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ABSTRACT: The features of ab initio wave function-driven multireference (MR)-
density functional theory (DFT) approach based on the partially interacting reference
system for ground and excited states are discussed from the viewpoint of a simple
classification of electron correlation effects. Our previous MR-DFT approach covers (i)
structure-free, and (ii) resonating-type correlations, but does not include (iii) orbital-
dependent correlation effects. Indeed, the computational results of excitation energies of
atoms imply that the state-dependent correlations remain if the CASCI wave functions
are used for the wave function part of MR-DFT and semilocal correlation functional is
used. Thus, we present an orbital-dependent residual correlation for complete active
space (CAS) DFT to describe type (iii) of correlation effects. © 2006 Wiley Periodicals,
Inc. Int J Quantum Chem 106: 3312–3324, 2006
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Introduction

I n the Kohn–Sham (KS) density functional the-
ory (DFT), a complicated many-body problem

is converted into a mean-field problem by introduc-

ing noninteracting reference system, without ap-
proximating on the total energy functional, but
with changing its partition [1, 2]. All nonclassical
electron interaction effects are covered by an ex-
change-correlation (XC) term, for which a semilocal
density functional approximation is usually em-
ployed. This formalism enables us to treat large
molecules for which wave function theory cannot
be applied, and KS-DFT has become a popular tool
in computational chemistry. However, two types of
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problems remain. First, the mean-field treatment
leads to unsatisfactory results for systems that have
strong multireference (MR) characters. In restricted
KS-DFT, electron correlations of the double excita-
tion type are not included explicitly. A practical
approach to covering these effects, i.e., the spin-
unrestricted KS-DFT, leads to symmetry-broken so-
lutions, encountering so-called symmetry-dilemma
problem [3–8]. The electronic correlation domi-
nated by the low-lying configurations is known as a
“static correlation” in the field of quantum chemis-
try. It remains unclear whether the difficulties of
dealing static correlation with KS-DFT might be
related to practice, rather to than principle, in case
calculations using a modest basis set. The problem
could be resolved by improving the XC functional
on a real space basis, as any N-representable den-
sity can be yielded by a single-determinant refer-
ence wave function in real space [2]. But up to now,
any XC functional for the spin symmetry-adapted
KS-DFT method, by which we can describe the
static correlation correctly, has remained unknown.
Instead, a straightforward remedy for the case is to
introduce the MR wave function into the DFT
[9–47]. (The CI-DFT equation presented in Ref. [44],
however, was derived under the assumption that
the effective CI-DFT solution corresponds to a sta-
tionary point of energy expectation value of the
effective CI-DFT Hamiltonian, but this does not
hold for most cases of CI-DFT: the relation between
RC functional and its potential for CI equation in
this reference is corrected to Eq. (9) in the text.)

A second problem in applications of KS-DFT for
chemical systems arises from the semilocal approxi-
mation for the XC functional such as local density
approximation (LDA) and general gradient approxi-
mation (GGA), although the LDA XC functional is
nearly exact for a homogeneous electron gas. One
reason is that a potential of a molecular system has
some structure, which is far from a flat and homoge-
neous field. The term “structure” here is used not
only in the sense that a molecule has a symmetry such
as a point group, but also in the general sense to
denote all inhomogeneous features of a molecule.
Electrons in molecules are bound in almost all sys-
tems, and thus are dominated by the structure of the
molecular system and molecular orbitals. Such is crit-
ically different to itinerant electrons in solids. This
may cause that LDA (and GGA) succeeds in metal
and needs further improvement in molecules. The
self-interaction error, which often causes a serious
problem in chemical applications such as spurious
overbinding of weak molecular interactions or miss-

