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Abstract

Redox flow batteries (RFB) utilizing water-soluble organic redox couples are a new strat-

egy for low-cost, eco-friendly, and durable stationary electrical energy storage. Previous stud-

ies have focused on benzoquinones, napthoquinones, and anthraquinones as the electroactive

species. Here, we explore a new class of molecules—thiophenoquinones—specifically focus-

ing on the caldariellaquinone-, sulfolobusquinone- and benzodithiophenoquinone-like frame-

works that are used for metabolic processes in thermophilic aerobic Sulfolobus archaebacteria.

We demonstrated that B3LYP/6-311+G(d,p) thermochemical calculations (using the SMD sol-

vation model) reproduce experimental reduction potentials to within ±0.04V. We then studied

the effect of amine, hydroxyl, methyl, fluoro, phosphonic acid, sulfonic acid, carboxylic acid,

and nitro functional group modifications on the reduction potential and Gibbs energy of solva-

tion in water (using density functional theory) and aqueous solubility (using cheminformatics).

Next we enumerated all of the 10,611 possible combinations of functional group substitutions

on these frameworks, and identified 1056 potential molecules with solubilities exceeding 2

mol/L; of these, 36 molecules have reduction potentials below 0.25V and 15 molecules above

0.95V (versus the standard hydrogen electrode (SHE)). The combination of high solubility

and wide voltage range makes these molecules promising candidates for high performance

aqueous RFB applications. Finally, using our dataset of ab initio reduction potentials, we de-

veloped a cheminformatics model that predicts ab initio reduction potentials to within ±0.09V

based solely on molecular connectivity. We found that a model trained with as few as 200

examples generates rank-ordered predictions allowed us to identify the highest performance

candidates with half the number of ab initio calculations. This offers a strategy for improving

the tractability of future computational searches for high performance RFB molecules.

Keywords: organic redox flow battery (ORBAT), aqueous redox flow battery (RFB), quinone,

battery, electrochemistry, thiophenoquinone, caldariellaquinone, sulfolobusquinone, benzodithio-

phenoquinone, machine learning, data mining, cheminformatics
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1 Introduction

Low-cost electrical energy storage is crucial for widespread adoption of renewable energy, but

current electrochemical (battery) technologies are too expensive.1,2 Electrochemical cells store and

extract electrical energy via oxidation/reduction reactions of electroactive components. In redox

flow batteries (RFBs), the electroactive species are stored external to the electrodes, which offers a

number of safety, cost and engineering advantages.2–7 RFBs have typically used metal ions (e.g.,

Vanadium) or metal-containing coordination compounds as the electroactive species, but these are

toxic and expensive.1,7 A new strategy is to use organic molecules, specifically quinones. This

was first demonstrated for non-aqueous solvent RFBs using anthraquinone derivatives by Wang et

al.,8 and more recently for aqueous RFBs using anthraquinone derivatives by Huskinson et al.9

and anthraquinone and benzoquinone derivatives by Yang et al.10 While non-aqueous electrolytes

theoretically have higher energy density (due to greater operating voltages), aqueous electrolytes

avoid many of the engineering challenges faced by non-aqueous RFBs and thus are more likely to

be successfully commercialized in the near future.11

Two physicochemical limitations hinder aqueous organic RFB technology.11 First, the half-cell

voltages for individual quinones do not span a sufficiently large range to maximize the theoreti-

cal energy density. Water electrolysis places a limit of 1.23 V on the full-cell voltage, although

it may be possible to exceed this by taking advantage of the slow kinetics of water electrolysis.

Until now, the highest full-cell potential for all-quinone aqueous RFBs is only 0.94 V,10 although

a recent computational study has identified quinone derivatives that might increase this.12 Second,

engineering cost analysis suggests that the solubility of the organic charge carrier should exceed

2 mol/L,11 but current sulfonic-acid functionalized quinones have only attained 1 mol/L solubil-

ities.9,10 Several recent papers have discussed the use of large-scale computational screening to

identify molecules that improve upon both of these limitations by operating at a wider range of

half-cell voltages and having higher solubility.12,13 Here we use a similar computational strategy

to explore a new class of organic electroactive molecules for aqueous RFB applications.

