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Abstract

We propose using semiconductor quantum dots for a simulation of chemical reactions as electrons

are redistributed among such artificial atoms. We show that it is possible to achieve various reaction

regimes and obtain different reaction products by varying the speed of voltage changes applied to

the gates forming quantum dots. Considering the simplest possible reaction, H2 + H → H + H2,

we show how the necessary initial state can be obtained and what voltage pulses should be applied

to achieve a desirable final product. Our calculations have been performed using the Pechukas gas

approach, which can be extended for more complicated reactions.
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Detailed simulations of chemical and biological processes can provide crucial insight on

these and help determining optimal experimental regimes and conditions. However, the

high-accuracy modelling, at the quantum level, of even the simplest chemical reactions rep-

resents a significant challenge because it encompasses changes that involve the motion of

electrons in the forming and breaking of chemical bonds. On classical computers, the re-

source requirements for the complete simulation of the time-dependent Schrödinger equation

scale exponentially with the number of atoms in a molecule, imposing very severe limita-

tions in the systems that can be modelled. However, recent developments of novel quantum

computation schemes allow a polynomial scale of required resources. Via these approaches,

quantum systems can be programmed to simulate the behavior of another quantum system

of interest (see, e.g. [1–3]).

Semiconductor quantum dots can be described as artificial atoms (see, e.g. [4]). These

have discrete electron spectra revealing a shell structure and exchange corrections to the

electron energies according to Hund’s rules. In this sense, coupled quantum dots can be

regarded as artificial molecules [5]. Depending on the tunnel coupling strengths, electron

distribution, and shell structure, the dots can form both ionic- and covalent-like bonds.

Manifestations of these molecular states in double-dot structures were observed by numerous

groups [6]. The idea of using the charge degrees of freedom in double-dot systems as a qubit

has been proposed theoretically [7] and implemented experimentally [8].

Recent achievements in nanotechnology facilitate the of precise control of the number of

electrons in quantum dots and the tunnel energy splittings by the voltages applied to the

gates [9]. Measuring the current through a quantum point contact in the vicinity of the

structure allows the determination of the exact charge locations [10]. Moreover, structures

with three coupled quantum dots have been recently fabricated and characterized [11] with

the potential to easily increase the number of the dots, as needed.

Based on these developments, we propose to employ the electron redistribution in coupled

quantum dot systems for chemical reaction modelling. In particular, the number of electrons

in the first and second quantum dot shells are 2 and 4, respectively. Accordingly, the

quantum dot with one electron can be considered as an artificial hydrogen atom (one electron

vacancy in the outer shell) and the quantum dot containing four electrons can be viewed as an

artificial oxygen atom (two electron vacancies in the outer shell). Consequently, the coupling

of these three dots by changing the gates’ potentials can model the covalent molecular bond
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formation between the four-electron dot and each of the one-electron dots. This would

represent the hydrogen oxidation reaction with the formation of an artificial water molecule.

Increasing the number of dots would allow the modelling of more complicated reactions.

Moreover, such artificial reactions can be done under conditions (such as a presence of an

external magnetic field) not readily accessible in all real molecules and the speed of the

reaction could be easily varied in a very wide range.

The Hamiltonian of the system can be separated into two parts

H(t) = H0 + λ(t)V (1)

where the first term describes the invariant part and the second term is responsible for the

reaction. It should be noted that the time dependence of the parameter λ can be chosen

specifically for various reaction regimes. For small λ̇ ≡ dλ/dt we have an adiabatic evolution,

with the system following its ground state during the reaction. For extremely large λ̇, the

system’s state remains unchanged; and for the intermediate case, several Landau-Zenner

transitions may occur at the avoided crossing points, with various states being populated

after the reaction. In contrast to adiabatic quantum computing [12, 13], where the aim is to

keep the system either at or near its ground state, here we focus on a completely different

issue: how to control the population of desirable (not necessarily ground) states by changing

the speed of evolution and the shape of λ(t).

The evolution of the instant energy levels En(λ) and eigenfunctions |n〉 of Hamiltonian (1)

can be exactly mapped [13] on the classical Hamiltonian dynamics of 1D gas of fictitious par-

ticles (Pechukas gas [14]), with positions xn(λ) = En(λ) and momenta vn(λ) = Vnn(λ). The

“particle repulsion” is determined by the additional set of variables, the “angular moments”

lmn(λ) = (Em(λ)− En(λ))Vmn(λ):

d

dλ
xm = vm

d

dλ
vm = 2

∑

m6=n

|lmn|2
(xm − xn)3

(2)

d

dλ
lmn =

∑

k 6=m,n

lmklkn

(
1

(xm − xk)2
− 1

(xk − xn)2

)
.

