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Two-dimensional �2D� photon-echo spectra of a single subunit of the Fenna–Matthews–Olson
�FMO� bacteriochlorophyll trimer of Chlorobium tepidum are simulated, employing the
equation-of-motion phase-matching approach �EOM-PMA�. We consider a slightly extended
version of the previously proposed Frenkel exciton model, which explicitly accounts for exciton
coherences in the secular approximation. The study is motivated by a recent experiment reporting
long-lived coherent oscillations in 2D transients �Engel et al., Nature 446, 782 �2007�� and aims
primarily at accurate simulations of the spectroscopic signals, with the focus on oscillations of 2D
peak intensities with population time. The EOM-PMA accurately accounts for finite pulse durations
as well as pulse-overlap effects and does not invoke approximations apart from the weak-field limit
for a given material system. The population relaxation parameters of the exciton model are taken
from the literature. The effects of various dephasing mechanisms on coherence lifetimes are
thoroughly studied. It is found that the experimentally detected multiple frequencies in peak
oscillations cannot be reproduced by the employed FMO model, which calls for the development of
a more sophisticated exciton model of the FMO complex. © 2010 American Institute of Physics.
�doi:10.1063/1.3268705�

I. INTRODUCTION

Photosynthesis, with a quantum yield exceeding 95%, is
an extremely efficient mechanism for the absorption and
transfer of solar energy and its conversion to chemical
energy.1 Plants and photosynthetic bacteria use complexes
built of pigments and proteins to streamline the transfer of
energy from light-harvesting antenna systems, which effi-
ciently capture sunlight, to the reaction center, in which en-
ergy is stored for later use in biochemical processes.2 Char-
acteristically, the pigments form a system of electronically
coupled excitons,3 in which the excitation extends over sev-
eral molecules simultaneously. Thus, the excitation involves
several pathways concurrently and selects the most efficient
path to the lowest energy state.

The most extensively studied photosynthetic systems are
those for which the atomistic structure has been determined
by x-ray crystallography, e.g., the peripheral light-harvesting
complexes of photosynthetic purple bacteria4,5 and green
plants,6 as well as the Fenna–Matthews–Olson �FMO�
pigment-protein complex of green sulfur bacteria.7

First insight into the energy transfer dynamics of the
FMO complex was attained from nonlinear ultrafast spec-
troscopy. Various nonlinear techniques such as hole
burning,8–10 one- and two-color pump probes,11–17 and accu-
mulated photon-echo �PE� spectroscopy18 have revealed a
number of time scales ranging from 70–100 fs to about 20
ps.

Very recently, two-dimensional �2D� electronic PE spec-

tra of the Chlorobium �Cb.� tepidum FMO complex were
recorded.19,20 In contrast to the previous findings and as-
sumptions, these new experimental results indicate strongly
coherent energy-transfer dynamics.19 The coherent oscilla-
tions in the spectroscopic signals were shown to survive on a
relatively long time scale of about 700 fs. They were inter-
preted as a manifestation of electronic coherences, which
arise due to the coupling between the excited states of dif-
ferent pigments.19,20

The first theoretical models of the FMO complex aimed
to reproduce the linear absorption spectrum and the kinetics
of the pump-probe spectra.16,21,22 In these models, the seven
pigments of one FMO monomer were treated as seven two-
level systems with electronically coupled excited states. The
effect of vibrations and protein environment was taken into
account by considering the coupling of the electronic degrees
of freedom to a phonon bath, which was introduced in a
simplified manner; only electronic population relaxation was
taken into account and the corresponding relaxation rates
were determined by fitting the simulations to the experimen-
tal results.

This simple exciton model22 was also employed for the
simulation of 2D spectra.23 The relaxation rates were com-
puted using a modified Förster/Redfied theory and a repro-
duction of 2D profiles for finite population times was
achieved. However, signatures of coherent energy transfer in
2D signals were out of the scope of these simulations, since
coherences between the exciton states were not taken into
account. Furthermore, the scheme employed for the simula-a�Electronic mail: egorova@ch.tum.de.
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tion of spectra contained a number of crude approximations
and, in particular, did not allow for the evaluation of the 2D
signal at zero population time.

In contrast to pump-probe experiments, which can be
fitted by considering the time evolution of the diagonal ele-
ments of the density matrix �populations� only, PE spectros-
copy is a coherent technique and knowledge of the time evo-
lution of the off-diagonal elements of the density matrix
�coherences� is required for the description of this signal.
The first steps toward understanding coherent effects in the
2D spectroscopy of the FMO complex were taken by consid-
ering 2D spectra of dimer and trimer systems.24,25 The simu-
lations showed that electronic coherences can indeed be vi-
sualized by the 2D technique as oscillatory beatings of cross
peaks in the intensity profiles as a function of the population
time. New pulse-sequence schemes have been recently pro-
posed for the investigation of the coherent dynamics of the
FMO complex.26,27 In the reported simulations the off-
diagonal elements of the density matrix were taken into ac-
count, but their dephasing with population time has been
neglected. The signals have been calculated employing
doorway-window approximation and a direct comparison
with the experiment has not been attempted.