Inspired by Aristotle’s dictum that “if one way is better than another, that is the way of Na-
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Chart 1: Thiophenoquinone frameworks used in this work. Sulfolobusquinone is A
with R3 = (3,7,11,15,19,23-hexamethyltetracosyl), R4 = CH3; Caldariellaquinone is C
with R3 =(3,7,11,15,19,23-hexamethyltetracosyl); Benzodithiophenoquinone is B with R3 =
(6,10,14,18,22-pentamethyltricosan-2-yl).

ture”,14 we observe that benzoquinones and napthoquinones are used almost ubiquitiously for

metabolic charge-transport in living organisms. (In turn, previous computational and experimental

studies of organic aqueous RFBs have only considered benzo-, naptho-, and anthraquinones.9,10,12)

However, there are two known exceptions:15 (1) Thermophilic aerobic Sulfolobus archaebac-

teria that use thiophenoquinones (caldariellaquinone, sulfolobusquinone and benzodithiopheno-

quinone, shown in Chart 1);16 and (2) Methanogenic Methanosarcinales archaebacteria that use

methanophenazines.17 In this paper, we will discuss the former, and present results on the latter

in a future paper. The study of thiophenoquinones for electrochemical energy storage is not com-

pletely unprecedented: Hernández-Burgo et al. recently studied thiophenoquinones for lithium

battery cathodes.18 The use of thiophenoquinones by thermophilic organisms suggests that these

molecules have enhanced stability at high temperatures. Operating at higher temperatures would

both simplify RFB environmental management (reducing the cost) and increase the solubility of

the electroactive molecules (increasing the energy density). Moreover, a wide variety of thiophe-

noquinone derivatives have been synthesized.19

Here we describe a combination of ab initio quantum chemistry and cheminformatics calcu-

lations to assess the electrochemistry and water solubility of > 104 thiophenoquinone derivatives.
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Of the molecules with solubilities predicted to be > 2 mol/L, we identify 36 molecules with re-

duction potentials < 0.25 V and 15 molecules > 0.95 V as promising new leads for aqueous RFB

applications. Using this dataset, we construct a cheminformatics model for predicting the voltage

of thiophenoquinone derivatives. Surprisingly, we find that structural information alone results

in more accurate predictions than ab initio molecular orbital energies or Hückel theory descrip-

tors. We conclude by discussing the implications for future large-scale electrochemical screening

projects.

2 Computational Methods

The thiophenoquinone reduction was treated as a single-step two-electron two-proton process,

as in previous work.9,10,12 Starting from a SMILES representation of the oxidized and reduced

species, a lowest energy conformer search was performed with the Dreiding force field to obtain

initial geometries, using the ChemAxon calculator plugins, Marvin 14.8.25.0, 2014.20 Although

intramolecular hydrogen bonding yields a variety of distinct conformers,9,21 we found that the use

of only a single lowest energy conformer per species was sufficient to obtain quantitative predic-

tions of the reduction potential (see Figure 1 and vide infra). All electronic structure calculations

were performed using the B3LYP/6-311+G(d,p) model chemistry, as implemented in Gaussian

09.22 Previous computational studies of quinone electrochemistry found that more computation-

ally expensive methods (MP2, MP4, G4MP2, MP2, CCSD, CCSD(T)) yielded results no more

reliable than B3LYP.23,24

To compute the reduction potential of a species, Q, we simulated the thermodynamic cycle

Q(g) + H2(g)
∆rG◦

gas−−−−→ QH2(g)

↓ ∆Gsolv(Q) ↓ ∆Gsolv(H2) ↓ ∆Gsolv(QH2)

Q(aq) + H2(aq)
∆rG◦

aq−−−→ QH2(aq)

(1)

The gas phase geometries of each species were optimized; these gas phase geometries were kept
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fixed for the subsequent solution-phase calculations. The Gibbs energy of each gas-phase species

was computed under conditions of T = 298.15 K and P◦ = 1 atm. ∆rG◦
gas was computed by sub-

tracting the Gibbs energy of each of the gas phase reactant species from the product species. The

Gibbs energy change of solvation, ∆G◦
solv of each species has two contributions. The first contri-

bution is the effect of creating a molecular cavity within the solvent and the effect of the solvent

medium on the electronic and vibrational energy levels of the solute. The former is calculated

by subtracting the gas phase Gibbs energy from the aqueous phase Gibbs energy, the latter com-

puted using (fixed) gas phase geometries and the SMD implicit solvent model with water as the

solvent.25,26 The second contribution is due to the concentration change from the standard state of

the gas phase (an ideal gas at P◦ = 1 atm) to the standard state of the solution phase (an ideal so-

lution at 1 mol/L concentration). This contributes an additional RT ln(RT/P◦V ◦), for each species

(where R is the gas constant). The optimized geometries of all species, and example input file for

each step of the electronic structure calculation process are included in the Supporting Informa-

tion. The reduction potential was calculated by the Nernst equation, E◦
calc = −∆rG◦

aq/nF , where

n = 2 is the number of electrons, and F is the Faraday constant. Our computed E◦ is relative to the

standard hydrogen electrode (SHE). As discussed below, the ab initio E◦ quantitatively agrees with

experimental potentials for a variety of related quinones and thiophenoquinones, and an empirical

correction of E◦
corr = 0.03892V+0.97751E◦

calc (red line in Figure 1) further improves the quality

of the predictions.