Note that all the matrix elements in Eq. (2) are taken between the instantaneous eigenstates

of the Hamiltonian (1). The probabilities of the Landau-Zenner transitions between states
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m ↔ n is given by

pm,n = exp

(
− (∆m,n

min )3

4πh̄lmn|λ̇|

)
(3)

where ∆m,n
min is the minimal separation of levels at avoided crossing. We chose to use the

Pechukas gas approach because of its potential scalability in a system with large number of

elements [13].

Here, we examine the simplest possible chemical reaction: the scattering of a hydrogen

atom from a hydrogen molecule (H+H2 → H2+H), see Fig. 1. Even though this reaction was

performed and theoretically described for nearly a century, some details (not understandable

without accurate modelling at the quantum level) were observed recently [15] (where the

slightly different reaction, H + D2 → HD + D, was studied). Although the reaction was

dominated by a direct recoil mechanism when the incident hydrogen atom recoils along its

original path after removing a deuterium atom to form a HD molecule, a second slower

reaction mechanism occurs with a time delay of 25 fs. One of the possible explanations of

such time delay is the formation of a metastable “quasi-bound” quantum state decaying into

the reaction products. Such a system, with three nuclei and three electrons, can be mapped

onto the triple-quantum-dot system with the Hamiltonian

H = H3D + HC + Htun , (4)

where

H3D =
∑

S=1,2

(EASNAS + EBSNBS + ECSNC1S) ,

HC = UANA1NA2 + UBNB1NB2 + UCNC1NC2 + UABNANB + UBCNBNC + UACNANC ,

Htun = − ∑

S=1,2

(
∆ABa+

ASaBS + ∆BCa+
BSaCS + ∆ACa+

ASaCS + h.c.
)

, (5)

S = 1(2) for spin-up(-down) electrons, A,B, C are the dot indices and NA,B,C are the total

populations of the corresponding dots. The Hamiltonian, Eqs. (4,5), has 20 eigenfunction

and eigenvalues for the three-electron case, which can be determined from the solution of the

corresponding Schrödinger equation for specific values of the system parameters. It should

be noted that these parameters can be controlled by the gates voltages applied to the triple-

dot system. We will use the following pulse sequence: in the first stage, the desired initial

state is formed; in the second stage, an extremely fast restoration pulse is used to return

the gates into their initial conditions preserving the system state; finally, in the third stage,

the desired final state is obtained.
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To link to experiments, we choose the intradot Coulomb energies UA = UB = UC = 2

meV, the interdot Coulomb energies UAB = UBC = UAC = 0.2 meV, and the tunnel matrix

elements ∆AB = ∆BC = ∆AC = 0.05 meV. We also introduce a small Zeeman energy

E1−E2 = 0.003 meV for all three dots, to lift the spin degeneracy. The dot energies before

reaction (λ = 0) are chosen as EB = EC = EA + 0.5EP with EP = 2.2 meV. In this case,

the ground state for the Hamiltonian, Eq. (4), is given by

Ψ1(λ = 0) =

√
2

3
a+

A1a
+
B2a

+
C2|0〉 −

√
1

3

a+
B1a

+
C2 + a+

B2a
+
C1√

2
× a+

A2|0〉 , (6)

i.e., it is a superposition of the state a+
A1a

+
B2a

+
C2|0〉, where a single electron is located in each

dot (no bonds, with a probability 2/3), and the state with a covalent bond, spin-triplet T0,

formed in the dots B and C, plus one electron located on the dot A (with a probability 1/3).

The first excited state is the spin-singlet formed in the dots B and C, plus one electron

located in the dot A

Ψ2(λ = 0) =
a+

C2a
+
B1 − a+

C1a
+
B2√

2
× a+

A2|0〉 . (7)

In the first stage, we examine the response of this system to the sweep V = EP (NC−NB)

with λ changed linearly from 0 to 0.5 with various speed. The variations of the state energies

with λ are shown in Fig. 2. Several avoided-level crossings can be clearly seen in this figure,

and in the inset magnifying the region with many possible Landau-Zener transitions. The

reaction products are shown in Fig. 3 for various speeds of change. In the main panel, the

initial state is the ground one; while in the inset we start from the first excited state. At

low speeds only the states near the ground state can be occupied at the end of the evolution

(adiabatic sweep). When λ̇ increases, certain states can be populated while most other

states are almost empty. This subset of occupied states is controlled by the sequence of the

avoided crossings and is unique for a chosen parametric evolution (i.e., a chosen H0 and V ).

Thus, one can simulate a desirable chemical/nuclear reaction by changing H0 and/or V , i.e.,

changing the device architecture and gate structure, as well as by occupying certain initial

states. If the speed, λ̇, is high enough, well defined final states can be reached, and the

population of other output states (i.e., output products) can be suppressed. In particular,

it is evident from Fig. 3 that with almost 0.9 probability the final state becomes

Ψ7(λ = 0.5) =
a+

A2a
+
B1 − a+

A1a
+
B2√

2
× a+

C2|0〉 , (8)
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which is the spin-singlet in the dots A and B, plus one electron located in dot C. It should

be noted that this is essentially the same state as Ψ2(λ = 0), besides a change of the dot

numeration.

