates.
307 If the aggregate state at time zero is denoted by |¥(0)), the
308 state at later times is given by

| (1)) = G(1)|¥(0)).

305

309

(6)

310 To consider excitation propagation, we must specify the ini-
311 tial state. The simplest way to study EET is to assume that an
312 arbitrary monomer, let us call it monomer 0, alone is excited
313 at time zero. Since electronic excitation can be considered
314 instantaneous on vibrational time scales, then the appropriate
315 initial aggregate vibrational state is that with all monomers in
316 their respective vibrational ground state, i.e.,

[W(0)) = |mo)|2,).

318 where

=)=111&)

317

()

(8)

319

320 and |§?n> is the lowest vibrational state of the ground elec-
321 tronic state of monomer m. The vibronic basis states where
322 one monomer is excited electronically are defined as a
323 straightforward generalization of Egs. (4) and (8), i.e.,

[ml{adn) =& X &), )

325 where x;" is the vibrational wave function of the electroni-
326 cally excited monomer n with «, vibrational quanta and the
327 remaining «; denotes the vibrational quanta in the ground
328 electronic state of each monomer i. Throughout the work we
329 will use y to denote vibrational states of an electronically
330 excited monomer and & for the vibrational states of a mono-
331 mer in the electronic ground state.

332 The probability P,(r) that the electronic excitation re-
333 sides on monomer »n at time ¢ is given by

Pyo(t) = % [{ab,[(m, | w0 = % [({ah | Guo()IZ,)

324

2
s

334 (10)

335 where a summation has been made over all possible final
336 vibrational states of the aggregate when monomer n is ex-
337 cited electronically.

338 Next, for later use, we consider energy-dependent
339 Green’s operators from which the time-dependent ones can
340 be calculated by Fourier transformation. For noninteracting
341 monomers we define the energy-dependent Green’s operator
342 at energy E as

343 g(E)=(E-H,,,+id)', 6=0,, (11)

344 where H,,,, is the total vibronic Hamiltonian of noninteract-
345 ing monomers. Denoting the electronic coupling operator be-
346 tween monomers by V, then H=H ,+V is the total aggre-
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gate vibronic Hamiltonian and
aggregate Green’s operator is

GE)=(E-H+i5)".

the energy-dependent 347
348

(12) 349
The aggregate Green’s operator satisfies the equation 350
G(E)=g(E) + g(E)VG(E). (13) 351

To consider the propagation of electronic excitation in time, 352
we need the time-dependent Green’s operators defined by 353

Eq. (3) for the full Hamiltonian and by 354
§(1) = exp(= iHypont1H)O(1) = =— J g(E)e™ " dE  (14)

27 355

for propagation by noninteracting monomers. 356

In the electronic basis (4), the Dyson equation (13) reads 357

as 358
Gnm(E) :gn(E)(Snm-i—gn(E)E Vnn'Gn’m(E)' (15)

n' 359

Note that G,, and g, are still operators in the space of 360
nuclear coordinates. However, we will ignore the nuclear 361
coordinate dependence of the electronic coupling matrix el- 362
ements V. and take them to be constants for fixed inter- 363
monomer separation and orientation. Then, in the time do- 364
main, Eq. (15) reads as 365

Gnm(t) =gn(t)5nm + f gn(t_ t’)z Vnn’Gn’m(t,)dt’ .
0 n'

(16)

Equations (10), (15), and (16) will be used in the following 367
to discuss the EET process. 368

366

lll. NUMERICALLY EXACT TIME PROPAGATION:
COUPLING TO ONE DISCRETE VIBRATIONAL MODE

369
370

In order to solve the time-dependent Schrodinger equa- 371
tion (2) numerically, the aggregate vibronic Hamiltonian and 372
the time-dependent aggregate state |W(¢)) will be expressed 373
in a truncated set of the vibronic basis states of Eq. (9). Then 374
the time propagation is calculated straightforwardly using a 375

fourth order Runge—Kutta algorithm. The Hamiltonian ma- 376
trix elements in this basis are 377
N
= {a}'l5nm5{a}n{ﬁ}m+ Vnmfgz(fgz) ]il[ 5aiﬁi’ (17)
i#n,m 379

where € is the sum of the monomer electronic excitation 380
energy €, of monomer n and all vibrational quanta in the 381
state |m,)|{a},). The FC overlap matrix elements are defined 382
as 383

Far=(xleb, (18)

denoting a transition from the state & of the lower potential 385
to the state y“ in the upper potential curve of monomer n. 386
Then we use Egs. (2) and (10) to calculate the time- 387

384
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1-5 Energy transfer on a quantum aggregate

TABLE I. Relations between quantities used: 7 is the typical time for EET,
B is the half-width of the exciton band, 7.4, is the typical time for electronic-
vibrational coupling, o is the width of the monomer vibronic absorption
spectrum, SP is the Simpson—Peterson parameter, V=V, ,,, is the nearest-
neighbor electronic intermonomer interaction, X is the Huang—Rhys param-
eter, w is the vibrational frequency, and Q is the shift of the harmonic BO

potentials.
T,=h/B Tyw=hio SP=B/c
B=2V o=\Xho X=w0?/2h

388 dependent probability that a given monomer n is excited
389 electronically.

390 The dynamics of excitation transfer depend essentially
391 on the dimensionless SP parameter SP=B/o. It is the inter-
392 monomer electronic coupling that drives the excitation trans-
393 fer. In nearest-neighbor approximation and neglecting end
394 effects, this is given simply by B=2V, where V=V, is
395 assumed to be independent of n. In this section (although not
396 throughout the paper), we will adopt the standard model of
397 identical harmonic potentials in the ground and excited elec-
398 tronic states. The electronic coupling then is measured in
399 units of Aw, the vibrational quantum. In this model the di-
400 mensionless Huang—Rhys parameter X is a direct measure of
401 the strength of intramonomer vibronic coupling. This param-
402 eter also decides the energy width o=\ X% of the monomer
403 absorption spectrum through the Poissonian distribution of
404 FC factors [Eq. (1)]. Hence the ratio 2V/ o is the SP param-
405 eter value and a measure of the excitonic coupling strength.
406 Also it is meaningful to express time in units of 7, the
407 typical time of intermonomer excitation transfer, given in
408 this case by (2/2V). In Table I the relations between the
409 quantities used in the analysis are summarized.