Aqueous solubility calculations were performed using the ChemAxon calculator plugins (at

a pH of zero),20 that implement the structure-property relations described in Refs.27 and.28 This

method is trained to reproduce the aqueous solubility at 20-25◦C.

Linear regression models to predict calculated half-cell potentials of derivatives A were created

in Python 2.7 and Numpy 1.8. The first model (“ab initio LUMO”) used the ab initio LUMO

energy of the oxidized gas phase species, from the DFT calculations described above. The second

model (“Hückel”) used semiempirical Hückel theory calculations of the LUMO energy, the charge

density at each atom in the base framework, and the nucleophilic localization energy of each of
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the two oxygens on the framework. Semiempirical Hückel calculations were performed using the

ChemAxon calculator plugins (at a pH of 1).20 The third model (“Structure”) used one feature for

each functional group at each substitution site, calculated using substructure matching in RDKit

2013.09.1.29 All models were trained using descriptors that are differences of each compound

from the base structure. The first two models were trained with an additional constant parameter,

whereas the third had its constant parameter fixed to the half-cell potential of the base structure. A

table of the descriptors used in each case, and a Python script implementing the parameterization

and property predictions are available in the Supporting Information.

3 Results and Discussion

Figure 1: Comparison of calculated half-cell reduction potentials (vs. SHE) to experimental
measurements of benzoquinones (BQ), napthoquinones (NQ), anthraquinones (AQ), phenanthreqi-
nones (PQ), sulfonated versions of these (suffix S), and caldariellaquinone. The black dashed line
is the bisectrix; the red solid line indicates a least-squares fit to the data. A complete list of abbre-
viations, potentials, and references for the experiments is contained in Table S1 in the Supporting
Information.

How accurate are the calculated half-cell potentials? Figure 1 shows a comparison of our cal-

culated values to experimental redox potentials taken from the literature, for twelve quinones with

7

Page 7 of 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



a variety of molecular masses, shapes, number of rings, and redox potentials. (To our knowledge,

caldariellaquinone is the only thiophenoquinone measurement reported in the literature.) The bi-

sectrix (dashed black line) indicates hypothetical perfect agreement between calculated and experi-

mental results. The calculations agree well with experiment, with mean absolute deviations (MAD)

and root-mean-square errors (RMSE) of 0.0435 V and 0.0499 V, respectively. The agreement can

be further improved by an empirical linear correction (red line), which yields MAD and RMSE

values of 0.0342 V and 0.0397 V, respectively. Both the slope and R2 values for this fit are close

to one, confirming the validity of the underlying DFT calculations. We note that our computed

errors compare favorably with the reported experimental errors of 0.002-0.016 V.9,10,16,24 The em-

pirically corrected values of E◦ are used in the discussion below; however both the corrected and

uncorrected values are available in the data tables contained in the Supporting Information.

(A)

(C)

(B)

∆E°

Figure 2: Redox potential change, ∆E◦, due to single substitutions of functional groups at each of
the symmetry-unique positions. Insets (A), (B), (C) correspond to the framework labels in Chart
1.

How does incorporating functional groups change the redox potential of the various thiophe-
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noquinone frameworks? Previous computational studies have explored a variety of functional

group substitutions for “tuning” the redox potential.9,10,12,18,30 In general, one expects Electron

Withdrawing Groups (EWG) to decrease the energy of the Lowest Unoccupied Molecular Orbital

(LUMO) and Electron Donating Groups (EDG) to increase it. In turn, a lower LUMO energy

yields a higher redox potential, because it is energetically more favorable to add an electron into

this lower-energy state.31 To verify this intuition, we examined the change in the redox poten-

tial, ∆E◦, upon adding a single amine, hydroxyl, methyl, fluoro, phosphonic acid, sulfonic acid,

carboxylic acid, or nitro functional group (ordered from most electron donating to most electron

withdrawing) on the three thiophenoquinone frameworks shown in Chart 1. Previous computa-

tional studies on quinones indicated that these functional groups cause the largest changes in E◦.12

The results, shown in Figure 2A-C, allow us to identify three general trends: (i) EDGs tend to

reduce E◦ and EWGs tend to increase E◦ as expected. This relationship holds best for EDGs, and

deviations are more common for EWGs; (ii) Adding functional groups to the sites on the quinone-

ring (R3 and R4 on A; R3 on C) results in the largest change in redox potential, |∆E◦|. These

are the sites where the LUMO has greatest magnitude (see Fig. S1 in the Supporting Informa-

tion). Adding functional groups to the thiophene-ring sites (R1 and R2) causes a smaller |∆E◦|

than addition to the quinone-ring. Considering only these thiophene-ring sites, for A and C, the

largest |∆E◦| occurs at the site closest to the sulfur atom (R1), which is consistent with the LUMO

magnitude. In the case of B, the largest |∆E◦| occurs at the site farthest from the sulfur atom (R2),

despite the fact that the LUMO density is lowest there. (iii) Exceptions to the general EWG and

EDG trends only occur on thiophene-ring sites (R1 and R2), and these often result in changes in

the sign of ∆E◦. For example, (a) adding an OH functional group to the thiophene-ring sites on A

and C results in an opposite sign of ∆E◦ compared to the quinone-ring sites; (b) adding a PO3H2

group on B (where there are only thiophene-ring sites), lowers E◦ when placed near the sulfur (R1)

atom, but raises E◦ when placed at the other site (R2).

