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Abstract. We present a neuromorphic approach to study the relationship between the response 
of a sensor/instrument to odorant molecules and the perceptual characteristics of the odors. 
Clearly, such correlations are only possible if the sensing instrument captures information about 
molecular properties (e.g., functional group, carbon chain-length) to which biological receptors 
have affinity. Given that information about some of these molecular features can be extracted 
from their infrared absorption spectra, an attractive candidate for this study is infrared (IR) 
spectroscopy. In our proposed model, high-dimensional IR absorption spectra of analytes are 
converted into compact, spatial odor maps using a feature clustering scheme that mimics the 
chemotopic convergence of receptor neurons onto the olfactory bulb. Cluster analysis of the 
generated IR odor maps reveals chemical groups with members that have similar perceptual 
characteristics e.g. fruits, nuts, etc. Further, the generated clusters match those obtained from a 
similar analysis of olfactory bulb odor maps obtained in rats for the same set of chemicals. Our 
results suggest that convergence mapping combined with IR absorption spectra may be an  
appropriate method to capture perceptual characteristics of certain classes of odorants. 

6.1   Introduction 

Smell is the most primitive of the known senses. In humans, smell is often viewed as 
an aesthetic sense, as a sense capable of eliciting enduring thoughts and memories. For 
many animal species however, olfaction is the primary sense.  Olfactory cues are 
extensively used for food foraging, trail following, mating, bonding, navigation, and 
detection of threats (Axel 1995). Irrespective of its purpose i.e., as a primary sense or 
as an aesthetic sense, there exists an astonishing similarity in the organization of the 
peripheral olfactory system across phyla (Hildebrand and Shepherd 1997). This 
suggests that the biological olfactory system may have been optimized over 
evolutionary time to perform the essential but complex task of recognizing odorants 
from their molecular features, and generating the perception of smells. 
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Inspired by biology, artificial systems for chemical sensing and odor measurement, 
popularly referred to as the ‘electronic nose technology’ or ‘e-noses’ for short, have 
emerged in the past two decades. A number of parallels between biological and  
artificial olfaction are well known to the e-nose community. Two of these parallels 
are at the core of sensor-based machine olfaction (SBMO), as stated in the seminal 
work of Persaud and Dodd (1982). First, biology relies on a population of olfactory 
receptor neurons (ORNs) that are broadly tuned to odorants. In turn, SBMO employs 
chemical sensor arrays with highly overlapping selectivities. Second, neural circuitry 
downstream from the olfactory epithelium improves the signal-to-noise ratio and the 
specificity of the initial receptor code, enabling wider odor detection ranges than 
those of individual receptors. Pattern recognition of chemical sensor signals performs 
similar functions through preprocessing, dimensionality reduction, and classifica-
tion/regression algorithms.  

Most of the current approaches for processing multivariate data from e-noses are 
direct applications of statistical pattern recognition and chemometrics techniques 
(Gutierrez-Osuna 2002).  In this book chapter, we focus on an alternative approach: a 
computational model inspired by information processing in the biological olfactory 
system.  This neuromorphic approach to signal processing represents a unique depar-
ture from current practices, one that could move us a small step beyond multivariate 
chemical sensing and in the direction of true machine olfaction: relating sen-
sor/instrumental signals to the perceptual characteristics of the odorant being sensed. 

6.2   Odor Representation in the Early Stages of the Olfactory 
Pathway 

The first stage of processing in the olfactory pathway consists of a large array (~10-
100 million) of olfactory receptor neurons (ORNs), each of which selectively ex-
presses one or a few genes from a large (100-1,000) family of receptor proteins (Buck 
and Axel, 1991; Firestein, 2001).  Each receptor is capable of detecting multiple 
odorants, and each odorant can be detected by multiple receptors, leading to a mas-
sively combinatorial olfactory code at the receptor level.  It has been shown (Alkasab 
et al. 2002; Zhang and Sejnowski 1999) that this broad tuning of receptors may be an 
advantageous strategy for sensory systems dealing with a very large detection space. 
This is certainly the case for the human olfactory system, which has been estimated to 
discriminate up to 10,000 different odorants (Schiffman and Pearce, 2003).  Further, 
the massively redundant representation improves signal-to-noise ratio, providing in-
creased sensitivity in the subsequent processing layers (Pearce et al. 2002).  

