
ispc: A Compiler For
SPMD On The CPU

Matt Pharr
Intel/SSG/DPD
11 July 2011

http://ispc.github.com

http://ispc.github.com
http://ispc.github.com

Optimization Notice
Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction
sets that are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally
for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the
instruction sets and specific microprocessors they implicate, please refer to the "Intel Compiler User and Reference Guides" under
"Compiler Options." Many library routines that are part of Intel compiler products are more highly optimized for Intel
microprocessors than for other microprocessors. While the compilers and libraries in Intel compiler products offer optimizations
for both Intel and Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely
will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming
SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions
3 (Intel SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel and non-
Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your
requirements. We hope to win your business by striving to offer the best performance of any compiler or library; please let us
know if you find we do not.

Context

• ispc started as a speculative internal R&D project to improve the state
of CPU vector programming tools

• Delivered surprisingly good performance, used in a number of other
projects internally at Intel

• ispc compiler launched as open source (BSD) 3 weeks ago

• Good response: 6000+ website visitors, 300+ downloads of binaries,
10+ patches from 5 external developers, ...

3

Overview

• Motivation

• SPMD programming model overview

• ispc language overview

• Example, results, future plans

4

Motivation

5

Modern CPUs vs. GPUs

• CPU: higher clock rate, more on-chip memory

• GPU: higher off-chip bandwidth, hides memory latency better

6

See http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

CPU GPU

Cores 2-10 4-16

SIMD/Core 4-8 16-32

Threads/Core 1-2 4-8

Total “width” 8-160 256-4096

http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Filling the Machine (CPU and GPU)

• Task parallelism across cores: run
different programs (if wanted)
on different cores

• Data-parallelism across SIMD
lanes in a single core: run the
same program on different input
values

7

ALUALUALUALU

ALUALUALUALU

Cache

Execution Context

Fetch/Decode

ALUALUALUALU

ALUALUALUALU

Cache

Execution Context

Fetch/Decode

ALUALUALUALU

ALUALUALUALU

Cache

Execution Context

Fetch/Decode

ALUALUALUALU

ALUALUALUALU

Cache

Execution Context

Fetch/Decode

Cache

Parallelism vs. Performance

8

Amt. of Parallelism CPU GFLOPS GPU GFLOPS

1 3-4 0.3

10s ~100 ~5

100s ~100 ~35

1000s ~100 ~500

The product of the
amount of task

parallelism and the
amount of data

parallelism.

Measured Sandybridge CPU vs. NVIDIA GTX460 GPU performance,
normalized for equal power consumption.

Performance is Governed by
Amdahl’s Law

• If proportion P of a computation is sped-up by a factor of S and the rest
of the performance is unchanged, the overall speed up is:

• e.g. if 90% is sped-up by 50x, overall speedup is 8.5x

9

1
((1 - P) + P/S)

The Challenge:
CPU Programmer Productivity

• Task parallelism options (fill the cores): good

• pthreads, Grand Central Dispatch, TBB, ConcRT, Cilk, ...

• Data-parallelism options (fill SIMD lanes): incomplete

• OpenCL, intrinsics, auto-vectorizers,

• Most programmers write CPU programs with poor SIMD utilization

• Yet there is now a factor of ~8x available from SIMD

10

“Single Program, Multiple Data”
(SPMD) Overview

11

SPMD 101

• Run the same program in parallel with different inputs

• Inputs = array elements, pixels, vertices, ...

• The contract: programmer guarantees independence between
different program instances running with different inputs; compiler is
free to run those instances in parallel

float func(float a, float b) {
 if (a < 0.) a = 0.;
 return a + b;
}

Why SPMD?

• SPMD has been very successful for programmers on GPUs
(shaders, CUDA, ...)