How does incorporating multiple substitutions of each functional group change the redox po-

tential? Figure 3a shows the computed E◦ for the 251 possible mono-, di-, tri-, and tetra- sub-
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(a)

(b)

(c)

Figure 3: Effects of functional group substitutions on the (a) redox potentials; (b) Gibbs energy
of solvation; and (c) aqueous solubility constant of thiophenoquinone frameworks. The horizontal
lines indicate the potentials of the unsubstituted thiophenoquinone molecules; symbols indicate
potentials for all of the possible single-, double-, triple-, and quadruple- substitutions for each of
the functional group types; colors indicate the different thiophenoquinone frameworks.
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stitutions of each of the previously considered functional groups.. The results confirm the general

trend discussed above—EDGs tend to reduce E◦ and EWGs tend to increase E◦. However, a

closer examination shows several exceptions to this general trend. For example, the hydroxyl and

methyl EDGs counter-intuitively increase E◦ for some single (circle) and double (cross) substitu-

tions of C (blue) and A (red). Exceptions also occurs for EWGs: as discussed above, B with a

single (circle) phosphonic acid functional group has a counter-intuitive decrease in E◦. Our re-

sults also contradict the assumption made by Er et al.12 that intermediately substituted molecules

have E◦ between the single and full substitutions. Rather, our calculations show that E◦ changes

non-monotonically with increasing number of substitutions, and the most extreme values of E◦

are typically not the fully substituted molecules. A and B both have four potential substitution

sites and C has three potential substitution sites. Consequently, if the assumption were correct,

the quadruple-substitutions of A and B (red and green squares) or triple-substitutions of C (blue

triangles) should be the most extreme values in Figure 3a. But this is only true for 7 of the 24

columns—in all other cases, molecules with fewer substitutions have the most extreme E◦. In fact,

the fully hydroxyl-substituted B has the smallest change in E◦ from the unsubstituted parent. More

frequently ( 10 of 24 cases) double substitutions have the most extreme value of E◦. Surprisingly,

dihydroxyl substituted C compounds have both the largest possible positive and negative changes

in E◦ depending on the substitution sites. There is more variability in E◦ for di-substituted com-

pounds, simply because more unique cases are possible. However, there is a pattern: In general,

we find that |∆E◦| is smallest when the two functional groups are both on the same ring, and

largest when they are on opposite rings. As shown in Table 1, only five exceptions occur (marked

with an asterisk): methyl, fluoro, phosphonic acid and nitro di-substitutions on A, and amine di-

substitutions on B. While our present results are limited to thiophenoquinones, we suspect this

is also true for napthoquinones and anthraquinones, suggesting the ability to further expand the

range of E◦ beyond the limits described by Er et al.12 by considering intermediate numbers of

substitutions.

What is the effect of functional groups on solvation free energy, ∆Gsolv ( Figure 3b)? In general,
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Table 1: R-group positions of di-substituted compounds with the largest |∆E◦|.

Functional Group A B C
NH2 (1,4) (1,2)* (1,3)
OH (1,4) (2,4) (1,3)
CH3 (3,4)* (2,4) (2,3)
F (1,2)* (1,4) (1,3)
PO3H2 (3,4)* (2,4) (1,3)
SO3H (1,3) (1,4) (1,3)
COOH (2,4) (2,4) (2,3)
NO2 (3,4)* (2,4) (2,3)

∗ Asterisks indicates functional groups that
are on the same ring.

methyl, fluoro, and nitro groups do not change ∆Gsolv very much; in fact these can cause small

increases and decreases in ∆Gsolv for all frameworks. The other functional groups make solvation

more spontaneous, and in particular, phosphonic, sulfonic, and carboxylic acids make ∆Gsolv the

most negative. Unlike the behavior of E◦ (vide supra), increasing the number of functional groups

of a given type tends to lower ∆Gsolv (though the behavior is not strictly monotonic). As a result,

because A and B have four possible sites, they tend to have lower ∆Gsolv than C, which has only

three possible sites. Relative to the unsubstituted frameworks, single substitutions have the smallest

change in ∆Gsolv and maximal substitutions have the largest change in ∆Gsolv, consistent with the

previous results of Er et al.12 However, some exceptions occur: (i) some dihydroxyl and diamine

substituted C molecules have lower ∆Gsolv than more highly substituted forms; (ii) tri-sulfonic

acid B has a lower ∆Gsolv than the tetra-sulfonic acid B; (iii) dinitro-A compounds show maximal

increases and decreases in ∆Gsolv but tetranitro-A has only a slightly lower ∆Gsolv.