Receptor neurons relay their responses downstream to the olfactory bulb (OB) for 
further processing. Receptor neurons expressing the same receptor gene converge 
onto one or a few glomeruli (GL) (Mori et al. 1999; Laurent 1999), which are spheri-
cal structures of neuropil at the input of the OB.  This form of convergence serves two 
computational functions.  First, massive summation of multiple ORN inputs averages 
out uncorrelated noise, allowing the system to detect odorants below the detection 
threshold of individual ORNs (Pearce et al., 2002).  Second, chemotopic organization 
leads to a more compact odorant representation, an odor map that encodes odor iden-
tity/ quality (Friedrich and Korsching 1997). The generated odor maps have also been 
shown to correlate with the overall odor percept (Leon and Johnson 2003; Uchida  
et al., 2000). Hence we will focus on these convergence circuits in this study. 
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6.3   Infrared Absoption Spectroscopy 

Though very little is known about the molecular determinants of an odorant, it is 
widely believed that each glomerulus (to which similar ORNs converge) acts as a 
“molecular feature detector” that identifies a particular molecular property, such as 
type and position of a functional group (Mori et al. 1999) or carbon chain-length 
(Sachse et al., 1999). Information about these molecular features can be extracted 
from their IR absorption spectra, making IR absorption spectroscopy an attractive 
candidate for this study. 
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Fig. 6.1. IR absorption spectrum of iso-amyl acetate (an ester with a fruity smell). Each peak is 
labeled by the functional group responsible for the absorption. 

Infrared radiations are electromagnetic waves whose wavelength lies in the region 
between the visible light and microwaves. When exposed to IR rays, molecules tend 
to absorb these radiations at wavelengths where the radiant energy matches the energy 
of their intra-molecular vibrations. In IR spectroscopy, differences in molecular struc-
ture and inter-atomic bonds between chemicals are exploited to generate unique IR 
absorption spectra that are rich in analytical information (Nogueira et al. in press). 
The entire IR spectrum comprises of three non-overlapping regions, each with a  
distinct purpose: (1) the far-IR region (400-10 cm-1), used for rotational spectroscopy, 
(2) the mid-IR region (4000-400 cm-1), which provides information about molecular 
rotations-vibrations, and (3) the near-IR region (12800-4000 cm-1), used for studying 
molecular overtones and certain combination vibrations. Of particular interest is the 
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mid-IR region, which is further subdivided into the so-called “functional-group” 
(4000-1500 cm-1) and “fingerprint” (<1500 cm-1) regions.  The former contains  
information about the functional groups that are present in the molecule (e.g., alco-
hols, aldehydes, ketones, esters etc.,), whereas the latter contains a global absorption 
pattern that is unique to each organic compound.  A sample IR spectrum (iso-amyl 
acetate; an ester with a fruity smell) obtained from the National Institute of Standards 
and Technology (NIST) Chemistry Web Book database (Linstrom and Mallard 2003) 
is shown in Figure 6.1. Different peaks in the absorption spectrum correspond to the 
various molecular features present in iso-amyl acetate.  

We use a database comprising of IR absorption spectra (wave number range 0 – 4000 
cm-1) of ninety-three chemicals obtained from NIST (Linstrom and Mallard 2003).  
Each feature in the absorption spectrum indicates the intensity of light absorbed by a 
molecule at a particular wavenumber, thus defining a high dimensional odor signal of 
4,000 features. 

6.4   Modeling Receptor Neuron Convergence 

To process high-dimensional experimental data from infrared spectroscopy we adapt 
the ORN convergence model presented by us earlier (Gutierrez-Osuna 2002; Raman et 
al., 2006).  Briefly, this model is based on three principles: (i) ORNs with similar 
affinities project onto neighboring GL, (ii) GLs in OB are spatially arranged as a two-
dimensional surface, and (iii) neighboring GL tend to respond to similar odors (Meister 
and Bonhoeffer 2001; Johnson and Leon 2000).  Therefore, a natural choice to model 
the ORN-GL convergence is the self-organizing map (SOM) of Kohonen (1982).  