In the present work, we demonstrate the application
of the equation-of-motion phase-matching-approach
�EOM-PMA�28–30 for the calculation of 2D electronic PE
signals for a Frenkel exciton model. We adopt the model
Hamiltonian of the FMO complex as specified in Refs. 22
and 23 and employ an equation of motion, which accounts
for the time evolution of populations as well as coherences
of the exciton density matrix �within the secular approxima-
tion�. The electronic population relaxation parameters are
taken from Ref. 23, while the pure dephasing rates are con-
sidered as adjustable parameters. Given the equation of mo-
tion of the material system, the EOM-PMA does not invoke
additional approximations apart from the weak-field limit.
The comparison of the computed signals with the experimen-
tal result thus provides a stringent test of the chosen model of
the material dynamics. Very recently, Ishizaki and Fleming31

employed a dimer model to point out the inadequacy of the
standard Redfield equation to treat quantum coherence and
long-lived oscillations of 2D peak intensities. This issue is
addressed here as well for the Frenkel exciton model of the
FMO complex.

It should be stressed that our goal is not the development
of an improved model for the description of the photoin-
duced dynamics of the FMO complex. Rather, we aim at an
accurate simulation of 2D PE signals for an existing simple
Redfield equation model.22,23 We systematically study the ef-
fects of various dephasing mechanisms on coherence life-
times. The present work demonstrates the application of the
EOM-PMA for the efficient simulation of four-wave-mixing
spectra for a reasonably complex material system. Owing to
its computational efficiency, the EOM-PMA can be em-
ployed for considerably more complex material dynamics
featuring, for example, explicit intramonomer or intermono-
mer electron-vibrational couplings or a nonsecular multilevel
Redfield description of vibrational energy and phase relax-
ation. In fact, the EOM-PMA allows for the simulation of

N-wave-mixing signals for any material system for which
the equation of motion of the reduced density matrix can be
numerically solved for the time scale of interest.30

II. COMPUTATIONAL METHODS

A. Model and equation of motion

The FMO pigment-protein complex forms a trimer of
identical, weakly interacting subunits. Each monomer con-
tains seven bacteriochlorophylla �BChla� molecules, which
serve to both collect energy and transfer it to the reaction
center. The pigments are surrounded by a protein structure
that holds the pigments in what are presumably their ideal
positions, in order to maximize efficiency, ensure direction-
ality of energy transfer toward the reaction center, and pro-
vide an energy sink.2

The present study is based on a model of the FMO com-
plex, which has been elaborated over recent years by the
analysis of experimental signals such as linear absorption,
linear and circular dichroism,32 pump-probe,11–17 and 2D
PE.20,23 In this model, the interaction between the subunits is
neglected and only a single monomer is considered �a com-
parative study of the monomer and trimer models justifies
this approximation33�. Each of the seven BChla molecules
within the subunit is represented by an electronic two-level
system. The excited states of the molecules are assumed to
be coupled to each other and thus form a system of excitons.
The vibrational degrees of freedom of the BChla pigment
molecules and the protein environment are taken into ac-
count as a thermal bath. The Hamiltonian is thus written as

H = HS + HB + HSB, �1�

where HS is the electronic Hamiltonian of the seven BChla
pigment molecules, HB describes the bath, and HSB deter-
mines the sytem-bath interaction. The Hamiltonian HS can be
partitioned into

HS = Hg + He, �2�

where Hg and He describe the electronic ground states and
the excited states of the pigment molecules, respectively. The
ground states are assumed to be uncoupled and possess the
same ground-state energy, which is set to zero throughout. In
the site representation �local basis�, He reads

He = �
�=1

7

�������� + �
���

����J����� + ���J������ , �3�

where ��� denotes the excited states of the BChla molecules,
�� are the pertinent vertical excitation energies, and J�� are
electronic couplings between excited states � and �. The
diagonalization of the system Hamiltonian results in the set
of seven exciton states �i�, with the energies Ei,

He�i� = Ei�i� . �4�

The parameters of the system Hamiltonian in both the site
and the exciton representations were identified from best fits
with experimental observables16,21–23,32 as well as calculated
independently.33,34 The differences in the resulting exciton
energies are minor. Here we adopt the set of parameters em-
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ployed in Ref. 23, since this set has been used for the
calculation of 2D spectra, as in the present work. For the
convenience of the reader, we give the parameters in Table I
�for �� and J��� and Table II �for Ei�.