Does the ab initio ∆Gsolv (Figure 3b) agree with the cheminformatics-predicted aqueous sol-

ubility, S (Figure 3c)? In principle, there is no reason to expect the former (which measures the

spontaneity of solvating a molecule originating in the gas phase) to agree with the latter (which

measures the spontaneity of solvating a molecule originating in a pure crystal). While both pro-

cesses will tend to be favored by increasing numbers of hydrogen bonding groups (since we are

12

Page 12 of 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 4: Correlation between the cheminformatics-predicted aqueous solubility constant and the
DFT-predicted Gibbs free energy of solvation for all 1,056 molecules considered in this study.
Lines indicate least-squares fits to the data.

considering solubility in water), the latter will also depend on intermolecular interactions and pack-

ing geometries in the crystal. Despite the fact that S governs the performance of actual RFB de-

vices, previous computational screening surveys only considered ∆Gsolv. This is understandable

since it can be obtained from ab initio calculations, whereas ab initio molecular crystal thermody-

namic properties are prohibitively challenging due to the importance of non-covalent interactions

that are only captured with high-level correlation methods.32 In practice though, we have found

∆Gsolv and ln(S) are correlated, as shown in Figure 4. Each point represents a substituted thiophe-

noquinone; red and blue indicate the reduced and oxidized forms of each molecule, and the lines

show a least-squares regression between the variables. Since S is an equilibrium constant, one

expects a functional form of the type ∆G ∝ −RT lnS, and Figure 4 supports a modest correlation

following this relationship. Discrepancies between the effects of functional group substitutions

on ∆Gsolv and S are seen by comparing Figure 3b and c. While amine, hydroxyl, and carboxylic

acid substitutions cause large decreases in ∆Gsolv for all frameworks, there are not concomitant

increases in S. There are even some cases where despite lower ∆Gsolv a smaller S is predicted.

Can we use this knowledge to find novel, high-performance thiophenoquinones for aqueous

RFB applications? Performing ab initio calculations for all of the possible 10,611 possible func-
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Figure 5: Graphical summary of reduction potential and Gibbs energy of solvation for the 1056
substituted thiophenoquinones predicted to have aqueous solubilities >2 mol/L.

tional group substitutions on A, B, C is impractical—this is nearly an order of magnitude larger

than any previous study12,13 of RFB materials—so instead we used the rapid cheminformatics-

based calculation of S to perform an initial elimination of many possible candidate molecules

before subjecting the remaining compounds to further ab initio calculations. Using this as a first

stage in our screening process improves upon previous computational exploration strategies in two

ways: (i) it takes only a fraction of a second for each candidate, because no quantum mechani-

cal calculations are required; (ii) it optimizes the relevant experimental figure of merit, S. Even

if the reader may be skeptical of the precise value obtained by empirical structure-property rela-

tionships, the correlation between S and the ab initio ∆Gsolv, discussed above, should allay any

fears. From the initial 10,611 possible molecules, retaining only high solubility (S > 2 mol/L)

molecules leaves 1056 different candidates, which we then subjected to ab initio calculations.

The Supporting Information contains a machine-readable datafile of E◦ and ∆Gsolv—indexed by

SMILES strings—along with the optimized geometries of all of these molecules. We summarize

these results in graphical form in Figure 5 and Figure 6a-c. First, to achieve S > 2 mol/L one

typically needs at least three (and often four) functional group substitutions, as evidenced by the

preponderance of triangles and squares in Figure 5. No high-S molecules had only a single substi-

tution, and only 21 are di-substituted. Consequently, 98% of the high-S candidates have three or
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more substituents attached. The need for highly-substituted frameworks may complicate synthe-

sis, but we note that DHAQDS has four substitutions, so it is not unreasonable. All of the 1056

high solubility candidates contain either a phosphonic or sulfonic acid group, and most contain

both—98% of high-S candidates have at least one PO3H2 and 76% have at least one SO3H. All 21

di-substituted high-S compounds have at least one PO3H2 group. This agrees with the increases in

solubility associated with phosphonic and sulfonic acid substitutions reported by Er et al.,12 and

in our results discussed above. As shown in Figure 6c, all of the thiophenoquinone derivatives

have larger values of S than the previously reported quinone derivatives (which have S of 1.0-1.7

mol/L). Second, Figure 5 shows that the range of reduction potentials is greatly increased com-

pared to the unsubstituted (star) thiophenoquinones. However, as shown in Figure 6a, only a few

molecules expand the voltage range beyond previous quinone RFB experiments (labeled vertical

lines). Only three A derivatives have E◦ below DHAQDS, and no molecules have E◦ above BQDS.