410 For short aggregates it is important to note that, for a
411 circular aggregate, interference between counterpropagating
412 wavepackets occurs after the excitation wave travels 180°

K= e
0.8 X=0.3 ==sss=s
X=1 sseerens
0.6
0.4

0.2 rmonomer 0

08 monomer 1 and 4
0.6
0.4

0.2

probability

08 monomer 2 and 3

0.6
0.4

0 1 2 3 4 5

time [fi/2V]
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around the circle. Similarly, for a linear aggregate, reflection 413
at the end points leads to interference with the primary wave. 414
To avoid such effects, here we will concentrate on the short- 415
time behavior, considering the excitation wave rolling out 416
from monomer 0 and showing P, (7) only up to times where 417
the primary wave front reaches the penultimate monomer. 418
Typical results of full calculations for P,,(f) according to Eq. 419
(10) are presented in Figs. 2-4. The dimension of the basis 420
states of Eq. (9) is given by D=Nneni,v_l, where n, is the 421
number of vibrational states included for the excited elec- 422
tronic state and n, is for the ground electronic state. For this 423
reason, for fixed N and n,, the values of n, must be rather 424
limited to make the problem numerically tractable. Neverthe- 425
less, for small aggregates, say N=5 with n, as large as 9, we 426
found that we could run calculations with n, of up to 4. Of 427
course, the values of n, and n, necessary for convergence 428
depend strongly on the Huang—Rhys factor; here we used 429
X=1. In test calculations, we found that with ng:4 and n, 430
=9, the time-dependent excitation probability, even in the 431
intermediate coupling regime, is well converged within the 432
time range considered. We note that, as said in Ref. 42, the 433
CES approximation is exactly equivalent to performing a 434
basis set expansion with the restriction that n,=1. Hence, 435
calculations presented in this subsection for n,=1 will be 436
denoted as the CES approximation. First we consider a cir- 437
cular aggregate of five monomers (N=35), numbered along 438
the aggregate beginning with the initially excited monomer 439
0. In Fig. 2 left, P, (1) is plotted for extreme strong coupling 440
of 2V=10. Actually on each curve three results, for increas- 441
ing vibronic coupling, X=0, 0.3, and 1.0 are plotted but they 442
are undistinguishable for this coupling strength. Note that 443
X=0 gives only the zero-zero vertical transition and so gives 444
results identical to the purely electronic case. Then, as one 445
might expect, there is a smooth movement of the excitation 446
peak along the monomer chain as time progresses. The popu- 447

1
DIy —
0.8 X=0.3 ==sss=s
X=1 servennn
0.6
04 | CES
0.2 fmonomer 0
1
08 monomer 1 and 4
.-Ef 0.6
'_CSG 04 | CES
Q
) 0.2
e
o) 1
08 monomer 2 and 3
0.6
04 | CES
0.2 /""v\
0 1 2 3 4 5
time [fi/2V]

FIG. 2. Excitation probability as a function of time, in units of 7, for a ring with N=>5. Left figure: with n,=4; right figure: CES result (n,=1). Here 2V

=10Aw and n,=9. The values for X are indicated in the figures.
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0.6
0.4 e
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o, Pl
0.2 fmonomer 0\ vee, ow*

08 monomer 1 and 4
0.6
0.4

....... anes™
02 T "ﬂm-un""'

probability

08 monomer 2 and 3
0.6
0.4

0.2

time [fi/2V]
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0.8

06 ""-.......---u-u-.-- e

X o,
(I
.

EmmmmmAEE— RLCLT PR o

s,

04| CES \.

0.2 rmonomer 0

“au

08 monomer 1 and 4
Z os
=
2 o4 CES
Q o
) 0.2
=
o)) 1
0.8

monomer 2 and 3

time [h/2V]

FIG. 3. Same as Fig. 2 but with 2V=1%Aw.

448 lation of monomer 0 is roughly halved after a time T, falls
449 to zero but then revives at later times. As we shall see, this
450 oscillatory behavior of the excitation probability is typical of
451 strong coupling. The CES results for n,=1 on the right set of
452 figures in Fig. 2 are shown and one notes that in strong
453 coupling, exact and CES approximation are in almost perfect
454 agreement. The intermediate coupling case is where vibronic
455 effects are most pronounced and in Fig. 3 the P,(r) are
456 shown for the same parameters as in Fig. 2 except that now
457 2V=1.0. Since the X=0 case is purely electronic, on the
458 scaled time (2V/h)t, these curves are identical to those in
459 Fig. 2. Now, however, as X increases, there occurs a pro-
460 nounced slowing down of excitation transfer so that about

0.8 oo X=0.3 ==sss=s
*, X=1 ssesrane
0.6 ., K
",
0.4 *,
Q~.

0.2 rmonomer 0 .

1
08 monomer 1 and 4
0.6

probability

0.4
0.2

time [A/2V]

50% probability remains on monomer 0 and only about 10% 461
reaches monomer 3. Although the curves in Fig. 3 (left) are 462
for n,=4, the n,=1 CES results in Fig. 3 (right) are in fair 463
qualitative agreement even for this case of intermediate cou- 464
pling. Again from Fig. 3 (right), one sees an overall slowing 465
of transfer with increasing X, i.e., with stronger vibronic cou- 466
pling. The weak electronic coupling case is shown in Fig. 4. 467
Here one sees clearly the damping effect of vibronic cou- 468
pling on the rate of excitation transfer. In Fig. 4 (bottom), in 469
contrast to the strong-coupling case in Fig. 2 (bottom), one 470
sees that monomer 3 is only maximally ~10% excited for 471
X=1.0, whereas in strong coupling, this value is around 30%. 472
The CES results are given in Fig. 4 (right) and again are in 473

08 e,

0.6 e
04 | CES

0.2 fmonomer 0

08 monomer 1 and 4
0.6
04 | CES

probability

time [A/2V]

FIG. 4. Same as Fig. 2 but with 2V=0.1%w, i.e., weak electronic coupling.
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FIG. 5. Magnitude of the first maximum at monomer 2 as a function of \E
with 2V=2 for a linear chain with N=5. The calculation has been made with
n,=2 and n,=5.

474 excellent agreement with the exact results. For weak cou-
475 pling, the same agreement was found between absorption
476 spectra calculated by full diagonalization and in CES
477 approximation.42 A more quantitative picture of the depen-
478 dence of excitation transfer on X is given in Fig. 5. Here we
479 use the magnitude of the maximum of the first wave front,
480 i.e., the first maximum of the time-dependent excitation
481 probability, at a particular monomer as a measure of the ef-
482 ficiency of excitation propagation. In Fig. 5 the value of the
483 first maximum to reach monomer 2 (when 1n1t1a11y starting at
484 monomer 0) is plotted as a function of \'X for fixed 2V=2.
485 Again one sees a strong drop in this probability of excitation
486 as the vibronic coupling parameter increases.

487 IV. TIME PROPAGATOR IN THE CES APPROXIMATION
488 A. A single IM vibration: Analytical results

489 Now we discuss the excitation transfer process solely in
490 the CES approximation since this allows the derivation of
491 simple analytic forms for the excitation propagation prob-
492 ability P,(¢) both in the case of strong and of weak cou-
493 plings. Furthermore, we can perform numerical calculations
494 for very long aggregates. In discussing excitation transfer
495 analytically, it is also convenient to introduce delocalized
496 exciton electronic states defined as

1 .
k) = —IFVE ™|, (19)
AY n

497

498 where k=27/N(j—1) and j runs from 1 to N and we have
499 assumed cyclic boundary conditions. Although not necessary,
500 the condition of replacing the linear chain by a circular ag-
501 gregate will be made in this section since the analytical ex-
502 pressions obtained are simpler than for a finite linear chain,
503 where end effects lead to more complicated formulas.