ing reaction barriers, is also related to the semilocal
approximation of the XC functional. Since the classi-
cal Coulomb hole and the exact exchange hole of a
one-electron system do not depend on the position of
the reference electron, but on the structure of the
system, a nonlocal approximation, such as the self-
interaction correction (SIC) and exact exchange func-
tional, is required to avoid SIE [48]. A detailed elec-
tronic structure, such as shell structure, is reproduced
by introducing an exact exchange functional [49]. If
we recall that the MR characters of low-lying config-
urations can always be converted into the resonating
valence bond (VB) pictures [50], and that possible VB
components of resonating states are determined by a
given molecular geometry [51], the structure of mol-
ecule becomes an origin of the strong MR characters
of molecules in some cases such as ion-radical sys-
tems. It is noteworthy that the electrons in so-called
strongly correlated systems are also bound at sites,
and are affected strongly by the direction of neighbor
sites, i.e., the structure of the system and the atomic
orbitals that they occupy. In fact, LDA fails to describe
the insulating antiferromagnetic states of the 3d tran-
sition metal monoxides, MnO, NiO, while the orbital-
dependent SIC-LDA [48] and optimized effective po-
tential (OEP) method [52] lead to the correct
bandgaps. In almost all explicit XC functionals, ex-
plicit information of the direction from a reference
electron to correlated electrons is lost when the spher-
ical average of the XC hole is taken. All of this
amounts to saying that there is a significant difference
between electron correlations of homogeneous elec-
tron gas and those of molecular or strongly correlated
systems.

For simplicity, we classify electron correlations
into three types denoted (i), (ii), and (iii) in Figure
1(a) based on the above discussion. Correlations of
the homogeneous electron gas system or similar
systems such as a metallic state of solid are of the
structure-free type (i). The KS-DFT with LDA/
GGA works well for these systems. However, the
resonating type (ii) of correlations becomes essen-
tial to explain the electronic properties of chemical
compounds [51]. It is well described by an appro-
priate MR wave function consisting of low-lying
configurations. Another is orbital-dependent corre-
lations (iii), described as virtual excitation processes
of electrons among orbitals. These three types of
correlations overlap. It is noteworthy that one of
corresponding method could cover other regions
when the approximation is improved. It is known
that the CI method with an infinite basis set, i.e., a
full CI limit, covers all electron correlations. The
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situation is same for the infinite-order MBPT, as far
as the perturbation expansion is converged. It
might be possible by improving a usual XC func-
tional in KS-DFT to cover type (ii) and (iii) correla-
tions, as shown in Figure 1(b). However, it is easier
to describe type (ii) by CI, and type (iii) by MBPT or
by using the orbital-dependent xc terms [48, 49,
52–62], respectively.

Two new directions i.e., MR-DFT [9–47] and
KS-DFT with the OEP method [48, 49, 52–62] in
DFT are developed for these purposes. MR-DFT
using the Coulomb division method [27, 29–38, 45,
46] can be applied for any combination of wave
function and DFT xc functional. Indeed, an MBPT-
DFT approach has been developed and successfully
applied for the weak molecular interaction problem

(see Ref. [39]). In contrast, a “wave function-driven”
type MR-DFT, employing a modest CI including
only low-lying configurations, is obviously de-
signed to cover the shaded region, i.e., (i) and (ii)
correlations, as described in Figure 1(c).

In the present work, we begin with this type of
MR-DFT for both ground and excited states by
employing a usual semilocal correlation func-
tional. We present a simple approach of this type
MR-DFT. However, our MR-DFT approach over-
estimated the excitation spectrum of atoms, as
shown below. Thus, we propose a simple orbital-
dependent correction within the MR-DFT frame-
work. The relationship between this orbital-de-
pendent type MR-DFT to KS-OEP and MR-WFT
is discussed.

FIGURE 1. Classification of electron correlations and the regions covered by several classes of electronic structure
theories. (a) Three types of electron correlations. (b) Region covered by KS-DFT. (c) Region covered by MR-DFT us-
ing semilocal correlation correction. (d) Region covered by MR-DFT using orbital-dependent correction. (e) Region
covered by an ideal method combining CI, PT, and DFT approaches.
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MR-DFT for the Ground State:
Iterative CI-DFT

We begin with a brief summary of MR-DFT for
the ground state. The starting point is the ground-
state energy for the system under the external po-
tential Vext(r):

E0 � Min��r�3NE���r��

� Min��r�3N�F���r��

� � dr��r�Vext�r��, (1)

using the Hohenberg–Kohn–Levy universal func-
tional [63, 64]:

F���r�� � Min�3��r����T̂ � V̂ee��	. (2)

Introducing the noninteracting reference system,
F[�(r)] then has the form of the KS division [1]:

F���r�� � Min
3��r��
�T̂�
	 �
1
2 � drdr�

��r���r��
�r � r��

� EXC���r��. (3)