A significant effort has been made to characterize the
bath �HB� and the system-bath interaction �HSB� of the
model.23 Further developments have been reported for a
dimer system.31,35 The following simplified equation of mo-
tion for the reduced density matrix of a system subject to
interaction with a laser field and a dissipative environment is
employed ��=1�:

�̇�t� = − i�HS − HSF�t�,��t�� − R��t� , �5�

where � is the reduced density matrix of the system, HSF

describes the system-field interaction, and the last term,
R��t�, accounts for dissipation. Equation �5� is valid if the
system-bath interaction is weak and can be treated perturba-
tively.

Invoking, furthermore, the secular approximation, the
evolution of the diagonal elements of the reduced density
matrix is decoupled from the evolution of the off-diagonal
elements. According to the Pauli master equation, the dissi-
pation operator for the diagonal elements �“populations”� of
the system density matrix in the eigenstate �exciton� repre-
sentation is then

	R��t�
ii = �
j�i

�Mij�ii�t� − Mji� j j�t�� . �6�

To describe the relaxation of populations, we adopt the rates
Mij, which have been determined in Ref. 23 using a modified
Förster/Redfield theory. The dissipation operator for the off-
diagonal terms of the reduced density matrix �“coherences”�
is given by

	R��t�
ij = �ij�ij�t�, 	R��t�
ig = �ig�ig�t� . �7�

The dephasing of the exciton states is determined by �ij,
whereas the rate of pure optical dephasing between the
ground state and the exciton states is denoted by �ig. The
rates �ij can be estimated as �ij = �Mij +Mji� /2+�PD, where

�PD is the rate of pure dephasing of the exciton states. In this
study, �ij and �ig are treated as adjustable parameters in order
to explore their effect on both the coherent dynamics of the
system and the 2D signals. Although the relaxation model is
oversimplified and cannot account for coherence transfer or
memory effects,31,35 it is sufficient for our purposes: the sys-
tematic study of decoherence and population transfer effects
on 2D PE spectra within the existing Frenkel exciton model
of the FMO complex.

Static disorder, giving rise to inhomogeneous broaden-
ing, occurs due to variations in the excited-state transition
energy of each molecule. This can be accounted for by using
different realizations of the system Hamiltonian to calculate
the polarization, and then average over the resulting
spectra.36 In the present work, fluctuations in the transition
frequencies are assumed to obey Gaussian distributions of
the form

exp�− �Ei� − Ei�2/2�i
2� , �8�

where the �i are the standard deviations, resulting in the full
width at half maximum �FWHM� of 2�2 ln�2��i. The broad-
ening of each exciton transition has been previously esti-
mated from the linear absorption spectrum23 and is given in
Table II in terms of FWHM. These data contain both the
homogeneous and the inhomogeneous contributions. In order
to vary and adjust the strength of the inhomogeneous broad-
ening, we scale the FWHM values of Table II by a factor of
�inhom	1. The Box–Muller transform has been used to gen-
erate normally distributed random numbers.

The system-field interaction in Eq. �5� is defined in the
electric-dipole and rotating-wave approximations as

HSF�t� = − XE�t� + H.c. �9�

The electronic transition dipole operator 
̂ of the exciton
system is given by the expression

TABLE I. Site energy levels and electronic couplings �cm−1� of BChl molecules as in the model of Ref. 23.

BChl 1 BChl 2 BChl 3 BChl 4 BChl 5 BChl 6 BChl 7

BChl 1 12 400 �106 8 �5 6 �8 �4
BChl 2 �106 12 540 28 6 2 13 1
BChl 3 8 28 12 120 �62 �1 �9 17
BChl 4 �5 6 �62 12 295 �70 �19 �57
BChl 5 6 2 �1 �70 12 440 40 �2
BChl 6 �8 13 �9 �19 40 12 480 32
BChl 7 �4 1 17 �57 �2 32 12 380

TABLE II. Exciton energy levels �cm−1�, dipole strengths ��
i�2�, and FWHM �cm−1� of the linear absorption
spectrum �Ref. 23�.

Exciton 1 2 3 4 5 6 7

Ei 12 101 12 265 12 346 12 397 12 442 12 526 12 600
�
i�2 49 87 73 31 82 24 36
FWHM 141 102 129 123 100 102 129
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̂ = �
i=1

7


i��g��i� + �i��g�� = X + X†, �10�

where the 
i determine the dipole strengths of the excitonic
transitions; the values for �
i�2 have been adopted from Ref.
23 and are given in Table II. The three laser pulses that
interact with the sample in a PE experiment are characterized
by

E�t� = �
a=1

3

Ae−�t − ta�2/2�2
eite−ikar, �11�

where A, ta, ka, and  are the amplitude, envelope central
time, wave vector, and frequency of the pulses. � character-
izes the pulse duration and is related to the FWHM of the
Gaussian pulses as 2�2 ln�2��. Note that all pulses are as-
sumed to have equal amplitudes, carrier frequencies, and du-
rations.

Since the interaction with the laser field, HSF, is included
in the commutator in Eq. �5�, no ad hoc assumption of initial
populations is needed. The system is initially in the elec-
tronic ground state and the interaction with laser pulses of
appropriate duration creates a realistic initial condition.