504 In order to calculate G,(1)|2,) in Eq. (10), we consider
505 first the Fourier transform to energy space, i.e., the state
506 G,0(E)|X,), where G,o(E) satisfies Eq. (15). We assign the
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initial monomer arbitrarily the number m=0 as fixed value. 507
Then we transform from the localized monomer number n to 508
the exciton number k, i.e., 509

1 )
Go(E) = (m,|G(E)|mp) = =2 e ™(K|G(E)|mp).  (20)
N & 510
The interaction matrix element in Eq. (15) is transformed 511
nn’ — _2 —lkn+ik'n'vkk“ (21)
kk' 512

If we consider all monomers identical, then, for a ring or 513
linear chain of monomers, it is easily seen that V., is diag- 514

onal, i.e., 515
1 . /
Vnn’ = _2 e—lk(n—n )Vk (22)
N4 516
Substituting Egs. (22) and (20) into Eq. (15) leads to 517
(k|G(E)| o) = 8o+ g0 Vilk|G(E) | ). (23) 518

To obtain a tractable form for (k|G(E)| ), at this stage it is 519
convenient to make the CES approximation in which g, in 520
the second term on the right hand side of Eq. (23) is approxi- 521

mated by the ground-state average, i.e., 522
80— (Slg0lZe) = (g0)- (24) 523
Then, from Eq. (23) one finds (k|G(E)|my)=go(1—(go)V,)~' 524
so that the operator G,o(E) can be written as 525

Guo(E)= S eS80 (25)
N - <go>Vk 526

In fact, since all monomers are identical, we can henceforth 527
drop the subscript 0 on {g,). Within the spirit of the CES, the 528
operator g, also will be represented on the basis of vibra- 529
tional states of the aggregate with one monomer electroni- 530
cally excited and all others in the ground electronic and vi- 531
brational states, i.e., 532

0)=xpy 1T 1€, (26)

n#0 533

la) =|a,0, ...,

where |x{) is the ath excited vibrational state in the upper 534

monomer potential curve. Then we have 535
1 .,0¢a,0,...,0
go(E) = ;
E—Hp,+id E—Ea+l5
(27) 536
where E,— €, is the energy of the vibrational state « in the 537
upper potential curve and €, is the monomer electronic ex- 538
citation energy. Performing the average (24), one has 539
fol®
©=2 7" 7 (28)
E- E +i8 540

where f§=(x*| &) is the FC overlap between the initial and 541
the final monomer vibrational states. Substituting Egs. (27) 542
and (28) into Eq. (25) gives a closed form expression for 543
G,o, 1.C., 544
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.,0Xa,0, ...,0

E-E,+id

E-Eg+id
(29)

GolB) =3 M

k Y E-E +i6- VS fE?
545

546 This closed form result (29) can be evaluated easily in two
547 limits. First, in strong coupling where 2V is much larger than
548 the width of the monomer vibrational band, represented by
417, we can replace Eg by
550 its average value €. Furthermore, since when the probability
551 (10) is formed, the sum over « is also limited to the spread of
552 the monomer vibrational band, we can also replace E,, by the
553 same average value. This corresponds to assuming that the
554 vibrational states which carry oscillator strength are so
555 closely spaced in energy compared to the exciton bandwidth
556 that they can be replaced effectively by a single level at the
557 mean energy €. Then, since

2UfP=1. (30)
558 B
559 we have
=~ —2 e’k"—Jl (31)
560 —e-V,+ib

561 where 1, is the unit operator in the space of upper vibrational
562 states of monomer 0. Our strong-coupling criterion is exactly
563 that of Simpson and Peterson”” and apart from the unit op-
564 erator the result (31) is exactly that obtained by ignoring
565 vibrations altogether.

566 From Eq. (31), one obtains
1 ) j
GnO(t) = ﬂu_z elkn CXP(_ i(E'i' Vk)t> (32)
567 N7y h
568 and from Eq. (10) the transfer probability
2
569  Puol?) ‘ —> eXp( —(E+ Vk)t> . (33)

570 where again we used Eq. (30).

571 In nearest-neighbor coupling V; has the simple form V,
572 =2V cos k. Then, dropping the unit operator from Eq. (32)
573 since it disappears in the probability (33), we have the purely
574 electronic result

1 2 i 2
Go(t) = ]Tlé exp[i—ﬂjn— é(E+ 2V cos(%j))t]

N
575 (34)
576 Using the generating function for Bessel functions
e = X (= i) 2)e, (35)

577

[=—0
578 one obtains

nO(t) _ _e—z/het 2 ( l)l.]l<?l‘>2 el(2’lT/N)](n l) (36)

[=—

579

AQ: 580 The monomers on the circular aggregate are enumerated
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FIG. 6. The probability P,,(t) for strong coupling as a function of n at the
times indicated. For better visibility, P,(r=0) has been reduced to 8% of its

real value.
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2 2 2

To evaluate Eq. (33) further, we consider the limit N— o to
obtain the simple result

_p 2_V>
Pno(t)—1n< ht .

This is the result of Merrifield® for purely electronic excita-
tion transfer on an infinite linear aggregate. Hence we have
shown that, with vibrations, the strong-coupling limit gives
the purely electronic result, as one might expect. Note that
the time defined by T.,=(%/2V) emerges as the natural scale
unit for time and corresponds to the electronic excitation
transfer time between adjacent monomers when vibrations
are not coupled. In Fig. 6, P,y(z), according to Eq. (38), is
plotted for a succession of times as a function of monomer
number. Then one sees that the leading maximum of the
distribution moves roughly linearly with time.

The probability P,(7) is plotted in Fig. 7 for the case

(38)

Pioo(t)
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0.0
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FIG. 7. The probability P,(7). The time is in units of (%/2V).
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599 n=10 and one sees clearly the oscillatory nature of excitation
600 and de-excitation of a given monomer. This explains the os-
601 cillations seen in the numerical results in Fig. 2. One also
602 notes that, due to a simple property of the Bessel functions,
603 the first excitation peak reaches the monomer n at a time
604 which is close to n units of the fundamental time T, as can
605 be seen in Fig. 7 for the case n=10. This property is dis-
606 cussed more fully in Sec. IV B. The mean square displace-
607 ment is given by the average

nX(r) = E n*P(t) = —r (39)

608

609 If we define 7= (n2(1))"? and the mean propagation velocity
610 dn/ dt, we see that exciton propagation is at constant velocity
611 din/dr=(V/h) away from the initial site n=0 of excitation.
612 The second simple analytic limit of Eq. (29) is provided
613 by the case in which the electronic coupling 2V is so small
614 that mixing of the vibronic levels in the upper electronic
615 state can be ignored in the propagator. Then only the diago-
616 nal term 8=« in the denominator of Eq. (29) is considered to
617 give

,0Xa,0, ...,0
E-E,- vk|fﬂ|2+15

lkn
618 a

(40)

619 Thus, following the steps leading from Eq. (31) to Eq. (38),
620 one has

. 2
Go(t) = 2 |a)afe " Eal(~ i)"Jn( ;V |f3|2r) (41)
621 @
622 and
2
P a= 3 | i) @)
623 a

