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It is known that quantum computers, if available, would allow an exponential decrease in the
computational cost of quantum simulations. We extend this result to show that the computation
of molecular properties (energy derivatives) could also be sped up using quantum computers. We
provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is
a constant multiple of the time needed to compute the molecular energy, regardless of the size of the
system. Molecular properties thus computed could also be used for geometry or other optimization,
and we discuss the bene�ts of quantum techniques for Newton's method and Householder methods.
Finally, global minima can be found using the quantum basin hopper algorithm, which o�ers an
additional quadratic reduction in cost over classical multi-start techniques.

Applying ab initio methods of quantum chemistry to
particular problems often requires computing derivatives
of the molecular energy. For instance, a correct inter-
pretation of spectroscopic experiments relies on the abil-
ity to compute derivatives with respect to nuclear co-
ordinates and external electromagnetic �elds. Likewise,
computing the molecular gradient is the most commonly
used method for the proper characterization of potential
energy surfaces and for optimizing the geometry of all
but the smallest molecules. The computation of these
derivatives, known as molecular properties, is nowadays
a routine matter when it comes to low-order derivatives
or small systems (or both). This is largely due to ad-
vances in analytical gradient techniques, which allow for
explicit property evaluation without resorting to numer-
ical di�erentiation [1�6].

Nevertheless, the computation of higher-order deriva-
tives is often prohibitively expensive, even though such
derivatives are often needed. For example, third- and
fourth-order anharmonic constants are usually required
to accurately compute an absorbtion spectrum [3] or ef-
�ciently determine the location of transition states on
complex potential energy surfaces [6]. Other properties
of interest, such as hyperpolarizabilites, Raman intensi-
ties, or the vibrational circular dichroism, are also cubic
or quartic derivatives. In this report, we show that quan-
tum computers, once available, will be able to bypass
some of the high cost of computing these properties. In
particular, we show that any molecular property can be
evaluated on a quantum computer using time resources
that are independent of the size of the system under con-
sideration, given a black box that can compute the molec-
ular energy. That is, the evaluation of any property is, up
to a small constant which is independent of the size of the
system, as hard as computing the molecular energy once.
We have previously characterized the exponential advan-
tage of quantum computers at both computing molecular
energies [7, 8] and simulating chemical reaction dynam-
ics [9], and the present work extends that program to
molecular properties.

We begin our paper with a brief overview of classi-

cal techniques of molecular property calculation, both
numerical and analytical. We then introduce the quan-
tum algorithm for molecular properties, and discuss its
advantages and disadvantages with respect to classical
techniques. We conclude with geometry optimization as
a particular example, and we show that it can bene�t
from an additional quadratic speed-up through Grover's
search [10].

THE CLASSICAL METHODS

Given an external perturbation µ, the total molecular
electronic energy can be expanded in a Taylor series

E(µ) = E(0) + µ>E(1) +
1
2
µ>E(2)µ + . . . (1)

where the coe�cients E(n) are called the molecular prop-

erties and describe the response of the system to the ap-
plied perturbation [11]. We consider time-independent
properties, which can be obtained by di�erentiating the
energy at µ = 0,

E(n) =
dnE

dµn

∣∣∣∣
0

. (2)

Many examples of useful derivatives can be given. For
instance, the derivatives with respect to the electric �eld
F are the permanent electric dipole, the polarizability,
and the hyperpolarizabilities:

dE

dF

∣∣∣∣
0

= −d0,
d2E

dF2

∣∣∣∣
0

= −α,
d3E

dF3

∣∣∣∣
0

= −χ(3), . . . (3)

The derivatives with respect to nuclear coordinates R
include the forces on the nuclei and the force constants,
while mixed derivatives can provide information such as
Raman intensities [2].
On a classical computer, an energy derivative can be

evaluated either numerically or analytically, and we dis-
cuss each approach in turn.
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Figure 1: Obtaining a numerical gradient of a function de-
�ned on a d-dimensional space classically requires sampling
the function d + 1 times, once at the origin and once at a
distance h along each of the axes. Shown above are the sam-
ple points for the cases d = 1 through d = 3. The quantum
gradients algorithm can obtain the same numerical gradient
in a single call to the function.