B. Two-dimensional photon-echo spectroscopy

As in any four-wave mixing scheme, the main computa-
tional task is the determination of the induced nonlinear po-
larization obeying a particular phase-matching condition. Re-
cently, we have proposed an efficient computational scheme,
the EOM-PMA,28–30 which can be implemented to evaluate
four-wave mixing signals. The EOM-PMA is valid up to the
third order in the system-field interaction. The method has no
limitations with respect to pulse duration and automatically
accounts for pulse-overlap effects.

The particular realization of the method is determined by
the required phase-matching condition. In the case of the PE
signal, the system of interest interacts with a series of three
laser pulses, which are centered at times t1, t2, and t3, and the
phase-matching direction is given by ks=−k1+k2+k3, where
ka �a=1,2 ,3� denote the wave vectors of the three incoming
fields.37

In the EOM-PMA, the polarization in the PE direction
can be calculated by simultaneously propagating three aux-
iliary density matrices ��1, �2, �3�, each of which obeys a
modified equation of motion,30

�t�1�t� = − i�HS − V1�t,t1� − V2
†�t,t2� − V3

†�t,t3�,�1�t��

− R�1�t� ,

�t�2�t� = − i�HS − V1�t,t1� − V2
†�t,t2�,�2�t�� − R�2�t� ,

�t�3�t� = − i�HS − V1�t,t1� − V3
†�t,t3�,�3�t�� − R�3�t� ,

�12�

where Va�t , ta�=XAe−�t − ta�2/2�2
eit. To third order, the desired

polarization in the PE direction is then obtained as

PPE�t1,t2,t3,t� = eiks·r�X��1�t� − �2�t� − �3�t��� + c.c.,

�13�

where the bracket � . . . � indicates the evaluation of the trace.
In this work, the fourth-order Runge–Kutta method with a
fixed time step has been used to propagate Eq. �12�.

The 2D PE experiment uses the heterodyne detection
scheme. In the limit of ideal detection, the heterodyne PE
signal is proportional to the polarization PPE�t1 , t2 , t3 , t�,
where t denotes the detection time. Therefore, the ideally
detected 2D spectrum can be calculated as

SPE��,T,t� �  d� dte−i��eittPPE��,T,t� , �14�

where � and T denote the delays between the incoming
pulses: �= t2− t1, T= t3− t2. The coherence time, �, corre-
sponds to a period in which the system is in a coherence state
after the first interaction with the electric field. The second
interaction with the field creates mainly populations, and the
delay between the second and the third pulses, T, is therefore
referred to as population time. For the case �=0, the 2D PE
scheme reduces to a frequency-dispersed pump-probe mea-
surement. The population time T is thus analogous to the
delay time between pump and probe pulses.

The Fourier transform in Eq. �14� is performed over the
coherence time � and the detection time t. The corresponding
frequencies �, t are often referred to as absorption �or
coherence� and emission �or rephasing� frequencies, respec-
tively.

The assumption of a Gaussian envelope for the detection
pulse �local oscillator� allows for simulation of realistic de-
tection schemes by postprocessing of spectral data obtained
by Eq. �14�. To achieve this, the spectra calculated with
Eq. �14� are convoluted with a Gaussian function
exp�−�2�t−�2 /2� of the rephasing frequency t to ac-
count for the finite duration of the pulse width of physical
detectors. The detection pulse is centered at the same wave-
length  as the incoming laser pulses, and its duration has
the same FWHM of 2�2 ln�2��. As follows from Eq. �14�,
the 2D signal is a complex quantity. In the following, only
the part associated with the absorptive changes is considered.

The only approximations in the signal calculations of
this work are the assumed Gaussian profiles of the field en-
velopes and the third-order perturbative treatment of the
system-field interaction. These assumptions are appropriate
for the experiments reported so far. Note, however, that we
do not include excited-state absorption �ESA�, since our
main interest is the detection of coherence survival. ESA is
known to influence only the region t�� of the 2D pro-
files; our 2D plots do not reproduce the negative contribution
due to ESA in this region.

III. RESULTS

In this section, we first briefly discuss the exciton dy-
namics induced by laser excitation and then turn to simula-
tions of the corresponding 2D spectra. Two electronic 2D PE
experiments for the FMO complex have been reported; the
pioneering work by Brixner et al.,20 followed more recently
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by measurements of Engel et al.19 In Ref. 20, cross peaks
indicating couplings between exciton transitions were re-
solved, and the intensity modulations of the peaks with the
population time T were highlighted and analyzed. An addi-
tional finding was reported in Ref. 19. It was demonstrated
that both diagonal and cross peaks exhibit coherent oscilla-
tions of their intensity with respect to the population time. It
has been found that these oscillations survive for at least
660 fs.19

Here, we discuss both the overall 2D spectral profiles for
various population times as well as intensity modulations of
several diagonal and cross peaks as a function of the popu-
lation time. Therefore, we mainly adopt the work by Engel et
al.19 as the experimental reference. The pulse carrier fre-
quencies and durations employed in the calculations are 
=12422 cm−1 �805 nm� and �=17 fs �40 fs at FWHM�,
which are very close to the experimental parameters
of Ref. 19 �808 nm and 41 fs at FWHM� and Ref. 20
�805 nm and 50 fs at FWHM�. The field amplitude is chosen
as A=40 cm−1 and corresponds to the weak-field regime.