By contrast, MR-DFT methods produce different
types of partition based on partially interacted sys-
tems [27, 29–38, 46]:

F���r�� � Min�3��r����T̂ � V̂ee
p ��	 � URCC

p ���r��

� ERXC
p ���r��, (4)

or

F���r�� � Min�3��r�
p ���T̂ � V̂ee��	 � ERC

p ���r��

� Fp���r�� � ERC
p ���r��. (5)

In Eq. (4), the electron repulsion operator, V̂ee
p is

incorporated into the universal functional, and the
remaining terms at the right side are residual clas-
sical Coulomb (RCC) and residual exchange-corre-
lation (RXC) terms, respectively. Savin and cowork-
ers developed this “Coulomb-driven” MR-DFT by
employing various screened Coulomb operators,
such as the Yukawa potential [27], the attenuated
Coulomb potential using the error function [30, 31],
and the erfgau function [34, 35], for V̂ee

p . An impor-

tant aspect of this MR-DFT is that a screened pa-
rameter interconnects between the KS-DFT and the
exact WFT limits, providing a practical tool for the
adiabatic connection approach of DFT.

In contrast, a practical MR-DFT computational
scheme is based on the modified universal func-
tional Fp[�(r)] of “wave function-driven” MR-DFT
[9–26, 28, 40–47] given in Eq. (5): Fp[�(r)] is defined
by limiting a variational space to a specific extent of
a wave function expansion. We follow this type of
MR-DFT throughout this study.

From the definition, Fp[�(r)] is bounded below by
F[�(r)], and the difference between these two terms
provides just the residual correlation (RC) func-
tional, ERC

p [�(r)] � F[�(r)]  Fp[�(r)] that is always
negative. Thus, an alternative representation of the
ground-state energy:

E0 � Min��r�3N�Fp���r�� � � dr��r�Vext�r� � ERC
p ���r���,

(6)

becomes valid by virtue of the original Hohenberg–
Kohn theorem. The Euler equation of MR-DFT is
given by

�Fp���r��

���r�
� �Vext(r) �

�ERC
p ���r��
���r� � � �. (7)

As we are now working on a partially interacting
system, we have to solve the effective many-body
equation,

�T̂ � V̂ee � V̂ext � V̂RC���	 � EMR-DFT��	, (8)

instead of the KS equation. Here V̂RC is the RC
potential corresponding to RC functional that de-
pends on density. As the RC potential is evaluated
using the CI solution itself, Eq. (8) must be solved
by iteration. Thus, this equation is called “iterative
CI-DFT.” The extension from ICI-DFT to multicon-
figuration self-consistent field (MCSCF)-DFT is
straightforward [24, 25, 44].

One may note that, although it is assumed
throughout this work, that the “wave function-
driven” MR-DFT is based on the CI method, in
principle it could be implemented in quantum
Monte Carlo (QMC) computations such as varia-
tional MC (VMC) and diffusion MC (DMC) meth-
ods [65]. For the sake of completeness, we shall
touch a possible scheme for QMC-DFT. In the
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QMC-DFT approach, Fp[�(r)] is determined within
a simple Jastrow factor (VMC) or a given fixed node
(DMC) [21], and the remaining degree of freedom
to yield the exact wave function is covered by an
RC potential. As for an RC functional in QMC-DFT,
it is possible to use a Colle–Salvetti type of a corre-
lation functional [21], by which electron correlation
effects beyond the reference wave function � is
included in the correlation functional.

We would like to pause here to consider the
relation between the RC term and its corresponding
potential in detail. A variation up to first order with
Eq. (8) leads to the relation, ����V̂RC��	 � �EMR-DFT.
Here if we assume that EMR-DFT is stationary for �
satisfying Eq. (8) and the yielded density satisfies
the Eq. (5), the coordinate representation of V̂RC [44]
is related to the RC functional via the equation

ERC
p ��� � � dr��r�VRC

p ���r��.

However, since � is not a stationary state of
EMR-DFT in general, we have

VRC���r�� � �ERC
p ���/���r�. (9)

This is just a usual relation employed in MR-DFT
[23–25, 27–38, 45, 47]. In our experience, the
ground-state energies calculated using these two
definitions of VRC[�(r)] are similar to each other for
first-and-second row atoms, but the difference be-
comes rather large for molecules where the RC field
affects on the CI coefficients of bonding and anti-
bonding configurations. In addition, the deviations
become larger when the orbital relaxation effects
are taken into account by employing MCSCF-DFT.
The situation that the effective solution is not a
stationary point of the effective energy is known
also in the case of KS-DFT [2].