Numerical derivative techniques rely on computing the
value of the energy at several discrete points, and then
using those values to estimate the true derivative. The
simplest technique is �nite di�erence, which for the �rst
derivative in one dimension (and using only two points)
is the familiar formula

dE

dµ

∣∣∣∣
0

≈ E(h)− E(0)
h

. (4)

While numerical gradient techniques usually require min-
imal e�ort to implement, they are often unreliable be-
cause of the ill-posedness of numerical di�erentiation in
general [12]. The problem is essentially that two func-
tions can be uniformly close together while their deriva-
tives are arbitrarily far apart. This usually manifests
itself in the fact that small errors in the evaluated func-
tions can lead to large errors in a numerically computed
derivative. The problem can be regularized, for example
by interpolation or smoothing, but this requires addi-
tional assumptions about the numerical data�such as
knowledge of an upper bound on the error�which may
not be available a priori. In particular, methods of ab ini-

tio electronic structure usually involve long calculations
with many potential sources of error, such as rounding,
quadrature, or even errors inherent to the approxima-
tions being used.
By contrast, analytic derivative techniques are those

that compute the derivative by direct evaluation of an
analytic expression. They were introducted in quantum
chemistry by Pulay [1], and have since almost entirely
supplanted numerical procedures. They do not su�er
from the numerical instability and they are usually faster
as well.
Analytic gradient formulas exist for just about all elec-

tronic structure techniques and for mosts kinds of pertur-
bations. To illustrate the argument and establish the cor-
rect scaling, we will describe the particularly simple case
of derivatives of fully variational wavefunctions. We start
by writing the molecular energy as a function E(µ,λ(µ))
of the external perturbation µ and the wavefunction pa-
rameters λ(µ). These parameters, such as the con�gura-
tion interaction coe�cients or the coupled cluster ampli-

tudes, completely describe the electronic wavefunction.
Although λ(µ) is a function of µ, for simplicity we will
write only λ. The energy is said to be fully variational

with respect to λ if, given a certain µ, λ assumes the
value λ∗ such that the variational condition holds:

∂E(µ,λ)
∂λ

∣∣∣∣
∗

= 0, (5)

where ∗ indicates λ = λ∗. In that case we can write
E(µ) = E (µ,λ∗).
For fully variational wavefunctions, the gradient with

respect to µ is given by

dE(µ)
dµ

=
∂E(µ,λ)

∂µ

∣∣∣∣
∗

+
∂E(µ,λ)

∂λ

∣∣∣∣
∗

∂λ

∂µ
=

=
∂E(µ,λ)

∂µ

∣∣∣∣
∗

=
〈

λ∗
∣∣∣∣∂H∂µ

∣∣∣∣λ∗〉 (6)

where we have used the variational condition and the
Hellman-Feynman theorem. Since one need not know
the �rst-order wavefunction response ∂λ

∂µ , computing the
gradient is, to within a constant factor of two or three
[6], as hard as computing the energy. That is, once |λ∗〉
is available, the expectation value of the Hamiltonian has
approximately the same computational cost as its deriva-
tive. However, computing the second derivative (the
Hessian) does require the knowledge of the �rst-order
response. In fact, as a direct consequence of Wigner's
2n + 1 rule of perturbation theory, one needs to know
the �rst n responses in order to calculate the (2n+ 1)th

derivative. Computing the responses often becomes the
bottleneck, and it is what leads to a higher asymptotic
cost of higher-order derivatives. While the gradient re-
quries about the same resources as the energy, the second
and third derivatives require resources that scale as O(d)
times the cost of computing the energy (where d is the
number of degrees of freedom, i.e., the dimension of µ)
[6]. This scaling comes about because O(d) time is re-
quired to compute the matrix ∂λ

∂µ . Likewise, the scaling

of the nth derivative is O(dbn/2c), a consequence of the
2n + 1 rule and the O(dn) cost of computing the nth

order response.
The fact that the scaling of derivative techniques, both

numerical and analytical, depends on d has meant that
these techniques are often restricted to small systems.
This is most acutely true of the Hessian, which is of-
ten beyond reach, even though the gradient is routinely
accessible. We now show that if quantum computers
were available, the cost of the higher derivatives would
no longer be prohibitive.