• Write program that expresses per element computation

• HW runs it over many elements simultaneously

• Different control flow on different elements reduces performance

• The most widely successful parallel programming languages so far?

ispc Overview

ispc Overview

• Compiles a C-based SPMD language to high performance CPU code

• 3-5x speedups on 4-wide SIMD units are not unusual

• Is complementary to task-parallelism across cores

• Available in open-source form from http://ispc.github.com

• Supports Linux, Windows, Mac OS X

• x86 and x86-64 targets, SSE2 and SSE4 (AVX soon)

http://ispc.github.com
http://ispc.github.com

ispc: Goals

• Deliver excellent performance to programmers who want to run
SPMD programs on the CPU

• Free programmers from needing to write intrinsics code to do so

• Thin abstraction layer: programmer can cleanly reason about what the
compiler will do

• Allow close-coupling between C/C++ app code and ispc kernel code

• Pass pointers back and forth; no driver or data copying/reformatting

Building Applications Using ispc

17

ispc Source C/C++ Source

ispc Compiler C/C++ Compiler

Object File Object File

Linker

Executable

ispc Execution Model

• Program is executed in n-wide SPMD fashion when control transfers
from C/C++ application code

• n is typically 4 or 8 for 4-wide vector units (SSE)

• Different than C/C++‘s serial execution model!

• We try to match C’s syntax, do not match C’s execution semantics.

Teaser: A Ray Tracer in ispc

int width = ..., height = ...;
const float raster2camera[4][4] = { ... };
const float camera2world[4][4] = { ... };
float *image = new float[width*height];
Triangle *triangles = new Triangle[nTris];
LinearBVHNode *nodes = new LinearBVHNode[nNodes];

// init triangles and nodes

raytrace(width, height, raster2camera,
 camera2world, image, nodes, triangles);

export void
raytrace(uniform int width, uniform int height,
 const uniform float raster2camera[4][4],
 const uniform float camera2world[4][4],
 uniform float image[],
 const LinearBVHNode nodes[],
 const Triangle triangles[]) {
 // ...
 // set up mapping to machine vector width
 // ...
 for (y = 0; y < height; y += yStep) {
 for (x = 0; x < width; x += xStep) {
 Ray ray;
 generateRay(raster2camera, camera2world,
 x+dx, y+dy, ray);
 BVHIntersect(nodes, triangles, ray);

 int offset = (y + idy) * width + (x + idx);
 image[offset] = ray.maxt;
 id[offset] = ray.hitId;
 }
 }
}

ispc CodeC++ Application Code

Bidirectional C/C++ Interop:
Control and Data

int width = ..., height = ...;
const float raster2camera[4][4] = { ... };
const float camera2world[4][4] = { ... };
float *image = new float[width*height];
Triangle *triangles = new Triangle[nTris];
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
// init triangles and nodes

raytrace(width, height, raster2camera,
 camera2world, image, nodes, triangles);

void getMousePosition(int *mouseX, int *mouseY) {
 *mouseX = ...;
 *mouseY = ...;
}

extern “C” void getMousePosition(
 uniform reference int mouseX,
 uniform reference int mosueY);

export void
raytrace(uniform int width, uniform int height,
 const uniform float raster2camera[4][4],
 const uniform float camera2world[4][4],
 uniform float image[],
 const LinearBVHNode nodes[],
 const Triangle triangles[]) {
...

 uniform int mouseX, mouse Y;
 getMousePosition(mouseX, mouseY);
...

}

ispc CodeC++ Application Code

Pointer and Memory Model

• ispc supports a Java-like pointer model

• Pointers only point to the start of arrays, array indexing from there

• No pointer arithmetic, casting pointers to ints, ...

• Pointers to (complex) data structures are just passed directly from the
application

• Just need matching type declarations on ispc and C/C++ sides

21

Integration With Regular Debuggers

22

Other Useful Features

• Recursion just works

• Externally-defined functions just work

• User-defined float<n> short-vector data types

• Vectorized implementations of transcendental math funcs in stdlib

• Atomics, memory barriers are provided by the stdlib

23

C Features Not Yet Implemented

• Datatypes: enums, chars/strings, int8, int16 types, bitfields

• C-style pointers (pointer arithmetic, etc.)