624 This result was obtained by Bierman™ using a somewhat
625 more complicated approach than the Green’s function
626 method adopted here. Again, one has an oscillatory behavior
627 of the excitation probability with time, in agreement with the
628 weak-coupling numerical results shown in Fig. 4. The result
629 of Eq. (42) can be interpreted simply. In this extreme weak-
630 coupling limit each monomer vibronic level splits into its
631 own exciton band of N levels on aggregate formation but the
632 individual vibronic exciton bands do not overlap. Then exci-
633 tation transfer occurs resonantly between individual vibronic
634 levels so that the fundamental transfer time is reduced by the
635 factor |f§|*> compared to Eq. (38). Correspondingly, the exci-

2
ol°, as
637 can be inferred from Eq. (40). From Eq. (42), the average
638 monomer (n°(¢))"/ reached at time ¢ is given by the equation

n(1) = —ﬂE [ a0l (43)

639

640 This result can also be understood in a simple way. Since
641 each vibronic level is independent, from Eq. (39) one would
642 have, for level
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VARl
2
t . 44
nal) = R (“44) 643
Then summing over all levels one has 644
n*(0) = 2 (0. (45)
« 645

where p,, is the probability of excitation of level a. However 646
Pa is just given by |f§]* so from Egs. (44) and (45) one 647
directly finds the result [Eq. (43)]. 648

From Eq. (43) one has that the constant mean propaga- 649
tion velocity in this case is dit/dt=(V/%)(Z|f5]®)""%. Since it 650
is readily seen that = ,|f§|°<1, one has the result that even 651
though excitation transfer is at constant velocity, the pres- 652
ence of vibrations leads a lower velocity of propagation then 653
when they are ignored. We note that the simple SP definition 654
of weak coupling is not really appropriate here. In the limit 655
corresponding to the result [Eq. (42)], one has rather that the 656
vibrational level spacing must be greater than the maximum 657
value of the vibronic exciton bandwidth 2V|fj]%. This is an 658
additional condition to the SP criterion. 659

B. A single IM vibration: Numerical results 660

Since for the chosen basis the dimension of a full nu- 661
merical propagation contains the factor n;V_l, it is not pos- 662
sible to perform full calculations on large aggregates. Hap- 663
pily, however, we have seen that the CES approximation, 664
with n,=1, gives excellent results for weak and strong cou- 665
pling and qualitatively good results for intermediate cou- 666
pling. Then we can use formula (29) for G,y(E) to construct 667
numerically G,(7) and hence calculate P,(¢). Formula (29) 668
depends implicitly on N through the summation over exciton 669
index k. Actually, since the use of formula (29) gives the 670
same results as the numerical procedure with restriction to 671
n,=1, it is simpler to adopt the latter method of calculation. 672

First let us consider the velocity of the wave front. We 673
return to the purely electronic result [Eq. (38)] for an infinite 674
chain of monomers. As one sees from Fig. 7, P,() is oscil- 675
latory and the time at which a maximum is reached is given 676
by dP,(t)/dr=0. The monomer number n over the time of 677
arrival of the first wave front maximum at this monomer is 678
plotted in Fig. 8. The speed is rapidly a constant, the wave 679
traveling over ten monomers in around ten time units, i.e., 680
the speed is 2V/#, which is just twice the mean velocity 681
dn/dt. Again we emphasize that the purely electronic result 682
in Fig. 8 is obtained in the vibronic case for X=0 and corre- 683
sponds to the extreme strong-coupling limit. 684

The case of weak coupling and N — o gives the analytic 685
result of Eq. (42). Here, a linear relation between n and ¢ is 686
also predicted, as confirmed by the plot in Fig. 9. However, 687
what is noteworthy is the large decrease in the velocity of the 688
wavepacket caused by the presence of FC factors in Eq. (42). 689
In Fig. 9, one sees that a displacement over ten monomers 690
now requires about 25 time units compared to 10 in the pure 691
electronic case in Fig. 8. 692

Within the weak-coupling limit, it is useful also to ex- 693
amine the X dependence of the v=n/t constant velocity re- 694
sult. One can show that the dependence follows the analytic 695
form v=n/t=2V/#e¥, indicating a strong reduction in ve- 696

AQ:
#8
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FIG. 8. Time of arrival of the first wave front maximum at monomer n. For
X=0, i.e., strong coupling.

697 locity as the vibronic coupling increases. This is in qualita-
698 tive agreement with Eq. (43) when the rms value 7/t is
699 evaluated for the case of a Poissonian distribution of FC
700 factors.

701 Finally, there is the intermediate coupling case. The n(r)
702 curve for this case is shown in Fig. 10 for 2V=2 and X
703 =0.64. Here a new feature arises in that there are apparent
704 discontinuities in the propagation. A closer inspection of the
705 individual P,(7) curves (Fig. 11) shows that this is a new
706 feature due to the strong vibronic coupling, namely, that the
707 original leading wave front dies out in time and is replaced
708 by the second as “leading” maximum. This smearing of the
709 dominant first maximum is a general feature of vibronic cou-
710 pling. It occurs around =11 in Fig. 11 and gives rise to an
711 apparent delay in arrival of the wave front. By comparison
712 with the strong-coupling case in Fig. 6, one sees also that
713 when vibronic coupling is present, the wavepacket is spread
714 more evenly among the monomers, indicating that vibra-
715 tional states of the electronically excited monomer take
716 longer to transfer their energy.

717 C. Coupling to a vibrational continuum:
718 Numerical results

719 The final and most important step is to include coupling
720 to the continuous distribution of EM and thereby achieve a

monomer n
[®))

0 5 10 15 20 25
time [h/2V]

FIG. 9. Time of arrival of the first wave front maximum at monomer n. For
weak coupling (V=0.1) and X=0.64.
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401
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time [h/2V]

FIG. 10. Time of arrival of the first wave front maximum at monomer n.
With X=0.64 and intermediate coupling.

more realistic description of the coupling of the electronic 721
excitation to the vibrations of the surroundings, while still 722
retaining the effect of the primary coupling to the IM vibra- 723
tions. In the standard approach [see point (1) in Sec. I] vi- 724
brations are ignored explicitly and calculations are per- 725
formed for a particular choice of monomer electronic 726

13 _/W
- M
15 M
s _/\,/\W
Ll AN~

o AN
10 M

time [R/2V]
PnO (t)

-30 -20 -10 0 10 20 30

monomer n

FIG. 11. The distribution P,(#) as a function of monomer position n shown
at successive times.
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FIG. 12. Poissonian with X=0.61 used to fit the measured monomer absorp-
tion spectrum of the PIC dye of Ref. 43. Vertical lines, stick spectrum;
crosses, convoluted with a Gaussian of width 05=0.15; and stars, with o
=0.38. The energy axis and the values for o are given in units of the stick
spacing 7).