A. Exciton dynamics

Let us first discuss the exciton dynamics, which is initi-
ated by a laser-pulse. The equation of motion, Eq. �5�, is
solved numerically; HSF represents the interaction with a
pump pulse of 40 fs �FWHM� duration and centered at t=0.
The system is initially in the ground state and the pulse ex-
cites all exciton states and creates coherences. Subsequent
population dynamics in the exciton representation �diagonal
elements �ii�t�� is shown in Fig. 1�a�. The overall population
evolution is determined by the master equation, i.e., by the
rates Mij and is thus similar to previous reports.23,33 The
initial populations created by the pump pulse are, however,
different from those estimated in Ref. 23 �by consideration of
the spectral distribution of the laser intensity� and obtained in
Ref. 33 �by approximate description of excitation by a pulse
of 50 fs �FWHM� duration�. As is seen in the inset in
Fig. 1�a�, which shows the early time exciton dynamics and
the pump-pulse envelope, exciton states two, three and five
are populated almost equally and most efficiently. Exciton
four is populated to about 44% of the maximum population,
while excitons one and seven are each populated to about
37% and exciton six to about 27% of the maximum popula-
tion. Since the excitation pulse �FWHM 736 cm−1, centered
at =12422 cm−1� covers all exciton transitions, the initial
populations are primarily determined by the dipole strengths
�see Table II�. The populations of states four to seven decay
much faster than those of the lower exciton states. Around
40 fs, the preparation process is complete and relaxation
rates determine the subsequent dynamics. Note that the em-
ployed relaxation rates lead to a longer lifetime of exciton
three compared to exciton two, even though exciton three
has a higher energy.

Figure 1�b� shows the coherence between the excitons 1
and 3, �13�t� �this coherence is chosen since it is relevant for
the discussion of the 2D spectra below�. In the absence of
dephasing processes, each coherence oscillates with a fre-
quency determined by the energy difference between the cor-

responding states; for �13�t� the resulting period is 136 fs.
Within the present model, the oscillations decay within a
time scale dictated by the dephasing rate �13. The latter can
be estimated as �M13+M31� /2+�PD=0.6 ps−1+�PD. Shown
in Fig. 1�b� is �13�t� obtained with �13=5 cm−1�0.9 ps−1

�blue line� and �13=20 cm−1�3.7 ps−1 �red line�. When
�13=5 cm−1, the coherences survive for over 2000 fs, while
when �13=20 cm−1, which is dominated by pure dephasing,
the coherences survive for about 1000 fs.

In Fig. 1�c�, the population dynamics in the local basis
�site representation, ����t�� is shown. The coherence dephas-
ing rates are �ij =5 cm−1 �solid lines� and 20 cm−1 �dashed
lines� for all i , j. For clarity, we have picked the excited-state
populations of molecules BChl 1 �red lines�, BChl 3 �blue
lines�, and BChl 7 �green lines�. The populations of all mol-
ecules show pronounced modulations due to exciton coher-
ences that last as long as the coherences survive. The medi-
ating BChl 1 and BChl 7 are seen to be modulated by only
one frequency, whereas multiple frequencies contribute to
the population dynamics of the BChl 3 excited state. BChl 1,
which contributes to excitons three �strongly� and seven

0E0

2E-3

4E-3

6E-3

8E-3

2000150010005000

P
op

ul
at

io
n

(a
rb

.u
ni

ts
)

(a)

100500-50

Laser pulse
ρ11(t)
ρ22(t)
ρ33(t)
ρ44(t)
ρ55(t)
ρ66(t)
ρ77(t)

-1E-3

0E0

1E-3

2000150010005000

C
oh

er
en

ce
am

pl
itu

de
(a

rb
.u

ni
ts

)(b)
ξij = 20 cm-1

ξij = 5 cm-1

0E0

2E-3

4E-3

6E-3

8E-3

2000150010005000

P
op

ul
at

io
n

(a
rb

.u
ni

ts
)

t (fs)