• Control flow: function pointers, switch statements, goto

• Most are “a simple matter of programming” (goto is hard).

24

Example: Mandelbrot

25

26

export void mandelbrot_ispc(uniform float x0, uniform float y0,
 uniform float x1, uniform float y1,
 uniform int width, uniform int height,
 uniform int maxIterations,
 reference uniform int output[])
{
 uniform float dx = (x1 - x0) / width, dy = (y1 - y0) / height;

 for (uniform int j = 0; j < height; j++) {
 for (uniform int i = 0; i < width; i += programCount) {
 // Figure out the position on the complex plane to compute the
 // number of iterations at. Note that the x values are
 // different across different program instances, since x’s
 // initializer incorporates the value of the programIndex
 // variable.
 float x = x0 + (programIndex + i) * dx;
 float y = y0 + j * dy;

 int index = j * width + i + programIndex;
 output[index] = mandel(x, y, maxIterations);
 }
 }
}

27

static inline int mandel(float c_re, float c_im, int count) {
 float z_re = c_re, z_im = c_im;
 int i;
 for (i = 0; i < count; ++i) {
 if (z_re * z_re + z_im * z_im > 4.)
 break;

 float new_re = z_re*z_re - z_im*z_im;
 float new_im = 2.f * z_re * z_im;
 z_re = c_re + new_re;
 z_im = c_im + new_im;
 }

 return i;
}

28

task void
mandelbrot_scanlines(uniform int ystart, uniform int yend,
 ...) {
 for (uniform int j = ystart; j < yend; ++j) {
 ...
 }
}

export void mandelbrot_ispc(...) {
 uniform float dx = (x1 - x0) / width, dy = (y1 - y0) / height;

 /* Launch task to compute results for spans of 'span' scanlines. */
 uniform int span = 2;
 for (uniform int j = 0; j < height; j += span)
 launch < mandelbrot_scanlines(j, j+span, x0, dx, y0, dy, width,
 maxIterations, output) >;
}

Results

29

Speedups: One CPU Core (Core-i5)

30

vs. serial vs hand SSE

Sphere Collision 3.52 ~1.1

Black Scholes 5.25

Binomial Options 4.98

AO Bench 4.75

Ray Tracer 6.10

Volume Rendering 2.42 0.86

Barnes-Hut 0.74 0.91

Particle Rasterization 1.42 1.04

Mandelbrot 3.64

Mandelbrot + tasks 11.54

Production “grass” 3.21

Production “diffuse” 4.71

Production “specular” 3.88

Workload Details

• ispc code ranges from ~50 lines of code (options pricing) to
~700 (production specular shader)

• Porting to C/C++ and ispc hybrid was 1-4 hours for most workloads,
1-2 days for specular shader

• Similar syntax and ability to use same data structures in both is key

• Most difficulty from specular came from data layout /interop details

31

Next Steps

32

Next Steps

• Ongoing language development and performance improvements

• Continue to build open-source community

• Continue to work with developers

• AVX support for latest-generation CPUs

33

Thanks!

34

http://ispc.github.com

http://ispc.github.com
http://ispc.github.com

Backup

35

SPMD vs. Loop Auto-Vectorization

• Auto-vectorization often fails, falls back to serial case

• Nested loops, function calls, conditionals, ...

• SPMD is guaranteed to vectorize due to the foundational assumptions
of the underlying programming model

• Programmer doesn’t need to worry about falling off of this cliff

SPMD is a highly-optimizing program transformation, not an optimization

SPMD On A CPU

ALU ALU ALU ALU

(Based on http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf)

a = b + c;
if (a < 0)
 ++b;
else
 ++c;

ALU...

+

T

++

+

T

++

+

F

+

F

+

T

++

++ ++

SSE/AVX

addps

cmpltps

addps, blendvps

addps, blendvps

http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