In the second stage, we apply a very fast pulse, Vrestore = 0.5Es(NA + NB) − EsNC , to

restore the initial gate potentials. After this pulse the state of the system remains unchanged

and the initial state of the H +H2 → H2 +H is formed, as shown in the left panel of Fig. 1.

In the third stage, we apply a pulse V = EP (NB − NA), changing λ from 0 to 0.5, to

achieve the configuration shown in Fig. 1, right panel. However, this state,

Ψ7(λ = 0.5) =
a+

C2a
+
A1 − a+

A2a
+
C1√

2
× a+

B2|0〉 , (9)

can only be achieved with small probability P = 0.1, even after a fast enough sweep (see

inset of Fig. 3). To overcome this, we apply the following selective sweep, using a step-like

signal, λ(t) = λ̇1t for 0 < λ1 < λ < λ2 < 0 and λ(t) = λ̇2t overwise, with λ̇1 À λ̇2. In

this case, we can activate Landau-Zener transitions at avoided crossings within a desirable

interval λ1 < λ < λ2. Based on this technique we can mainly achieve a unique output

quantum state (or product) as shown in Fig. 4 for λ1 = 0.3 and λ2 = 0.325 (black circles).

It is evident that the desired final state has sufficiently large probability P = 0.6.

In summary, we propose to model chemical reactions via electron redistributions between

coupled semiconductor quantum dots. As an example, the simplest chemical reaction, H +

H2 → H2 + H is examined here with the three nuclei and three electrons being simulated

by the three-electron states in the triple-dot structure. We achieve the following bond

redistribution between the three dots after the following procedure: (i) starting from the

ground state of the three-dot system which contains (with P = 1/3) a spin-triplet of the

electron pair B==C, a fast adiabatic sweep is used to obtain the spin-singlet state for

electrons between dots A and B (A==B covalent bonding) with P = 0.9; (ii) applying a

sharp restoring pulse we return to the initial Hamiltonian, without changing the state of

the system; (iii) we apply a selective adiabatic sweep to the dots B and A and transfer the

bond to the covalent coupling between dots C and A, C==A (with P = 0.1 with fast, but

not selective sweep, and with P = 0.6 with a slow but selective sweep), which is described

by the spin-singlet state of the electron pair which is shared by the dots A and C. In stages

(i) and (ii), the initial state (left panel of Fig. 1) is formed and in stage (iii) it is transferred

to the final state (right panel of Fig. 1). It should be emphasized that the final state is
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obtained with non-unit probability indicating possible different reaction outcomes, as it is

the case with real experiments [15].
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297, 70 (2002); M. Pioro-Ladriere, M. Ciorga, J. Lapointe, P. Zavadzki, M. Korkusinski,

P. Hawrylak, and A.S. Sachrajda, Phys. Rev. Lett. 91, 026803 (2003); M. Rontani, S. Amaha,

K. Muraki, F. Manghi, E. Molinari, S. Tarucha, and D.G. Austing, Phys. Rev. B 67, 085327

(2004).

[7] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).

[8] T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91,

226804 (2003); T. Fujisawa, T. Hayashi, H.D. Cheong, Y.H. Jeong, and Y. Hirayama, Physica

E 21, 1046 (2004).

[9] See, e.g., M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng,

and Z. Wasilewski, Phys. Rev. B 61, R16315 (2000); A.C. Johnson, J.R. Petta, J.M. Taylor,

A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Nature 435, 925 (2005);
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FIG. 1: (Color online) Schematic diagram of the H2 + H → H + H2 reaction showing the bonds

(upper panel) and the electron redistribution in the coupled quantum dot system (lower panel).
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FIG. 2: Energies of the three-electron states in the triple-dot structure versus parameter λ repre-

senting different gate voltages. Inset: Magnified region with several avoided level crossings.
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FIG. 3: (Color online) Level populations at the end of the parametric evolution of the Hamiltonian

(1) when starting from the ground (main panel) and the first excited (inset) states for different

reaction speeds λ̇ = 10−3 (blue diamonds), 10−2 (red crosses in the main panel), 7.5 · 10−2 (red

crosses in the inset), 10−1 (black circles in the main panel), 1 (black circles in the inset).
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FIG. 4: (Color online) Occupation of states at the end of the parametric evolution when the step-

like signal λ(t) described in the text is applied with λ1 = 0.2, λ2 = 0.225 (red crosses) and λ1 = 0.3,

λ2 = 0.325 (black circles). Note that output products corresponding to red up triangles was found

for almost all positions of the step in λ(t), while output products shown by black down triangles

are unique and can be achieved only for a specific position of the step in λ(t).
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