(c)
BChl 1
BChl 3
BChl 7

FIG. 1. �a� Electronic population dynamics of the FMO model in terms of
the diagonal elements of the density matrix in the exciton representation,
�ii�t�. �b� Off-diagonal element �13�t� of the density matrix in the exciton
representation �real part� for two dephasing rates, �13=5 cm−1 �blue line�
and �13=20 cm−1 �red line�. �c� Population dynamics of BChl one, three,
and seven �site or local representation of the density matrix, ����t�� obtained
with �ij =5 cm−1 �solid lines� and �ij =20 cm−1 �dashed lines�.
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�weakly�,23 oscillates with a period of �131 fs, correspond-
ing to the coherence between excitons three and seven
��E37=254 cm−1�. Similarly, BChl 7, which contributes to
excitons two �weakly� and four �strongly�,23 oscillates with a
period of �255 fs. This corresponds to the coherence be-
tween excitons two and four ��E24=132 cm−1�. The domi-
nating frequency in the BChl 3 dynamics corresponds to the
energy difference between excitons one and two ��E12

=164 cm−1, period of �200 fs�. Note that even a relatively
strong exciton dephasing �ij =20 cm−1 gives rise to pro-
nounced coherent modulations of the local populations at
times up to �1000 fs. The picture is very different if the
exciton coherences are neglected �see, e.g., the supplemen-
tary material of Ref. 34�.

B. Two-dimensional spectra

In addition to the relaxation and dephasing parameters
relevant to exciton dynamics, the spectroscopic signals are
also strongly influenced by optical dephasing and inhomoge-
neous broadening. In this section, we calculate 2D signals of
the model for various population times and address in some

detail the influence of dephasing processes on 2D profiles.
Unless otherwise specified, a weak dephasing rate of the
exciton coherences is assumed ��ij =5 cm−1�.

We start the discussion in this section by considering a
2D PE spectrum for population time T=0 for an idealized
case of very weak optical dephasing ��ig=5 cm−1 for all i,
which is one order of magnitude less than the average energy
difference between successive excitons, 84 cm−1� and no in-
homogeneous broadening. Figure 2 shows a very clear pat-
tern in this near-ideal regime. The spectrum exhibits seven
characteristic diagonal peaks arising from the transitions to
the seven exciton states. The cross peaks, which reflect the
couplings between these transitions �via the common ground
state�, are also observed at their expected positions. The in-
tensity of the peaks is determined by the dipole strengths of
the corresponding transitions and slightly modified due to the
finite pulse durations �the pulses are centered at 12422 cm−1

and have a width �FWHM� of about 736 cm−1�. The effect
of ESA is neglected in our calculations. Therefore, the spec-
tral intensity above and below the diagonal is expected to be
very similar for population time T=0.

The experimental peak profiles of Ref. 19 are signifi-
cantly broader than the spectrum in Fig. 2 and the individual
peaks are not resolved. This suggests that a realistic optical
dephasing �homogeneous broadening� is considerably stron-
ger than the employed, �ig=5 cm−1, and that inhomogeneous
averaging must also be taken into account. We first consider
the influence of these two broadening mechanisms sepa-
rately, then study their combined effect.

The spectra shown in Fig. 3 were calculated using opti-
cal dephasing rates �ig=20 cm−1 �left panel� and �ig

=35 cm−1 �right panel�, but without inhomogeneous broad-
ening, �inhom=0 �population time T=0�. As expected, larger
values of the dephasing rate lead to broader peaks along both
the � and the t axes. However, in both cases, the peaks are
still too localized to be considered accurate reproductions of
experimental spectra.19

In Fig. 4, inhomogeneous broadening is included, while
the optical dephasing rate is kept at 5 cm−1. Shown are the
signals at T=0 for �inhom=0.5 �left panel� and �inhom=0.7
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�right panel�. Inclusion of inhomogeneous broadening leads
to the averaging of the highly localized diagonal peaks ob-
served in Fig. 2 due to variations of transition frequencies.
This leads to an elongation of spectra along the �=t line,
as well as a loss of intensity and poor resolution of the cross
peaks. In agreement with the experimental results of Ref. 19,
only two peaks can be well resolved along the diagonal. The
lower peak corresponds to the spectrally well separated tran-
sition to exciton one, while the higher-frequency region rep-
resents the contribution from the remaining exciton transi-
tions.

Finally, Fig. 5 shows our best fit of the experimental
spectra within the employed simple exciton model. It has
been achieved with the optical dephasing rate �ig=30 cm−1

and �inhom=0.5. As in Ref. 19, the signals for four values of
the population time T=0, 150, 280, and 600 fs are shown.
Since ESA is not included, the simulated signals miss the
negative contribution in the region t�� �above the diag-
onal�. Otherwise, the agreement with experimental profiles is
satisfactory. For larger T, population relaxation leads to an
intensity redistribution between the cross peaks.38 The devel-
opment of a strong and broad peak below the diagonal with
increasing T is a typical experimental observation19,20 and
has also been reproduced in previous simulations.23 This
finding is easy to rationalize. Since population relaxation
progresses with T, emission occurs at lower frequencies as T
increases. The analysis of coherent oscillations in peak inten-
sities is slightly more involved. In the next section the inten-
sity evolution of individual peaks is considered in more de-
tail.