THE QUANTUM ALGORITHM

The quantum algorithm for molecular properties is
based on Jordan's quantum gradient estimation algo-
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dE
dµ

O (d) O (1) O(1)
d
2E
dµ2 O

`
d2

´
O (d) O(1)

d
3E
dµ3 O

`
d3

´
O (d) O(1)

...
...

...
...

d
nE
dµn O (dn) O

“
dbn/2c

”
O(1)

Table I: Scaling of the time resources required by various tech-
niques of computing molecular properties, in terms of the cost
of computing the energy (for example, O(d) scaling means
that computing the property requires resources on the order
of d evaluations of the molecular energy). E is the total elec-
tronic energy, µ is the external perturbation, and d is the
dimension of µ. All the derivatives are evaluated at µ = 0.
On classical computers, the numerical scalings correspond to
the simplest �nite di�erence scheme. Analytical techniques
are the ones that evaluate the derivative directly (the expo-
nent bn/2c comes from Wigner's 2n + 1 rule). On a quantum
computer, the computational cost of any derivative is propor-
tional to the cost of computing the molecular energy.

rithm [13, 14]. Jordan's method can numerically com-
pute the gradient of any function F , given a black box
that computes the value of F for an arbitrary input. In
particular, the algorithm can evaluate the gradient us-
ing a a single query to F , regardless of the number of
dimensions d of the domain of F . By contrast, the sim-
plest classical �nite-di�erence scheme would require d+1
queries to F (see Fig. 1). We apply Jordan's algorithm
to the computation of molecular properties by specifying
a way to compute the energy on a quantum computer
as well as by outlining how to obtain higher derivatives.
In this section, we describe the algorithm, its application
to quantum chemistry, and �nally argue that a return to
numerical techniques for molecular properties would be
justi�ed if quantum computers became feasible.

We assume that the molecular energy is a smooth func-

tion E :
[
−h

2 ,
h
2

]d → [0, ε), where h is chosen su�ciently
small, such that E varies su�ciently slowly over the do-
main. Furthermore, ε is a bound on E. For convenience,
we are working in units such that h and ε are unitless and
where each dimension has been rescaled as necessary to
ensure that the bounds are the same along all of the axes.
Jordan's algorithm starts in an equal superposition on d
registers of n qubits each (nd qubits total):

1√
Nd

N−1∑
k1=0

· · ·
N−1∑
kd=0

|k1〉 · · · |kd〉 =
1√
Nd

∑
k

|k〉 , (7)

where N = 2n, the states |ki〉 are integers on n qubits
represented in binary notation, and |k〉 is a d-dimensional
vector of all the |k〉's. Assuming that we have a black box
for E (discussed below), one can use phase kickback to

prepare, with a single call to the black box,

1√
Nd

∑
k

exp
[
2πi

N

hε
E

(
h

N
(k−N/2)

)]
|k〉 ≈

≈ 1√
Nd

∑
k

exp
[
2πi

N

hε

(
E(0) +

h

N
(k−N/2) · dE

dµ

)]
|k〉 ,

(8)

where N is the vector (N,N, . . . , N), and the approxi-
mation is valid for su�ciently small h (the error caused
by quadratic terms and higher is discussed in Jordan's
paper[13], but is in any case only polynomial). The �nal
state is separable and equals

exp
[
2πiN

hεE(0)
]

√
Nd

N−1∑
k1=0

exp
[
2πi
ε
k1
∂E

∂µ1

]
|k1〉 · · ·

· · ·
N−1∑
kd=0

exp
[
2πi
ε
kd
∂E

∂µd

]
|kd〉 , (9)

whereupon we can apply the inverse quantum Fourier
transform to each of the d registers and measure in the
computational basis to obtain the gradient (with a global
phase and scaled by a factor of N/ε),

exp
[
2πi

N

hε
E(0)

] ∣∣∣∣Nε ∂E

∂µ1

〉
· · ·
∣∣∣∣Nε ∂E

∂µd

〉
=

= exp
[
2πi

N

hε
E(0)