727 transition energies and/or electronic intermonomer coupling
728 strengths. Then, in the final step, an average is performed
729 over different realizations of this disorder. In this step, the
730 statistical distribution of transition energy (diagonal disorder)
731 and coupling strength (nondiagonal disorder) are taken as fit
732 parameters. Here we seek to make contact with experiment
733 by using the measured monomer continuous spectrum as in-
734 put. Specifically, we include a primary IM vibration but then
735 we clothe each vibronic level of the monomer with a se-
736 quence of densely packed discrete EM transitions, giving rise
737 to an effective continuum of vibronic transitions. As with
738 statistical disorder, this procedure leads to a continuum of
739 possible transition energies along the chain and, through the
740 continuous variation of FC factors, to a continuous distribu-
741 tion of coupling strength between adjacent monomers.
742 Again, as with statistical disorder, the character of this as-
743 sumed continuous distribution is arbitrary. However, here we
744 choose the distribution specifically to reproduce the experi-
745 mental isolated-monomer continuous absorption spectrum.
746 An example is shown in Fig. 12, where we fit the measured
747 continuous spectrum of the PIC monomer.*’ The experimen-
748 tal data suggest a single (effective) primary IM mode shown
749 by the fitted discrete “stick” spectrum. In the next step, each
750 of the four vibronic peaks is folded with a Gaussian continu-
751 ous distribution of width 0. Shown in Fig. 12 are the cases
752 0;=0.15 and 0;=0.38 (in units of the stick spacing #(}).
753 This latter value gives an excellent reproduction of the ex-
754 perimental spectrum (not shown).43’44 Since the vibrational
755 basis only manifests itself in the Hamiltonian equation (17)
756 through the monomer vibrational energies and the corre-
757 sponding FC factors and since the monomer absorption spec-
758 trum provides these factors, the remaining step is simply to
759 take the FC distribution in Fig. 12 as a quasicontinuous dis-
760 tribution. The P,,() calculated using the continuous distri-
761 butions of FC factors is shown in Fig. 13. Here we took 120
762 discrete values to represent the continuous distribution in
763 Fig. 12. The aggregate in this case is a linear chain of 50
764 monomers with monomer O placed at one end and only
765 propagation over one-half of the aggregate displayed for
766 times for which the other end has not been reached. The
767 values of 2V and the width o of the individual Gauss peaks
768 is indicated on the figures. In color-coded form, the figures
769 show the electronic excitation probability of a given mono-

J. Chem. Phys. 131, 1 (2009)

mer as a function of time. The figures in the first row [Figs. 770
13(a)-13(c)], show an extreme strong-coupling case. The 771
pattern is that of Fig. 6 and is the analytic Bessel function 772
result for pure electronic excitation given by Eq. (38). Also 773
shown on the figure as a continuous line is the displacement 774
i(t)=(n*(t))""> demonstrating the linear behavior expected. 775
This regular oscillatory pattern is identical in Figs. 776
13(a)-13(c), showing that the extreme strong-coupling, 777
purely electronic result has been achieved. However, already 778
for 2V=10, corresponding to a SP parameter of SP~ 12, one 779
sees deviations from the Merrifield result, as shown in Figs. 780
13(d)-13(f). Although the pattern is still regular, at larger 781
times the second maximum becomes more pronounced than 782
the first and there is a slowing of the velocity of propagation, 783
indicated by the decreasing slope of the 7 line, which be- 784
comes more pronounced as the continuous width o in- 785
creases. This trend is emphasized as the coupling becomes 786
somewhat weaker [Figs. 13(g)-13(i)] with 2V=5 corre- 787
sponding to SP=6. In the course of time, the probability 788
becomes more smeared out over the whole aggregate, al- 789
though regularity is still discernible. Note that the width of 790
the monomer absorption spectrum is mainly determined by 791
the width stemming from the primary vibrational mode with 792
X=0.61. The convolution with the continuous Gaussian 793
changes the overall width only slightly. For example, in the 794
case 2V=5 one has a SP parameter SP=6.4 for the stick 795
spectrum and SP=5.7 for the spectrum with o;=0.38. 796

The cases in Figs. 13(j)-13(1) approach an intermediate 797
coupling, with SP~=~3. One sees, for the stick spectrum in 798
Fig. 13(j), a general smearing out of an irregular probability 799
pattern and a pronounced concentration of probability re- 800
maining around the origin. This tendency increases dramati- 801
cally as the continuous width is increased [Figs. 13(k) and 802
13(1)]. Although the propagation velocity (77/f) reduces con- 803
siderably with the width, it still remains finite, indicating that 804
there is still a continuing transfer of probability along the 805
chain. However, comparison of Figs. 13(j)-13(1) shows for 806
the first time the new effect arising from transition to a con- 807
tinuous spectrum or, equivalently, strong coupling to external 808
modes. There is a marked tendency, not evident in the case 809
of a stick monomer spectrum, for excitation to remain 810
trapped on the first few monomers. 811

The trapping of excitation becomes increasingly pro- 812
nounced when 2V is reduced to give intermediate and weak 813
coupling, and the width o is increased. This is shown in 814
Figs. 13(m)-13(r). For 2V=1, the stick spectrum gives ir- 815
regular propagation but for o;=0.38 [Fig. 13(0)], there is a 816
complete collapse of propagation and 7 becomes constant in 817
time. Finally, for the case of weak coupling the transition to 818
a continuous spectrum becomes even more dramatic. Figures 819
13(p)-13(r) are for the case SP=0.6. For the stick spectrum 820
[Fig. 13(p)], constant velocity propagation is recovered and 821
the pattern of probability change is becoming regular, corre- 822
sponding to a slow approach to the Bierman, case of Eq. 823
(42). By contrast, even for o3=0.15, when the spectrum of 824
the monomer is continuous, excitation remains trapped near 825
the origin and increasingly so as the continuous width in- 826
creases. 827

One can question the physical origin of the trapping 828
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FIG. 13. Probability P,(t) that mono-
mer n is electronically excited at time
t. The aggregate is a linear chain of

monomer n

N=50 monomers (only one-half of the
aggregate is shown here). The values
for 2V and the convolution width o
of the monomer spectrum are indi-
cated on the figures. The continuous
line shows 7(z).
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829 mechanism. As we show explicitly in Sec. IV D, this is
830 readily understood. A discrete set of oscillator eigenstates in
831 the upper potential, giving rise to a stick spectrum, requires
832 the establishment of repeated oscillation, in principle, for an
833 infinite time, in the upper potential well. Clearly, any cou-
834 pling to other modes leads to a broadening of the absorption
835 line. Coupling to very many densely packed EM leads to an
836 effective continuum broadening. In the time picture, this can
837 be mimicked by considering that a time-dependent vibra-
838 tional wavepacket is formed in the upper state. If the wave-
839 packet reflects back and forth many times in a potential well,
840 vibrational eigenstates are formed and the absorption spec-
841 trum is structured. A structureless absorption continuum
842 would then correspond to the extreme situation that the
843 wavepacket moves out of the region of overlap with vibra-
844 tional states of the ground electronic state and does not re-

time [h/2V]

turn [see Fig. 1(b)]. In this way the coupling to EM is rep-
resented by an effective repulsive BO potential in the upper
state. The electronic excitation can only be transferred during
the time when there is overlap between ground-state and
excited-state vibrational wavepackets. For longer times the
FC factor is zero and the excitation remains trapped. In the
following we derive a simple analytic model which explains
the trapping phenomenon.