Before closing this section, we briefly address the effect
of a stronger exciton dephasing rate �ij on the 2D profiles. It
can only become prominent at larger population times �cf.
Fig. 1�, since the dephasing becomes more efficient with T.
Since dephasing rates scale with the difference in energy
between two states, optical dephasing, �ig, should always be
stronger than the dephasing between excited states, �ij. The
effect on spectra of stronger �ij �5 cm−1, left panel and
20 cm−1, right panel� for a fixed value of the optical dephas-
ing ��ig=35 cm−1� is shown in Fig. 6. As can be seen, the
spectral profiles are not strongly influenced by the dephasing
rate. Overall peak widths and intensities are relatively unaf-
fected. Since the dephasing between excited states does not
significantly alter 2D spectra snapshots, a record of intensity
evolution of a particular peak is required to gain information
about the decoherence time scale.

C. Peak-specific evolution of 2D signals

In Ref. 19, the intensities of the lowest diagonal peak
�DP 1–1� and of the lower �t	�� cross peak between ex-
citons one and three �CP 1–3� were measured as a function of
the population time, T. The intensities of the peaks exhibited
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strong quantum beating with multiple frequencies for at least
660 fs. The oscillations were attributed to electronic coher-
ences between excitons. Furthermore, it has been argued that
so-called coherence transfer takes place; the observed mul-
tiple frequencies in the intensity evolution of CP 1–3 were
assigned to the frequencies between all participating exciton
transitions.

This interpretation suggests that the bath induces transfer
between the excitonic coherences ��ij�, and simultaneously
allows the coherences to survive on an experimentally ob-
servable time scale. The model employed in the present work
does not include coherence transfer mediated by the bath, but
it provides an estimate of coherence lifetimes in the presence
of several dephasing mechanisms directly from experimental
observables. Note that in the existing simulations of concep-
tually new 2D spectroscopies for the FMO complex26,27 ex-
citon dephasing has not been taken into account.

In the absence of dissipation, cross peaks are expected to
oscillate with T like the corresponding off-diagonal �ij�t� el-
ements of the reduced density matrix, i.e., with a frequency
equal to the energy difference between corresponding
excitons.24,39 The decay of the oscillations is induced by dis-
sipation. While the coherences of the density matrix decay
with the rates �ij, the intensity modulations of the cross peaks
can be further influenced by the optical dephasing ��ig� and
inhomogeneous broadening.

As in the reported experiment,19 we focus on CP 1–3
located at t=E1=12101 cm−1, �=E3=12346 cm−1 as
well as on DP 1–1 at t=�=12101 cm−1. The calculated
intensities of CP 1–3 and DP 1–1 with respect to the popu-
lation time are shown in Figs. 7 and 8, respectively �a 10 fs
population time step was employed in the calculations�. The
dotted line in Fig. 7�a� corresponds to the idealized case of
Fig. 2, i.e., to the limit of very weak dephasing, �ig=�ij

=5 cm−1, and no inhomogeneous broadening, �inhom=0. In
this limit, a well-resolved long-lived oscillation in the inten-
sity of CP 1–3 with a period of 136 fs �determined by the
energy difference between excitons three and one, E3−E1

=245 cm−1� is observed. While an increase in optical

dephasing considerably influences the 2D spectral profiles
�Fig. 3�, it does not significantly dampen the oscillations in
the cross peak intensity. The dashed and solid lines in
Fig. 7�a� have been obtained with �ig=20 cm−1 and �ig

=35 cm−1, respectively ��13=5 cm−1 has been retained�.
To demonstrate how cross-peak intensity oscillations

map the corresponding off-diagonal density matrix elements,
Fig. 7�b� shows the evolution of CP 1–3 for �13=5 cm−1

�solid line� and �13=20 cm−1 �dashed line�. Since the
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strength of the dephasing scales with the energy difference
between states, a value for the optical dephasing �ig

=35 cm−1 is used. As can be seen, the decay of the cross
peak oscillation is determined by the dephasing between ex-
citon states, �13, in the same manner as the decay of �13�t� in
Fig. 1�b�. Comparing with experimental results,19 a moderate
value of the dephasing rate, �13=20 cm−1 or weaker, must be
used in order to resolve oscillations beyond 660 fs.