Third, ∆Gsolv for these molecules is significantly lower (more spontaneous) than the unsubstituted

thiophenoquinones—unsurprising given our S-based selection criterion. Moreover, 418 of these

candidates have lower ∆Gsolv ( Figure 6b) than DHAQDS. We did not find any molecules with

both E◦ and ∆Gsolv lower than DHAQDS. However, if one is willing to accept a slight reduction in

voltage range compared to DHAQDS and BQDS, there are many thiophenoquinones where ∆Gsolv

is substantially lower.

Within these high-S candidates, we identified 36 molecules with E◦ < 0.25 V and 15 molecules

with E◦ > 0.95 V. Given the ±0.05 V MAD of our ab initio predictions, this should include all

molecules within the < 0.2 V and > 1.0 V feasibility criteria used by Er et al.12 Tables S2 and

S3 in the Supporting Information show the functional group substitutions and ∆Gsolv for both the

oxidized and reduced forms of the thiophenoquinones.

To summarize the high E◦ candidates shown in Table S2: (i) All are derivatives of A (as seen

in Figure 6a); (ii) 13/15 molecules are fully substituted and 2/15 are tri-substituted; (iii) Most

molecules exclusively contain EWGs, but there are 4/15 that contain amine and hydroxyl EDGs;

(iv) No molecules contain a methyl group; (v) R1 and R2 have a variety of functional groups types;
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(b)

(c)

(a)

Figure 6: Distributions of (a) reduction potential, E◦; (b) Gibbs energy of solvation, ∆Gsolv; (c)
logarithm (base-10) of aqueous solubility for the candidate thiophenoquinones predicted to have
solubility > 2 mol/L, logS (inset shows the values for all of the 10,611 possible substitutions).
Vertical lines indicate values for quinones previously studied for use in aqueous RFBs.
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(vi) 10/15 molecules have a phosphonic acid on R3, 4 have sulfonic acid, and 1 has carboxylic

acid; (vii) 12/15 molecules have a sulfonic acid on R4, 1 has phosphonic acid, 1 has fluoro, and 1

has nitro; (viii) 10/15 molecules have a lower ∆Gsolv than BQDS.

To summarize the low E◦ candidates shown in Table S3: (i) All (36/ 36) are A-derivatives (this

is also apparent in Figure 6a); (ii) Again, most ( 29/36) are fully substituted, and the remaining 7

are tri-substituted; (iii) Predominantly EDGs are present: all molecules contain at least one amine,

and there are only 2 carboxylic acid substituted molecules and no nitro substituted examples; (iv)

Unlike the high E◦ case, 8/ 36 molecules contain a methyl group; (v) While 34/36 contain at

least one phosphonic acid and 22/36 contain at least one sulfonic acid, this is not significantly

different from the global distribution; (vi) Unlike the high E◦ case, the placement of phosphonic

and sulfonic acid groups on the R3 and R4 sites shows no systematic trend; (vii) Of the 32/36

examples having exactly two phosphonic and/or sulfonic acid groups, only 2/32 have both of those

groups on the same ring (exclusively on R1 and R2), all of the rest have the two groups on opposite

rings; (viii) 35/36 have a lower ∆Gsolv than AQDS.

How stable are these molecules to repeated reduction and oxidation cycles? No previous com-

putational study of organic redox flow materials has attempted a direct determination of the re-

action pathways and transition state barriers for possible degradation products, as this is a com-

putationally challenging problem. However, Cheng et al. suggested the use of the maximum

bond-length change during reduction as a proxy for molecular stability.13 The well-known bond-

order/length/strength relationship suggests that bonds that become significantly longer during the

redox process will have the largest reduction in bond order, and thus have the greatest loss in bond-

strength and be most susceptible to bond-breaking. The acceptable limits can be determined by

considering the changes to the Lewis structures of the molecules during the redox reaction. During

the reduction process, the C=O bond on the quinone is converted to a C-O single bond; bond-length

tables indicate a difference of 0.2 Å for these two types of bonds. Similarly, the bonds between

carbon atoms in the quinone ring are single bonds or double bonds, which become aromatic C-

C bonds following reduction; bond length tables suggest an expected change of 0.14 Å. Changes
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greater than this suggest weakening of the bonds beyond an acceptable limit, and thus the increased

likelihood of degradation during reduction reactions. Tables S2 and S3 in the Supporting Infor-

mation report the maximum bond length changes for C=O and non-C=O bonds that occur during

the reduction process, calculated using the gas-phase optimized geometries. To summarize the

results: For the high E◦ candidate shown in Table S2, the C=O bond length changes were between

0.13-0.15 Å, and the maximum change in a different bond was between 0.11-0.13Å, occurring

exclusively on the C-C bond in the quinone ring. Similarly, for the low E◦ candidates shown in

Table S3, the maximum C=O bond length changes were 0.12-0.15 Å, and the C-C bonds in the

quinone ring changed by a maximum of 0.09-0.14 Å. Because none of these exceed the thresholds

discussed above, we conclude that all of our proposed molecules should be chemically stable over

repeated charge-discharge cycles.