Unlike the Coulomb-driven MR-DFT developed
by Savin and coworkers [27, 29–37], the wavefunc-
tion-driven MR-DFT reduces to Hartree–Fock plus
DFT correlation correction, not to KS-DFT. This
reflects the fact that the full Coulomb operator V̂ee is
covered in the modified universal functional,
Fp[�(r)]. This point becomes important when we
consider links among several computational
schemes.

Extensions to MR-DFT for Excited
States

So far, we have been concerned with the ground-
state formulation of MR-DFT. The effective CI-DFT
equation yields not only ground-state CI solution,
but also excited-state solutions. We shall therefore
describe the theoretical basis for interpretation of
these solutions in this section.

The variational extension of the Hohenberg–
Kohn–Levy DFT for excited states is possible using
the Levy–Perdew–Lieb (LPL) bifunctional [67, 68]
or Theophilou’s subspace DFT [69–71]. Both theo-
ries have already been applied for KS-DFT by Levy
and Nagy [72, 73], and by Nagy [74], respectively.

The LPL theory is based on the bifunctional for
the kth excited state

F��0, �k� � Min�3�k

���i�i�0, . . . ,k1���T̂ � V̂ee��	, (10)

where the variational space of the right side is
assumed to be orthogonal to the low-lying k  1
eigenstates and the constrained search is imple-
mented so that the ground-state density is given by
�0 and the kth state density by �k. Defining a mod-
ified universal bifunctional as

Fp��0, �k� � Min�3�k

p���i�i�0, . . . ,k1���T̂ � V̂ee��	, (11)

we can derive the effective CI equation for the kth
state as

�T̂ � V̂ee � V̂ext � V̂RC��0, �k����	 � EMR-DFT
k ��	, (12)

where an index “p” in Eq. (11) has a similar mean-
ing to that in Eq. (5). That is, � is a specific type of
CI wave function. Note that the lower-lying states
must be projected out from the variational space of
Eq. (12).

Another route to MR-DFT for excited states is the
use of the subspace DFT developed by Theophilou
et al. [69–71]. In the subspace DFT, a variational
principle, which is similar to the Hohenberg–Kohn–
Levy theorem for one state, holds for the energy
functional

Eav:M �
1
M �

i�1

M

��i�Ĥ��i	 � Min�av:M�r�Eav:M��av:M�r�� (13)

of the average density up to Mth low-lying states
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�av:M�r� �
1
M �

i�1

M

��i��̂�r���i	. (14)

Rewriting the minimum average energy to

Eav:M
MR-DFT � Min�av:M�r��Min��i�3�av:M�r�

p
1
M �

i�1

M

��i�T̂

� V̂ee��i	 � � dr�av:M�r�Vext�r� � ERC
p [�av:M(r)]�, (15)

and using the Lagrange multipliers for the con-
straint that all CI states {�i}i�1

M are orthonormal, we
finally obtain the effective CI equation of the sub-
space MR-DFT as

�T̂ � V̂ee � V̂ext � V̂RC
av:M���i	 � Ei��i	, (16)

where the coordinate representation of V̂RC
av:M is de-

fined as the variation of ERC
p [�av:M] with respect to

�av:M(r) as usual. In the subspace MR-DFT, the
physical quantities are only the average density and
its functional. If we intend to estimate the kth ex-
cited state energy, we must solve Eq. (16) using
average density up to the kth state, and then solve
Eq. (16) once more, but with average density up to
(k  1)th state. Since the results provide the sum of
energies up to kth state, k � Eav;k

MR-DFT and to (k  1)th
state, (k � 1) � Eav;k�1

MR-DFT respectively, then the dif-
ference is just the kth state energy.

These somewhat complicated procedures to ob-
tain the excited state energies could be skipped if
the individual energies obtained from Eq. (16)
could approximate the real excited-state energies
well. Indeed, we show for several first-and-second
row atoms that such “average approximation” of
the subspace MR-DFT provides similar excited en-
ergies obtained by the LPL functional and original
subspace MR-DFT, where the same CI expansion
and RC functional are employed [47].