D. Coupling to a vibrational continuum:
The Magee—Funabashi approximation

We have seen from the numerical results of Sec. IV C
that the transition to a continuous spectrum has a profound
effect on the character of exciton propagation. In particular,
for intermediate coupling, we observe a trapping of the ex-
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859 citon at a time characteristic of the electronic coupling
860 strength and the width of the vibronic spectrum, which itself
861 is a measure of the strength of the intramonomer vibronic
862 coupling. Now we will show how an approximate analytic
863 result can be derived in CES approximation, which allows a
864 simple physical interpretation of the trapping predicted by
865 the numerical results of Sec. IV C to be given. In Appendix
866 A it is shown that the probability that electronic excitation
867 has reached monomer 7 is given by,

868 Po(t) = (46)
869 where

y(t)=(2V/h)f F(t")dt'. (47)
870 0

871 One notes that the argument y(7) of the Bessel function now
872 appears as 1/T, multiplied by the time integral of F(r),
873 which, as defined in Appendix A, is just the time-dependent
874 FC factor F(r) reflecting the overlap between vibrational
875 wave functions in ground and excited electronic states. Al-
876 though this result is analytic and appealingly simple and al-
877 though not readily seen from the derivation given by Magee
878 and Funabashi,*' the final approximation leading to Eq. (A8)
879 of Appendix A is somewhat drastic in that it demands that,
880 for fixed time, the FC factors between monomer n and both
881 neighbors n = 1 are identical.

882 We consider three special cases. The first two provide
883 just the known analytic solutions from Sec. IV A. First we
884 assume the CES approximation that the excited electronic
885 state vibrational wave function is of the form,

220y =[x, (0) [T 1€)) (48)

886 m#n

887 and, see Appendix A,
888 F(1)=(Z[(N[Z;7' (1) = (xaDIEN G [Xusr (0). (49)

889 The wavepacket |y,,(1)) is that produced upon vertical elec-
890 tronic excitation of monomer m from the ground vibrational
891 state |£2). The initial condition is |x,(0))=|£) and then the
892 wavepacket develops in time in the excited-state potential
893 curve. In the first case, the extreme strong-coupling limit, the
894 excitation is passed on to the neighboring monomer before
895 there is any time for the wavepacket to change. Then F(r)
896 =1 and y(r)=(2V/h)t, exactly the result of Eq. (38). In the
897 second case we consider only a single vibrational eigenstate
898 « in the upper potential curve. Then F(¢)=|f§|* and the prob-
899 ability for coherent excitation transfer is

Pyo(0) = Jz< K ) (50)

900
901 The total probability, starting from an initial distribution p,,
902 =|f§|* is given by
2V
P =2 | i) g
903 a

904 which is identical to Bierman’s result of Eq. (42), the ex-
905 tremely weak-coupling case.
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The third and most important case is where we consider 906
a continuous monomer absorption spectrum, corresponding 907
to coupling to EM vibrations. It is clear that the absence of 908
discrete vibrational structure indicates that the wavepacket 909
x(7) does not oscillate back and forth in the upper BO poten- 910
tial curve, as is necessary for the formation of eigenstates. 911
Rather the continuum in energy space corresponds to a 912
wavepacket which moves out continually in space and does 913
not return. This behavior mimics the continuous broadening 914
of the vibrational eigenstates due to coupling to the continu- 915
ous spectrum of EM vibrations. The simplest way to model 916
this behavior is to take, not a harmonic potential but a simple 917
linear potential in the upper state [see Fig. 1(b)]. The mono- 918
mer absorption spectrum is proportional to —Im(g(E)). For 919
example, from Eq. (28), we have 920

Im(g(E)) = 72, [fgPSE-E,), (52)

921

showing absorption in discrete spectral lines. By contrast, in 922
the continuous case for a linear potential, from Eq. (B6) of 923
Appendix B one has, in terms of the dimensionless energy € 924
(defined in Appendix B), 925

Im(g(e)) < ™, (53) 926

which is a continuous single Gaussian absorption spectrum. 927
Clearly, more complicated vibronic absorption spectra can be 928
fitted by a sum of such Gaussians. From Egs. (48) and (49), 929
one sees that, taken independent of n, the function F(r) is 930
given by 931

F(1) = x| = (&1e )] = e ) (54) 932
so that, from Eq. (47) and Eq. (B7) of Appendix B, we have 933

¢ 2
'y(t)——f exp{ ( ) ]dt
Ty 934

2V | t
i — T erf{—], (55)

T h o2 Ton 935

where T,;,=%/0; can be thought of as a characteristic vi- 936
bronic coupling time since o is the width of the Gaussian 937
vibronic absorption spectrum. This general result satisfies 938
two 11m1ts The first is the limit t—0 when erf(z/T;,) 939
H(Z/wr)(t/ T.i,) so that y=(2V/h)r and we recover the 940
strong-coupling case, where the initial wavepacket has no 941
time to move before it is handed on. The second limit is 942

(t/Tyy,) — o when erf(¢/ Ty;,) — 1 and we have 943
2V Ty 2V
N=——"Tu=~ =—. 56
7( ) A2 vib Tel o ( ) 044

Hence, this theory predicts that at large times a fixed prob- 945
ability distribution P,(y) emerges, i.e., the exciton becomes 946
trapped. Clearly the realization of this long-time limit for a 947
single monomer requires that the excitation is not transferred 948
to a neighbor within this time, i.e., that T;,/ T,;= 1. That is, 949
as the numerical solutions show, only in weak and interme- 950
diate coupling, is there trapping of the exciton. Note also 951
that, for a continuous spectrum, the extremely weak-coupling 952
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FIG. 14. The probability Py(7) that excitation resides on monomer zero as
a function of time in units of 7. The parameters are 2V=1, 0;=0.38, and
X=0.61 [corresponding to Fig. 13(0) and the broadest spectrum in Fig. 12].
Solid line: CES approximation. Dashed line: Magee—Funabashi
approximation.

953 case of Bierman, which requires the condition 2V =%, will
954 not occur since effectively w— 0.

955 To illustrate that the analytic approximation explains the
956 trapping we have calculated P(1)=|J,((t))|* using Eq. (49)
957 and Eq. (B8) of Appendix B. The result shown in Fig. 14 is
958 compared with the result of the CES approximation numeri-
959 cal calculation for the case shown in Fig. 13(0). Clearly one
960 sees that the analytic Magee—Funabashi approximation gives
961 a good description of the rate of approach to a time-
962 independent probability, i.e., trapping of the excitation.