Table 2: RMSE and MAD for the predictions of the three models on the training set of 639
compounds and the test set of 319 compounds

RMSE RMSE MAD MAD
Training Set Test Set Training Set Test Set

LUMO 0.142 0.137 0.113 0.109
Hückel 0.109 0.113 0.087 0.092

Structure 0.086 0.088 0.067 0.069

Is it possible to further reduce the number of ab initio calculations by developing a chemin-

formatics model for the reduction potentials? We investigated three linear regression models for

reproducing the calculated E◦ of A derivatives. The first model ("ab initio LUMO") used the

ab initio LUMO energy of the oxidized gas-phase compound. Previous work has identified lin-

ear correlations between the LUMO of this species and the redox potentials of quinones12,23 and

quinoxalines.13,30 While this is the simplest model, it is also the most computationally demanding

because computing the LUMO energy descriptor requires performing a complete ab initio geome-

try optimization. Moreover, we found that this correlation was not as strong for thiophenoquinone

derivatives as the correlations predicted in those earlier works (vide infra). The second model

("Hückel") used semiempirical Hückel theory calculations to obtain: LUMO energy, charge den-
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sity at each atom in the base framework, and nucleophilic localization energy of each of the two

oxygens on the framework. Like the ab initio LUMO model, its descriptors have clear physical

meaning, but it has the advantage of the computational ease of performing Hückel calculations

to obtain these descriptors. In contrast, the third model ("Structure") relies solely on a group-

additivity hypothesis, in which each type of functional group at a particular location makes an

additive contribution to E◦. Completely neglecting quantum chemistry may seem unlikely to be

successful, but hypotheses like these are widely used in quantitative structure activity relation-

ship (QSAR) studies, Hammett free energy relationships, etc. While this is the most complicated

model, requiring parameters for each substituent type and location, it is also the most expedient

to evaluate, since the descriptors depend only on the atomic connectivity of the candidate model.

We trained our models on a random subset of the A derivatives on which we performed ab initio

calculations and reserved one-third (319) of the compounds as a test set. Fitted parameters for each

model are available in the supporting information. The structure model significantly outperforms

the other two models, despite entirely neglecting quantum chemistry. It reaches a MAD of 0.069 V

and an RMSE of 0.088 V ( Table 2) on the test set. We investigated regularization for all three mod-

els, but there was no significant improvement in the test set error and so we deemed it unnecessary.

We also examined hybrid models that combine descriptors of the three models above (Structure +

ab initio LUMO, Structure + Hückel, Structure + ab initio LUMO + Hückel), but found that the

MAD and RMSE were only slightly lower (< 0.004 V) than the Structure model shown here, and

therefore the extra complication was unwarranted. (See Figure S3 in the Supporting Information.)

How many compounds are needed to properly train the model? Figure 7 shows learning curves

of MAD and RMSE for each model as a function of training set size, while keeping the test set

constant. It is clear that the models are not overfit as the test and training set errors converge to the

same value. All three models stabilize and converge to their final values relatively quickly, with the

biggest improvements realized after adding the first 100-200 compounds to the training set. The

slightly larger error on the training set (than the test set) in the ab initio LUMO model is due to the

relatively large errors of the model (see Figure 8) and a fortuitous choice of the training set. We
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Figure 7: The variation in (a) MAD and (b) RMSE for each regression model with respect to the
number of compounds included in the test set. Solid and dashed lines indicate the errors on the
training and test sets, respectively.
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verified this by creating ten different random training sets, and observed that the average learning

curve had the expected behavior.

Figure 8: Predicted half cell potentials, E◦, from the ab initio LUMO (red squares), Hückel (blue
circles), and Structure (green triangles) models versus the calculated ab initio E◦ for both the test
and training set. The black line is the bisectrix.

Figure 8 shows the predicted reduction potentials for each model versus the calculated ab initio

potentials. The Structure model is visibly superior (adjusted-R2 = 0.708), with points relatively

close to the bisectrix, although there are several significant outliers. We note that the ab initio

LUMO model has a negative adjusted-R2 value (−0.466), indicating that the model has larger er-

rors than predicting the mean value for all compounds. The Hückel model (adjusted-R2 = 0.411)

does have some explanatory power, but is still significantly worse than the Structure model. Ex-

amining the plot of the residuals (difference between predicted and ab initio E◦) of the structure

model versus the calculated ab initio E◦ in Figure 9, we see that the model has a tendency to under-

estimate the extreme values, especially at high potentials. As shown in Figure 6, most compounds

have intermediate voltages, which biases the model towards the mean. This is unfortunate because

our goal is to find compounds with extreme E◦ for RFB applications. However, to use these models

to narrow the search space, the rank correlation is a more valuable metric for model performance.