If almost all the state-dependent correlation ef-
fects can be covered by a modest CAS wave func-
tion, the remaining correlation effects become state-
free, being possible to be described by a simple
semilocal approximation. Such is a fundamental
guideline to construct our previous MR-DFT [45,
47]. When we employ a CAS type of wave function,
we followed the prescription proposed by Miehlich,
Stoll, and Savin (MSS) [28], and Gräfenstein and
Cremer (GC) [41, 42] to prepare an RC functional.

Following a Coulomb division scheme [27], we
have proposed another type of MR-DFT where clas-
sical Coulomb, exchange, and the long-range part
of correlation terms are covered by wave function,
the short-range part of correlation by density func-
tional [45]. For this purpose, we introduce the ef-
fective two-electron operator to reproduce the clas-
sical Coulomb, exchange, and LR part of correlation
terms in the context of the CI theory, and use the
Savin–Flad–Padè (SFP) prefactor functional to ex-
tract the short-range Coulomb driven correlation
term. This scheme can be applied for any flexible
wave function such as single-double CI and MRCI,
without overcounting of electron correlations. Note
that all the exchange effects are described by the
wave function part in this MR-DFT. The motive to
preserve the nonlocal feature of exchange term in
both MSS-GC and SFP schemes is that the exchange
term is obviously state-and-system dependent, and
so must be included in a modified universal func-
tional if we follow the above guideline. In addition,
these SIC types (wave function-driven or SFP type)
of MR-DFT are also essential to avoid another dou-
ble counting problem of correlations between semi-
local exchange term and RC term [42].

Indeed, the MR-DFT based on this picture works
well for correlation of the ground state of atoms
and simple molecules. However, the excited ener-
gies calculated by using CASCI plus a semilocal
DFT residual correction are overestimated for most
atoms we examined. For instance, the excited ener-
gies of Li and C atoms calculated by the above-
mentioned MR-DFT treatments, i.e., LPL, subspace
MR-DFT, and its average treatments, for excited
states are plotted in Figure 2. For these computa-
tions, CASCI-DFT/6-311��G(2df,pd) with modest
CASCI and MSS-GC scheme results are presented,
but even if we use the SF–Padè scheme, this situa-
tion is not improved [47]. The details and applica-
tions in this type of “a modest CASCI plus semilo-
cal RC correction method” for other atoms are
discussed in Ref. [47]. The feature of these our
previous version of MR-DFT is that RC corrections
depends only the semilocal character of the density
of the states: the RC corrections become larger as
the density becomes more contracted. This obser-
vation suggests that the matter might not be quite
as simple as we expected; i.e., it is not always
appropriate to assume that almost all dynamical
correlation effects are of state-free. This implies that
the some state-dependent RC functional is required
for excited states.
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To improve a state-free and semi-local ERC
p , one

possible way is that another fundamental variable
is used for ERC

p . In MR-DFT, after the work by
Moscardó and San-Fabián [10], many of developers
have employed the on-top pair density, �2(r, r),
which is the probability that two electrons exist at
the same point, as a second variant of ERC

p . Indeed,
using the on-top pair density or its equivalent one-
electron density, we can detect fundamental fea-
tures of the electronic state, for instance, ionic, rad-
ical, and neutral characters as shown previously
[43]. Recently, Gusarov et al. [25] suggest the use of
�2(r, r)-dependent ERC

p to express the wave function
dependency of ERC

p within the framework of the
wave function-driven MR-DFT [25]. Their direction
is quite promising in MR-DFT.

So far we have been concerned with a MR-DFT
using semi-local type of RC corrections as shown in
Figure 1(c). The developers of this type of MR-DFT
intend to improve in a direction of an arrow illus-
trated in Figure 1(c). However, it is possible to
change a starting point of MR-DFT to the shaded
regions in Figure 1(d). Such treatment is appropri-
ate for the case that both of electron correlation
types (ii) and (iii) are essential. Thus, in the next
section, we propose an orbital-dependent correla-
tion correction for MR-DFT.