963 Finally we discuss the mean velocity of propagation of
964 the electronic excitation. The mean square propagation dis-
965 tance is given by

n(0) = 2 n? [, ((0)|* = Y (0)/4. (57)
966 n=0
967 Hence,

(t) = y(1)2 = (V/ﬁ)f (gt )[Pdr’ (58)
968 0

969 and the time-dependent mean velocity is

u
oo g = (VIEOP. (59)

971 For a discrete monomer spectrum {g(z)) is calculated easily
972 by Fourier transform of (g(E)) of Eq. (28) to give

(8(0)y = 2 |f§Pexp(= iE t/h). (60)

973

974 Three points are noteworthy here.

975 (1) If the distribution with width o= \J’)r(hw is small with
976 respect to 2V, we can replace E, by the average energy
977 €. This leads to {(g(r))=exp(—iet/f) and to the strong-
978 coupling pure electronic result dii/dt=V/h, as ex-

979 pected.
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(2) In general, one has 980
981

.
;” = (V)X S fS P Rexpl- i(Eq - Egui].  (61)
t a B 982

This illustrates that the reduction in velocity encoun- 983
tered when the single electronic transition is split into 984
many vibronic (but still discrete) transitions is due to a 985
dephasing arising from the many different frequencies 986
in the double sum in this equation for the velocity. The 987
number of vibronic levels involved in the sum increases 988
with increasing vibronic coupling (increasing X), which 989
explains the strong reduction of propagation velocity 990
with increasing X shown in Fig. 5 991
(3) In the continuum limit X —% and w—0 with o con- 992
stant, the FC Poissonian distribution of Eq. (1) becomes 993
a Gaussian distribution in energy, corresponding to the 994
linear potential result of Eq. (53). Correspondingly, the 995
Fourier series [Eq. (60)] becomes the Fourier transform 996
of a continuous Gaussian distribution leading to the 997
time-dependent Gaussian (g(7))=exp(-7/2) of Eq. 998
(B7), where 7 is the dimensionless time 7=¢/T,;,. This 999
correspondence justifies our numerical procedure of 1000
treating the continuum as a very large number of 1001
densely packed discrete transitions. One can also inter- 1002
pret the trapping phenomenon arising from a continu- 1003
ous spectrum as due to the interference of infinitely 1004
many phase factors appearing in Eq. (61) which damps 1005
out the propagation at large 7, i.e., large times r>T,;,. 1006

V. CONCLUSIONS 1007

We have examined the transfer of electronic excitation 1008
(EET) on a chain of molecules which interact via electronic 1009
coupling and which have a ground and one excited electronic 1010
level. The electronic levels are considered to couple both to 1011
internal vibrational modes of the monomer (IM) and EMs of 1012
the surroundings. The IM are specified as giving a single 1013
dominant vibrational progression, as seen, for example, in 1014
the monomer spectrum of many dye molecules forming large 1015
aggregates. The EMs are not included specifically but are 1016
assumed to give rise to a continuous vibronic absorption 1017
spectrum, again typical of many organic molecules in solu- 1018
tion. 1019

The probability P,(7) that, beginning with electronic ex- 1020
citation localized on a single monomer, the excitation has 1021
propagated a distance of n monomers can be expressed in 1022
terms of matrix elements of the time propagator or time- 1023
dependent Green’s operator G(z). Initially, for small aggre- 1024
gates and a single discrete IM vibration, we have performed 1025
the time propagation exactly numerically. For strong cou- 1026
pling (SP— ), which corresponds to the limit of vanishing 1027
vibronic coupling (X—0), P,(¢) shows an oscillatory behav- 1028
ior. The effect of increasing vibronic coupling is to damp the 1029
amplitude of the oscillations and to lengthen their period. 1030
The net result is an effective slowing or inhibition of the 1031
migration of the excitation away from the initial site. Never- 1032
theless, in the course of time the excitation propagates over 1033
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1034 the complete aggregate. The CES approximation, which re-
1035 stricts the occupation to the lowest vibrational state of the
1036 ground electronic state, has been shown to give good overall
1037 agreement with the exact results. This approximation has the
1038 advantage that extremely long aggregates (of the order of
1039 100 monomers) can be handled numerically and, in certain
1040 limits, analytical solutions for matrix elements of G(¢) can be
1041 obtained. Taking advantage of this simplification and with a
1042 combination of numerical and analytical solutions we have
1043 established the following characteristics of the propagation
1044 of vibronic excitation.

1045 (1) In the pure electronic case, excitation is an oscillatory
1046 function of time and propagates with constant mean
1047 velocity from the site of initial excitation. This charac-
1048 teristic is largely retained when vibronic coupling is
1049 included but SP>1, i.e., strong coupling.

1050 (2) In the case of a discrete spectrum (single IM vibration),
1051 for intermediate coupling the regular pattern of propa-
1052 gation is destroyed, probability becomes smeared out in
1053 an irregular fashion, and there is a reduction in the
1054 mean velocity of propagation.

1055 (3) In the case of a discrete spectrum, for weak coupling, a
1056 quasiregular pattern of propagation is restored (in
1057 agreement with the analytical result of Bierman) but at
1058 a considerably lower velocity than that predicted by the
1059 purely electronic case.

1060 (4) The above features can all be explained by approximate
1061 analytic solutions in which P,(7) is expressed in terms
1062 of Bessel functions. In particular, the constant velocity
1063 limits in strong and weak couplings are explained. The
1064 inhibition and irregularity of propagation in the inter-
1065 mediate coupling case is shown to be due to a dephas-
1066 ing arising from the many different pathways of trans-
1067 fer between adjacent monomers when many vibronic
1068 levels participate.

1069 (5) When coupling to EM is included by a transition to a
1070 continuous spectrum, a new phenomenon appears in the
1071 numerical solutions in that, in the course of time, the
1072 propagation velocity goes to zero, i.e., the exciton be-
1073 comes trapped with a fixed distribution P,, independent
1074 of time. This trapping has also been explained analyti-
1075 cally by a simple model of an upper linear BO potential
1076 such that the vibrational wavepacket moves out from
1077 the FC overlap region with the ground BO potential
1078 and does not return. Then the trapping time is just the
1079 time taken for the overlap to go to zero, which turns out
1080 to be on the order of #/o, where o is the width of the
1081 continuous monomer vibronic spectrum.

1082 Our aim in this study has been not to give a detailed

1083 numerical simulation of any particular EET process but to
1084 establish the main characteristics of EET coupled to vibra-
1085 tions and to isolate the physical parameters governing these
1086 characteristics. To simplify the study of propagation, we
1087 have assumed that electronic excitation is localized initially
1088 on a single monomer. However, in a real experiment it is
1089 probable that light absorption leads to simultaneous finite
1090 probability of many monomers, i.e., an initially delocalized
1091 exciton. Hence the rather small transfer distances that are
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predicted before trapping when the spectrum is broad and 1092
continuous may not indicate that excitation is localized over 1093
such distances. 1094

It must also be pointed out which physical processes are 1095
not taken into account here. In this respect the major omis- 1096
sion is that of coupling between the vibrational degrees of 1097
freedom, whether IM or EM, themselves. This will lead to 1098
dissipation of the energy of excitation and accumulation of 1099
probability in the lowest vibrational states of each BO poten- 1100
tial. Similarly, finite temperature will alter the occupation of 1101
vibronic levels. In the case of the trapping of excitation pre- 1102
dicted when the vibronic spectrum is continuous, we have 1103
not considered the further fate of the wavepacket after leav- 1104
ing the FC region. Clearly, coupling to other processes, e.g., 1105
dissociation of the exciton, presence of acceptor molecules, 1106
and radiative decay, will disturb the establishment of a time- 1107
independent probability distribution of the electronic excita- 1108
tion. However, the model can be extended, albeit numeri- 1109
cally, to include such couplings. Also the CES approximation 1110
used ignores part of the vibrational structure of the ground 1111
electronic state, which may also play a role in the transfer 1112
dynamics. Finally, to expose more clearly the main physical 1113
mechanisms operating, we have restricted discussion to the 1114
simplest geometry, that of a linear or circular chain of mono- 1115
mers. In applications the precise geometry of the three- 1116
dimensional aggregate must be taken into account, usually 1117
giving a larger number of nearest or near neighbors between 1118
which EET can occur. In some cases, e.g., Refs. 7 and 45, an 1119
effective linear geometry appears a good approximation; 1120
however, in others, e.g., Refs. 46—49, the aggregate is two or 1121
three dimensional. 1122