] ∣∣∣∣Nε ∂E∂µ

〉
. (10)

The number of bits of precision equals n, which can be
made as large as necessary. It should be reiterated that
a single call to E was made, as opposed to the d+1 that
would be needed in the case of numerical di�erentiation
by �nite di�erence.
Ignoring various scaling factors, the gradient estima-

tion algorithm produces the transformation

|0〉 −→ eiE(0)

∣∣∣∣ dEdµ

∣∣∣∣
0

〉
. (11)

We can compute the Hessian (and higher derivatives) by
iterating this algorithm. If, instead of making a call to
E(µ), the algorithm sought E(µ−a) from the oracle, we
would perform, at the cost of a single additional subtrac-
tion,

|0〉 −→ eiE(a)

∣∣∣∣ dEdµ

∣∣∣∣
a

〉
. (12)

Another evaluation of E would su�ce to remove (or �un-
compute�) the global phase. This means that we have

designed an oracle that, given a, yields
∣∣∣ dE
dµ

∣∣∣
a

〉
and uses

only two calls to the �original� oracle for E. Using the
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gradient algorithm with this new oracle, we obtain the
state (again ignoring scaling factors)

ei dE
dµ |0

∣∣∣∣ d2E

dµ2

∣∣∣∣
0

〉
, (13)

which is a two-dimensional array of d2 quantum registers
containing all the elements of the Hessian of E. Comput-
ing higher derivatives would require additional factors of
two in the number of required oracle calls, caused by
the need to uncompute a global phase at each step (this
problem is a common feature when it comes to recursing
quantum algorithms�see e.g. [15]). Hence, evaluating
the nth derivative requires 2n−1 queries to E, which, al-
though exponential in n, is much better than dn + 1,
which is the minimum number of function queries re-
quired to compute the derivative by classical �nite dif-
ference. We stress that the number of calls to E is inde-
pendent of d, and thus of the size of the system, for the
derivative of any order.
One could object that the quantum gradient algorithm

is a numerical approach and therefore su�ers from the
same numerical instability problems as the classical nu-
merical gradient techniques. This claim is true, and it
implies that the quantum gradient algorithm cannot be
used indiscriminately for problems that feature uncon-
trolled sources of error. This would include, in particu-
lar, many quantum chemistry techniques, meaning that
this algorithm could not be coupled to any classical elec-
tronic structure method. However, if the technique for
computing the energy is numerically exact, that is to say,
if the error in the energy can be controllably reduced be-
low any level, the magnitude of the numerical error in
the calculated derivative can likewise be made arbitrar-
ily small. After all, numerical techniques could safely be
used on classical computers as well, if only exact elec-
tronic structure methods, such as full con�guration in-
teraction (FCI), were feasible for molecules with more
than a few atoms.
Fortunately, quantum computers would make it possi-

ble to evaluate the molecular energy in polynomial time,
meaning that numerical instability should not be a prob-
lem. We turn to this topic next.

THE ENERGY BLACK BOX

The application of Jordan's gradient algorithm to
chemical problems requires that there be a black box
that can compute the value of the ground-state molec-
ular energy at any value of the perturbation µ in the
neighborhood of µ = 0. Furthermore, to avoid numeri-
cal artifacts, this black box should be numerically exact,
allowing the error in the energy to be controllably re-
duced at will.
The problem of exact classical electronic structure

methods is that they generally have a computational cost

that scales exponentially with the size of the system. Al-
though these classical algorithms could also be used as
subroutines in the quantum gradient algorithm, there are
quantum electronic structure algorithms that could avoid
the exponential scaling altogether.
In particular, we have recently described a quantum

full CI algorithm [7] for computing the molecular ground
state energy in O

(
M5
)
time [16], where M is the num-

ber of basis functions. This algorithm could be easily
made into a subroutine that would function as the black
box for the energy. Several modi�cations would have
to be made, including an improvement to the algorithm
that would allow it to compute all the overlap integrals
on the quantum computer, thus rendering it possible to
introduce the perturbation µ into the calculation. Never-
theless, a quantum computer running the quantum FCI
algorithm could be used to obtain any molecular prop-
erty of a system with basis size M in O