Orbital-Dependent Correlation
Correction for MR-DFT

At first, we have to determine the many-body
perturbation theory as in the context of KS-OEP
approach. We shall confine our attention to the
MR-based second-order perturbation (PT2) theories
[75–84], which is now widely accepted as one of
most reliable ab initio methods not only for the
ground state, but also for low-lying excited states.
The reason for the success of MR-PT2 is that it
covers electron correlations of type (ii) and (iii), as
illustrated in Figure 1(d), which are remarkably
important for molecular systems as described
above. The MR-PT methods fall into two types: the
diagonalize-then-perturb type [75–79, 81], in which
the specific multireference state is corrected using
PT, and the perturb-then-diagonalize type [80], in
which constructing the effective Hamiltonian using
PT for each of its matrix elements, then it is diago-
nalized to obtain several low-lying states simulta-
neously. This branch is rather based on quasi-de-
generate PT [85, 86] and is desirable for description
of the nearly degenerate states such as avoid cross-
ing. However, since the energy expression of MR-
DFT is originally of a specific state, or of an average
over several states, it is reasonable to choose the
former MR-PT.

We recall that a key point of the KS-OEP method
is that the orbital-dependent XC potential is ob-
tained via the chain rule for functional derivatives.
In the theoretical procedure, the virtual orbitals
obtained by the KS equation are also exploited.
Thus, the generalization of KS-OEP to a MR version
of OEP is not so straightforward: we cannot derive
the system of equations by imposing �E[�(r)]/
�VRC(r) � 0 with the ICI-DFT equation, at least, in
a straightforward way. Instead of this “optimized
effective potential method” starting from this equa-
tion, “a simple orbital-dependent correlation cor-
rection” in MR-DFT is proposed in the following.
For simplicity, we limit the discussion to CASSCF-
DFT, hereafter. In addition, we also omit the cases
that the ground-state and the low-lying states are
(quasi-)degenerate to avoid the issues such as the
validity of the state-specific CAS-PT2 solutions
and/or the intruder-state problem.

The CASCI-DFT equation provides not only the
ground-state solution, but excited states as well.
These define two spaces, denoted by V0 and VCAS,
the sum space of which is just the limited Hilbert
space specified in Eq. (5). However the outer space

FIGURE 2. Excitation energies of lithium (Li) and car-
bon (C) atoms calculated by CAS-DFT using semi-local
correlation correction. Active spaces are [5, 3], [4, 4]
([orbitals, electrons]) for Li and C, respectively.
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that complements to V0 � VCAS is needed in the
context of MR-DFT that mimics CAS-PT2, implying
that another auxiliary equation is needed in order
to construct the orbital-dependent RC functional.
One candidate for this auxiliary equation is the
generalized Fock equation, which is a standard
starting point for CAS-PT2. The matrix element of
the effective Fock operator is given by

fpq � �p�ĥMR-DFT�q	 � �
rs

��pr�qs	 �
1
2 �pr�sq	�Prs. (17)

The difference from that of the original CAS-PT2
is that the one-electron operator is replaced by
ĥMR-DFT, which contains kinetic, external potential,
and RC potential operators. As we use a CASSCF-
DFT wave function as a reference, the matrix is
divided into 3 � 3 blocks corresponding to inactive,
active, and second orbital spaces. This generalized
Fock operator of CASSCF-DFT wave function in the
matrix form has suitable properties for orbital-de-
pendent correction approach. First, according to the
generalized Brillouin theorem, fpq becomes zero
when one of the indices represents an inactive and
the other a secondly orbital. Second, the unique set
of canonical orbitals can be obtained by block-di-
agonalizing this matrix within three subspaces:

�
�r

2 � Vext(r) � VHF(r) � VRC(r)��p�r� � �p�p�r�

(18a)

VHF�r��p�r� � �
r,s
� dr�

�r � r��

Prs��r(r�)�s(r�) �
1
2 �r(r�)Prr��s(r�)��p�r�, (18b)

where P is the first-order spinless reduced density
matrix of the CAS-DFT wave function. The impor-
tant points involved are that all orbitals are orthog-
onal each other and that the CASSCF-DFT wave
function is invariant to this diagonalization.

As the density and the active space, which is the
index of Fp[�(r)], determine VRC(r) and P by virtue
of the Hohenberg–Kohn–Levy theorem, the set of
orbitals and those orbital energies {�p(r), �p} are also
uniquely determined. Further, note that the solu-
tions of equation (18) and those of the effective
CASCI equation are expected to converge simulta-

neously when P converges. Thus, we employ Eq.
(18) as a second auxiliary equation in our method.