The intensity of DP 1–1 �Fig. 8�a�, dotted line� exhibits
very weak oscillations when idealistic values for dephasing
��ig=�ij =5 cm−1� and inhomogeneous broadening ��inhom

= 0� are used. As can be seen in Fig. 8�a�, an increase in
optical dephasing induces oscillations in the diagonal peak.
This effect scales with the strength of the optical dephasing
and can be understood by comparing 2D spectra in the ideal
case �Fig. 2� and in the case of stronger optical dephasing
�Fig. 3�. The modulation is most likely due to the spread of
peak widths, which leads to the overlap of the oscillating
cross peaks with the diagonal peaks. In the specific case of
DP 1–1, the oscillation can be approximated to be 223 cm−1

�corresponding to a period of �150 fs�, which is approxi-
mately equal to the energy difference between excitons one
and two �E1=12101 cm−1 and E2=12265 cm−1�. As can be
seen in the left panel of Fig. 3, the cross peaks between
excitons one and two have spread to such an extent that they
overlap with DP 1–1. This interpretation is confirmed by
Fig. 8�b�. Modulations in the amplitude of DP 1–1 observed
for �ij =5 cm−1 and �ig=35 cm−1 �solid line� decay faster
with an increase in dephasing between the exciton states
��ij =20 cm−1, dashed line�, since this damps the contribut-

ing cross peak oscillations more efficiently. Another source
of the oscillations of the diagonal peak intensity is the so-
called nonrephasing contribution,25 which is automatically
taken into account in the present calculations.

So far, we did not include the effect of the inhomoge-
neous broadening on the peak intensity modulations with
population time. The best reproduction of the experimental
2D spectra19 �cf. Fig. 5� is obtained with the adjustable pa-
rameters of �ig=30 cm−1 and �inhom=0.5. In this case, we
find that the coherent modulation of CP 1–3 is reduced and
that of DP 1–1 cannot be resolved, even in the case of slow
dephasing ��ij =5 cm−1�, as can be seen in Fig. 9. This find-
ing indicates that the signatures of excitonic coherences are
rather sensitive to inhomogeneous dephasing.

In the reported experiment both CP 1–3 and DP 1–1 are
found to oscillate with multiple frequencies.19 Within the
model employed in this study, each cross peak at a particular
t=Ei, �=Ej is expected to oscillate with a single frequency
determined by the energy difference �Ei−Ej�. The additional
frequencies in CP 1–3 �found experimentally19� could arise
due to the overlap of broadened neighboring peaks. The ef-
fects of broad cross peaks on diagonal peaks are observed
here, yet they are insufficient to produce additional oscilla-
tions in either diagonal or cross peak intensities. This result
strongly suggests that another physical mechanism must be
involved. A possible hypothesis is that the bath initiates a
very fast coherence transfer so that the evolution of each
off-diagonal element of the system density matrix depends
on several frequencies �Ei−Ej�. So far, this has not been theo-
retically confirmed, although a number of developments
have recently emerged.35,40 Another possibility is that high-
frequency vibrational degrees of freedom of the monomers
are excited in the experiment, which give rise to the observed
oscillations.

IV. CONCLUSIONS

In this work, we have performed simulations of 2D sig-
nals using the model of Ref. 23, which has been extended to
explicitly consider the evolution of exciton coherences. Us-
ing the EOM-PMA, 2D PE spectra of a single subunit of the
FMO complex were simulated. Realistic pulse durations
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were considered and pulse-overlap effects were taken into
account. The simulations reproduce peak profiles and allow
to reveal both diagonal and cross peak oscillations, the latter
being visual representations of quantum coherences.

We have thoroughly studied the effects of various
dephasing mechanisms on the exciton dynamics, 2D profiles,
and oscillations in peak intensity with population time within
the Redfield equation model. We have identified the broad-
ening parameters that result in 2D spectra that are in agree-
ment with experimental results.19 The evolution of 2D spec-
tra with population time is adequately reproduced apart from
the negative contribution due to ESA.

Multiple frequencies in peak oscillations, as detected ex-
perimentally, were not observed in the simulations. Since the
secular approximation has been employed for the description
of the system-bath interaction, the phenomenon of coherence
transfer through dissipation could not be addressed. The con-
clusion can be drawn that the fast oscillations of cross peaks
observed in experimental data must arise from a more com-
plicated interaction between excitons and �bath� vibrations
than is considered here. Consequently, further developments
in the description of the mechanisms underlying energy
transfer in the FMO complex are required. A dynamical de-
scription beyond the Redfield and Förster theories has been
recently proposed.35 It allows for long-lived coherences, but
coherence transfer could not be addressed in the dimer model
studied.

Resonance Raman experiments41–43 have revealed doz-
ens of BChl vibrational modes with frequencies in the range
from 88 to 1700 cm−1. These and lower-frequency
vibrations have been resolved in a recent fluorescence
line-narrowing experiment44 on the FMO complex of Cb.
tepidum. The most intense bands lie in the regions near 200,
770, 1200, and 1600 cm−1 and are close to the frequencies
obtained by a Fourier transform of the experimental 2D peak
oscillations with population time.19 As has been shown
theoretically29,39 and experimentally,45 the dynamics of vi-
brational modes can considerably alter the 2D peak profiles
and coherent vibrational motion can contribute to peak inten-
sity oscillations.39 A study of the effect of damped intra-
monomer high-frequency vibrational modes on the 2D sig-
nals of the FMO complex is a challenging problem, which is
currently under investigation.
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