Table 3 shows the Spearman rank correlation coefficient for each of the models compared to the

calculated ab initio E◦. Again, the Structure model significantly outperforms the other two models.

How effective is the model at narrowing the search space? We tested the ability of our model to

21

Page 21 of 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 9: Residuals for the Structure model prediction.

Table 3: Spearman rank correlation coefficients for the test set of 319 compounds using a
model trained on the full training set of 639 compounds or on the reduced training set of 200
compounds.

Model Train 639 Train 200
ab initio LUMO 0.637 0.637

Hückel 0.701 0.698
Structure 0.860 0.828
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Figure 10: Simulated screening experiment illustrating use of the models for identification of the
(a) high and (b) low E◦ compounds in the test set of 319 compounds. Solid lines indicate models
trained on the full training set and dashed lines indicate models trained on only 200 compounds.
The reduced training set results are not shown for the ab initio LUMO model because the ranking
simply corresponds to a reverse ranking by ab inito LUMO regardless of the training set size.
The black dashed and dotted lines indicate perfect performance from the model and expected
performance from simple random selection, respectively.
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find "high" (E◦ > 0.95 V) and "low" (E◦ < 0.25 V) compounds using a simulated screening exper-

iment, which is widely used to assess property prediction in identifying bioactive compounds.33

Figure 10 shows how many of these "active" examples in the test set are identified as such by each

of the three models as a function of the number of compounds returned as "active" by the model.

The solid lines indicate how many of the high (Figure 10a) and low (Figure 10b) E◦ compounds

in the test set are included in the compounds flagged as active by the models. Once again, the

Structure model is the most successful, with all the extreme E◦ compounds identified earlier than

in the other two models. All three models are significantly better at identifying low-potential com-

pounds than high-potential compounds, probably because the low-potential compounds are more

numerous and therefore better represented in the training set. One way to quantify these results

is by the enrichment factor, the ratio of the number of "active" compounds retrieved when using

the model to the number expected when choosing compounds at random. For example, with 50

compounds tested, we measure enrichment factors for the ab initio LUMO, Hückel, and Structure

models, respectively, of 2.6, 2.6, and 5.1 for the high-potential compounds, and 5.0, 6.4, and 6.4

for the low-potential compounds.

But since training these models required four ab inito calculations for each of > 600 com-

pounds, this enrichment does not correspond to a large reduction in computational resource re-

quirement. Figure 10 also shows the results from using a reduced training set of only 200 com-

pounds (dashed lines). Somewhat surprisingly, using a reduced training set does not significantly

worsen the models’ accuracy, indicating that not many compounds are needed in order to train a

model that can effectively reduce the search space. The enrichment factors at 50 compounds are

all the same except for the Structure model on the high-potential compounds (Figure 10a), which

(fortuitously) increased to 6.4. Thus while Table 2 shows that decreasing the size of the training

set increases various error measures, it has little impact on the ability of the model to identify

extreme-potential compounds. This is also reflected in the minimal reduction in Spearman corre-

lation coefficient as shown in Table 3. To ensure that these results were not unique to our choice of

training and test sets, we performed an additional simulated screening experiment using a different
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randomized training set of 200 compounds and the remaining 758 compounds as the test set. The

results using this different training set were nearly identical to those described above, and indicate

that this method can find all of the high-performance candidates with half the ab inito calculations

needed for a full enumeration. (See the Supporting Information for details.)

4 Conclusion

We surveyed thiophenoquinone derivatives for aqueous RFB applications, elucidating the effects

of functional group placement on reduction potential and solvation properties. In the process, we

undermined assumptions made in previous papers about the behavior of reduction potentials with

increasing number of functional group substitutions. From a technological standpoint, we identi-

fied 51 candidate molecules that meet or exceed existing operating voltages and greatly exceed

existing solubilities, thereby increasing the power density (which is the product of the operating

voltage and the solubility). As in previous computational studies, we only examined the thermody-

namic properties, but we hope this will motivate experimental efforts to synthesize these molecules

and characterize the kinetics of the protonation process. More generally, we demonstrated two

strategies to accelerate the computational screening process by removing non-viable molecules:

(i) use of existing aqueous solubility prediction codes; and (ii) construction of a cheminformatics

model to predict reduction potentials based on a limited set of ab initio results. Based on a simu-

lated screening experiment, we found that a model trained on 200 examples can identify leading

candidates at a fraction of the computational cost needed for a full ab initio characterization of

every compound. This strategy is generally applicable to future computational search projects for

electrochemical materials.
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