One can then rewrite the Fock operator in the
form

F̂ � F̂D � F̂N � �
p

�pÊpp � �
it

� fitÊit � ftiÊti�

� �
at

� fatÊat � ftaÊta�, (19)

where Êpq � ¥	 ap	
� aq	 is a spin-averaged excitation

operator. The diagonal block parts of Fock operator:

F̂D � �
p

�pÊpp, (20)

consist of the orbital energies and the creation-and-
annihilation operators corresponding to the orbitals
in Eq. (18a). The remaining nondiagonal terms in
F̂N, complicate the following formulation. In the
original CAS-PT2 approach, the inclusion of these
terms requires an additional iterative procedure,
but the results with and without nondiagonal terms
are similar to each other, judging from both the
numerical results they have reported [78, 79, 81, 83,
84] and our experience. For this reason, we follow
the CAS-PT2 method in the form of the diagonal
approximation of Fock operator:

F̂ � F̂D � �
p

�pÊpp. (21)

We separate the ab initio Hamiltonian into the
zero-order Ĥ0 and perturbation, V̂,

Ĥ � Ĥ0 � V̂. (22)

The zeroth-order Hamiltonian Ĥ0 is defined by the
Fock operator given in Eq. (21), and projection op-
erators onto the one-dimensional CAS reference
space (P̂0), the complementary space within the
CAS expansions (P̂CAS), and the space spanned by
all other excitations (P̂PT) as

Ĥ0 � P̂0F̂P̂0 � P̂CASF̂P̂CAS � P̂PTF̂P̂PT, (23)

where indices, (i, j), (t, u, v), and (a, b) represent the
inactive, active, and second orbital space, respec-
tively. The zeroth-order energy of the reference
CAS state, ��0	 is given by
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E0
�0� � ��0�Ĥ0��0	 � �

p

�pPpp. (24)

The first-order energy is exactly equivalent to the
CAS energy:

E0
�0� � E0

�1� � ��0�Ĥ0 � V̂��0	

� ��0�T̂ � V̂ee � V̂ext��0	

� ECAS. (25)

The second-order energy is then given by

E0
�2� � �

j

SD ���0�Ĥ��j	�2

E0
�0� � Ej

�0� (26)

where the summation runs over all single-and-dou-
ble (SD) excited states from the reference and not
included in V0 � VCAS. The zeroth-order energy of
a determinant is given by

Ej
�o� � �

p

occ in��j	

�p. (27)

Note that even if ��j	 is a configuration state func-
tion generated from several determinants with the
same occupation, the 0th-order energy is given by
Eq. (27).

We now have an alternative expression of the
MR-DFT energy using the second-order correlation
correction,

E0 � Min��r�3N�Min�3��r�
p ���T̂ � V̂ee��	

� � dr�(r)Vext(r) � E0
�2�({�p[�(r)]}, {�p[�(r)]})�. (28)

In Eq. (28), RC functional is approximated as

ERC���r�� 	 E0
�2����p���r���, ��p���r����. (29)

To obtain the RC potential, the functional deriv-
atives using the chain rule,

�ERC

���r�
� �

p
� dr�� dr�� �ERC

��p(r�)
��p(r�)

�VRC(r�) � c.c.�
�

�ERC

��p

��p

�VRC(r�) �VRC�r��
���r�

, (30)

must be calculated. First-order perturbation treat-
ment of Eq. (18) gives

��p�r�

�VRC�r��
� Gp�r, r���p�r��, (31)

��p

�VRC�r�
� �*p�r��p�r� (32)

���r�

�VRC�r��
� 2 �

p

inactive

�*p�r�Gp�r, r���p�r�

� �
p

active �
r

active

nr
*r�r�UrpGp�r, r���p�r� � c.c. � �RC�r, r��.