Since this is a model study, the main results are not 1123
restricted to the particular case of an aggregate of electroni- 1124
cally coupled large organic molecules. In particular, the ana- 1125
Iytical approximations should be applicable to other quantum 1126
aggregates modeled by two-level monomers with superim- 1127

posed vibrational structure, such as are listed in Sec. L. 1128
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APPENDIX A: 1132
We differentiate Eq. (3) of the text and obtain (for times 1133AQ:
t>0)
iG(t) = iHG(t) (A1)
a - h ' 1135

Taking electronic matrix elements and inserting a unit opera- 1136
tor between H and G(r), one gets 1137

1134 #9
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9G,,,(t
%() == (l/ﬁ)z Hnn’Gn’m(t)

1138 n
== (i11) 2 Vit G @) = GIRK™. G2,

n

1139 (A2)

1140 where K7, . is a sum of single monomer BO vibrational
1141 Hamiltonians with monomer n excited electronically (e, is
1142 taken as the arbitrary zero of energy). This equation remains
1143 an operator equation in the space of vibrational coordinates.
1144 To remove the last term in Eq. (A2) we define a time-
1145 dependent vibrational state |X(r)) of the polymer by the

1146 equation

T . i n _
1147 (Km"“_’/ﬁ(;t)|ze (1)=0. (A3)
1148 Then, we have
s o OGn()
1149 dt<ze(t)|Gnm(t)|2g> - <§’e| ﬂt |2g>
9%,
1150 + < o |Gnm(t)|2g>. (A4)

1151 Taking the appropriate matrix element of Eq. (A2), we obtain

d
E<Eg(l‘)|Gnm(f)|zg> == (l/ﬁ)E’ Vnn’<22(t)|Gn’m (t))|2g>

n

1152 (A5)

1153 Since the coupling matrix element on the right hand side of
1154 the above equation involves both n and n’ it is not possible
1155 to proceed further without approximation. Since the operator
1156 G,,1,,, places monomer n’ in the excited electronic state, one
1157 introduces, as an approximation to the unit operator, the pro-

1158 jector |2’e’,(t))<2;"(t)| into the coupling term, i.e.,

L SO GoD]S.,) = (i) D Vi (S2O[S (1)
1150 4t o'

1160 XS (1)]G (1))

1161 Then, restricting to nearest-neighbor coupling, arbitrarily fix-
1162 ing m=0 and taking V, , =V, .=V for identical mono-
1163 mers, one has the set of equations,

(A6)

d
e  a0=" ERVIELW)[2 (1), (1)

1165 + SO 0B, (0],

1166 where we have set bm=(22"(t)|Gmo(t)|2g). The final approxi-
1167 mation is to take (3(#)|3"*'(1))=F (1) to be independent of
1168 n. This approximation leads to the simple set of coupled
1169 equations,

(A7)

d
520 == UR)VE@LD,1 (1) + by (1) (A8)

1170

1171 As Magee and Funabashi*' showed, these coupled equations
1172 have the solution,
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b, (t) = exp(= inm/2)J,(¥(1)), (A9) 1173
where 1174
t
y(t)=(2V/h)f F(t"dt'. (A10)
0 1175
APPENDIX B: 1176

The monomer energy-dependent Green’s function with 1177
the upper BO potential approximated by a linear form with 1178

slope a [see Fig. 1(b)] is given by the equation 1179
(ﬁ—zi+E +aQ+ ) ( "E)=4( ") (B1)
2 &QZ eel aQ 60 g Q»Q > - QaQ 1180

The ground-state vibrational potential is assumed harmonic, 1181
with rest energy €y=7%iw/2 and with ground eigenfunction, 1182

& = ("1 *exp(- b*Q%12), (B2) 1183

where b>=2w/#. Transforming to the dimensionless variable 1184

x=bQ gives a monomer Green’s function defined by 1185
&

Ka_)§+(6+ k+x)g(x,x") = (b*a)d(x - x'), (B3) 1186

where we define the dimensionless quantities « 1187

=hw/(2a/b) and e=(E-¢€,)/(a/b). In Ref. 50 it is shown 1188
that an integral representation of g(x,x’) can be derived from 1189
which an integral representation of the ground-state expecta- 1190
tion value (g(€)) can be calculated, i.e., 1191

(g(e))= f &o(x)g(x.x', € &y(x")dxdx’
0

1192

dx.  (B4)

( /b)Jw exp(— ikx*/12 — x*/4) (
=—i(a
0 (ikx+ 1)1/2 1193

From this form, the Fourier transform to time space is easily 1194

performed to give (g(7)) and 1195
- exp(— 7)
|<g(7)>| = (K272+ 1)1/2’ (BS) 1196

where 7 is the dimensionless time 7=t/T,;,. Since « is usu- 1197
ally much less than unity, the approximation =0, which 1198
amounts to neglecting the kinetic energy near to the turning 1199
point, is often a good approximation. Then Eq. (B4) can be 1200
evaluated in closed form to give 1201

(3(0)= 220 erfl- ie) - i), (B6)

1202
whose imaginary part gives a continuous Gaussian absorp- 1203
tion spectrum (see also Refs. 30 and 31). Correspondingly, 1204
for k=0, Eq. (B5) reduces to the simple form 1205

[(g(7)|* =exp(- ), (B7) 1206

showing explicitly that the outgoing motion of the excited- 1207
state vibrational wavepacket leads to a decay in time of the 1208
effective FC factor for transfer between electronic ground 1209
state and electronic excited state. In the dimensionrless time 1210
7=1/Ty;,, the scale time Ty, is given by Tyy,=V2#A/(a/b) 1211
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1212 =#i/ o since (a/ \Eb) is the width o, in dimensions of en-
1213 ergy, of the monomer continuous Gaussian absorption spec-
1214 trum obtained from Eq. (B6). Hence Ty, can be viewed as a
1215 typical time for the onset of vibronic coupling.
1216 In the case of Fig. 12 where the absorption spectrum is
1217 fitted by a sum of Gaussians, Eq. (B7) must be suitably
1218 modified. In this case the spectrum can be viewed as the
1219 convolution of a stick spectrum with a set of Gaussians cen-
1220 tered at the sticks. Hence, the Fourier transform to time space
1221 consists of a product of the separate Fourier transforms of the
1222 Gaussian and the stick spectrum. Then it is easy to show that
1223 Eq. (B7) is generalized to
120 e =exp(= P)| X |5 explie,n)|”,
a

(B8)

1225 where €,=F,/ oz=a(hiw)/og.
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