(
M5
)
time, a

dramatic improvement over the possibilities of classical
computers.
A more recent development is the real-space chemi-

cal dynamics simulation algorithm [9, 17], based on the
earlier work of Zalka and Wiesner [18, 19]. It is known
that simulating the exact dynamics of a system of P par-
ticles interacting under a pair-wise interaction requires
at most O(P 2) time and O(P ) space, in contrast to the
classical exponential cost. If an eigenstate of the system
Hamiltonian were prepared as the initial state [20], the
dynamics would only apply a phase to the wavefunction.
This phase could be read out by the phase estimation al-
gorithm [21, 22], forming the required energy black box.
Although this algorithm requires higher overhead than
the equivalent quantum FCI calculation, it bene�ts from
a superior asymptotic scaling as well as from the fact that
only minimal modi�cations would need to made to insert
the perturbation µ into the calculation. For example,
simulations with di�erent nuclear coordinates proceed in
exactly the same way, while an electromagnetic �eld re-
quires only a small modi�cation of the simulated Hamil-
tonian [18].

NEWTON'S METHOD AND GEOMETRY

OPTIMIZATION

Perhaps the single most common use of molecular
derivatives is molecular geometry optimization. We can
therefore use it to illustrate some of the advantages of
a quantum algorithm over a classical one, including a
quantum version of Newton's method, which o�ers an
aditional quadratic speedup over its classical counterpart.
A simple way for �nding the locally optimal geometry

is to perform the standard Newton iterations,

Rn+1 = Rn −

(
dE

dR

∣∣∣∣
Rn

)
·

(
d2E

dR2

∣∣∣∣
Rn

)−1

, (14)
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until convergence is reached. Here, Rn are the nuclear

coordinates at the nth iteration, and dE
dR

∣∣
Rn

and d
2E

dR2

∣∣∣
Rn

are, respectively, the gradient and Hessian of E with re-
spect to nuclear displacement (the �molecular gradient�
and the �molecular Hessian�). If a quantum computer
were used to compute the derivatives, one would require
exactly 3 calls to a black box for E per iteration: one
for the gradient and two for the Hessian. A classical ap-
proach, on the other hand, would be much slower, requir-
ing at least d2 + 1 function calls for �nite di�erence, and
approximately O(d) e�ort in the analytical case [29]. For
large molecules with large d, this savings could prove sig-
ni�cant, even if each energy evaluation takes much longer
on a quantum machine than on a classical computer.
There are many classical tricks available for speed-

ing up the convergence of Newton's method if the initial
guess is not close to a local minimum, in which case the
usual Newton step might be inappropriately large. Tech-
niques such as trust regions and level shifts [23] are still
available to quantum computers, or they can be imple-
mented as classical post-processing.
In addition, we remark that Newton's method is the

�rst in the class of Householder methods, which o�er a
rate of convergence of ` + 1, provided that derivatives
up to order ` + 1 exist and can be calculated. A quan-
tum computer could be used to accelerate Householder
methods of any degree, requiring

∑`+1
m=1 2m−1 = 2`+1−1

calls to the black box for order-` Householder optimiza-
tion method. Although exponential in `, this expression
is independent of system dimension d.
Of course, Newton's method is only useful for local

minimization, and we are often interested in global op-
timization. Here, we can use a quantum version of the
multistart technique, called the quantum basin hopper
[24�27]. A number of points is selected at random, and
each is followed, using a local search, to its local basin
(if a quantum version of Newton's method is used for the
local search, such as the one we propose above, we can
get the usual quadratic convergence). Then, the minima
of all the basins are compared and the least one cho-
sen as the global minimum. Quantum computers could
add a quadratic speed-up to such a multistart technique,
since the resulting local minima form an unstructured
database that can be searched using Grover's algorithm
[10]. As Dürr and Høyer pointed out [28], a Grover search
can �nd the minimum of an unstructured database with
O(
√
K logK) calls to the database (where K is the num-

ber of database entries, i.e. multistart points), as op-
posed to the classically required O(K logK) queries.
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