(33)

Here, Eq. (33) is the linear response function, �RC(r,
r�), of MR-DFT density to residual correlation po-
tential. In Eqs. (31)–(33), Gp(r, r�) is a Green’s func-
tion, defined as

Gp�r, r�� � �
q�p

�*q�r���q�r�
�q � �p

. (34)


r(r) is a natural orbital of the CAS wave function
with the occupation number, nr (0 � nr � 2). Note
that it belongs to the active space and can be trans-
formed into the solutions within the active space
via a unitary transformation:


p�r� � �
r

active

Upr�r�r�. (35)

Substituting Eqs. (31)–(33) into Eq. (30), we obtain
the RC potential that has a form similar to XC
potential of KS-OEP,
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VRC�r� � �
p
� dr�� dr�� �ERC

��p(r�)
[Gp(r�, r�)�p(r�)]

� c.c.� �
�ERC

��p
��p(r�)�2�RC

1�r, r��. (36)

Here, the constraint that the effective CI wave func-
tion is the ground-state solution for VRC(r) is im-
posed. It should again be noteworthy that the so-
lutions of the effective Fock equation (18) are
expected to converge when the effective CI equa-
tion is converged after the SCF process. The com-
putational scheme is summarized in Figure 3.

The method presented is free from the so-
called double-counting problem involving CAS-

DFT. The connection to usual CAS-DFT scheme is
straightforward: if we replace the correlation
functional by the explicit semilocal residual cor-
relation like Lee–Yang–Parr correlation multi-
plied by the MSS-GC prefactor functional, the
usual CAS-DFT is obtained. The relationship be-
tween the present formalism and the KS-OEP is
slightly complicated. When the reference wave
function reduces to a single determinant, the ef-
fective MR-DFT equation simplifies to the corre-
sponding generalized Fock equation, very similar
to KS-OEP equation. Indeed, the above procedure
to derive the RC potential becomes similar to an
OEP procedure, except that the exchange part is
treated in the generalized Fock equation [Eq.
(21)].

FIGURE 3. Computational scheme of MR-DFT based on CAS-PT2(D) type of approximation.
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This single-determinant limit is a result of the
previously mentioned fact that the wave function-
driven MR-DFT reduces to HF-DFT. This is reason-
able from the viewpoint that CAS-PT2 becomes
equivalent to Møller–Plesset PT2 when the refer-
ence wave function reduces to a single-determi-
nant.

Discussion

We proposed a simple orbital-dependent corre-
lation correction method for MR-DFT based on the
CAS-PT2 method. The perturbation term is con-
structed by exploiting the eigenvalues and eigen-
functions of generalized Fock equation. We note
that the formalism presented becomes equivalent to
Hartree–Fock theory with correlation correction via
optimized effective manner when the reference
wave function reduces to a single-determinant. This
is because the generalized Fock operator includes
the Hartree–Fock exchange operator (not “the exact
exchange operator” in OEP). In the OEP theory,
multiconfiguration (MC) extensions to treat the
multiplet problem have been worked out [87–90].
The working equation of MC-OEP is an effective
one-electron equation, but OEP potential is con-
structed to satisfy a symmetry condition and to
include the type (ii) of electron correlation within
the KS-OEP framework. To describe the electronic
structure involved the correlations that strongly de-
pend on states at both dynamical and nondynami-
cal levels, the types (ii) and (iii) as shown in Figure
1(d) or further all types of correlations in Figure 1(e)
may have to be covered. For the purpose, it is a
most straightforward way to combine the low-lying
CI, DFT and orbital-dependent corrections, i.e., the
MR-PT-DFT approach. For instance, a CASPT2-
DFT approach can be implemented in the Cou-
lomb-driven type [27, 29–39] or SFP type [45] of
MR-DFT. The problem is the computational cost for
both MR-DFT with orbital-dependent corrections/
MR-PT-DFT. Indeed, although the results of MR-
DFT and OEP approaches encourage the appli-
cations of MR-DFT with orbital-dependent
corrections for molecules, the method presented in
the present work is also anticipated to be a cost-
consuming approach. However, the efficient tech-
niques developed in both the CAS-PT2 and KS-OEP
methods [91, 92] can be used in MR-DFT based on
CASPT2. Further, the recently developed divide-
and-conquer (DC) framework [93–97] has greatly
reduced the computational costs when we apply

the ab initio approach for large molecules. If the
essential electron correlations are of types (ii) and
(iii), and if these correlation lengths are at most the
size of a some molecular unit in the large molecule,
such a DC method based on electronic structure
theory designed for types (ii) and (iii) of electron
correlations will become a promising direction in
computational chemistry.
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