To form a chemotopic mapping, we must first define a selectivity measure upon 
which IR absorption features can be clustered together.  In this work, this is 
accomplished by treating the IR absorption at a particular wavelength across a set of 
odorants as an affinity vector: 

[ ]C21 O
i

O
i

O
ii IR,...,IR,IRIR =  (6.1)

where O
iIR is the IR absorption at wavenumber i for odor O, and C is the number of 

odorants (C = 93 in this study).   
The convergence model operates as follows. The SOM is presented with a 

population of IR absorption features (corresponding to each wavenumber), each 
represented by a vector in C-dimensional affinity space, and trained to model this 
distribution. Once the SOM is trained, each IR absorption feature is then assigned to 
the closest SOM node in affinity space, thereby forming a convergence map from 
which the response of each SOM node is computed as: 

∑ =
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O
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O
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where N is the number of IR features (N = 4,000 in this study), and Wij=1 if IRi 
converges to SOMj and zero otherwise. 

To help visualize this model, Fig. 6.2. illustrates a problem with absorption spectra of 
three odors (labeled as A, B and C). The affinities at different wavenumbers are shown 
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Fig. 6.2. Illustration of chemotopic convergence: the relative response to three analytes (labeled 
A, B and C) is used to define the wavenumbers’ affinities (shown as a colorbar). IR 
wavenumbers with similar affinities project to the same SOM node as a result of chemotopic 
convergence. Activity across the SOM lattice can be considered as an artificial odor map. 

as a colorbar below the IR spectra1. The chemotopic mapping is achieved by assigning 
features (i.e., IR wavenumbers) with similar affinities to the same SOM node. The 
activity of the entire SOM lattice is then considered as an artificial odor map. 

This convergence model works well when the different sensors are reasonably 
uncorrelated, since the projection of sensor features across the SOM lattice  
approximates a uniform distribution, i.e., maximum entropy (Lancet et al. 1993; 
Laaksonen et al. 2003). Unfortunately, the population of sensors created through IR 
absorption spectra tends to be over-sampled. As a result, a few SOM nodes tend to 
receive the majority of input, which capture the “common-mode” response of the 
sensor, overshadowing the most discriminatory information. To avoid this issue, the 
activity of each SOM node is normalized by the number of sensor features that con-
verge onto it: 

∑
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Note that this solution is not driven by biological plausibility but largely by the limita-
tions of the sensors. 

                                                           
1 This is a simplification to illustrate the concept, as the actual affinity space in this case is three 

dimensional. 
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6.5   Results 

To generate artificial odor maps, a population of 4,000 pseudo-sensors generated from 
the IR spectrum is projected chemotopically onto a 10x10 SOM lattice (100 nodes). 
The odor images are then low-pass filtered using a 5x5 Gaussian kernel.  
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Fig. 6.3. Odor maps generated from the IR spectrum using the chemotopic convergence model 
for ten different smell percepts: i) banana, ii) pineapple, iii) apple, iv) apricot, v) citrus, vi) nuts, 
vii) cheese, viii) sweat, ix) minty and x) fat. 
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Fig. 6.3. (continued) 
 

Fig. 6.3. shows the odor maps for ten different smell percepts2 from the IR database. 
The following observations can be made based on the odor images obtained from their 
IR absorption spectrum: 

                                                           
2 The organoleptic descriptors were obtained from Flavornet. 
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(i) Esters that smell like tropical fruits (banana and pineapple) produce similar 
odor maps, which are different from the maps of chemicals with apricots or 
citrus fruits descriptors,  

(ii) Citrus odor maps are similar to those that smell Fatty,  
(iii) Sweat and Cheese also produce similar odor maps, and, 
(iv) Methyl salicylate and Menthol, which are both minty, produce distinct odor maps. 
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Fig. 6.4. Odor maps obtained in the rat olfactory bulb3 for the same ten smell percepts 

                                                           
3 A database of odor maps from the rat olfactory bulb is available at http://leonlab.bio.uci.edu/ 
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Fig. 6.4. (continued) 

Spatial odor images for these compounds in the dorsal part of rat OB are shown in 
Figure 6.4. These odor maps were obtained using optical imaging techniques involving 
2-deoxyglucose uptakes in the dorsal part of the rat olfactory bulb (Johnson and Leon 
2000). Similar to the images obtained from the IR spectra, esters with tropical fruit 
smells produce similar activation patterns across the OB, which is different from 
chemicals with apricot and citrus descriptors. Odor maps for Citrus and Fat descriptors, 
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Table 6.1. List of odorants and their perceptual properties 

Odorant  
number 

Odorant name Perceptual characteristics 

1 Acetyl Pyridine Nuts 

2 Iso-amyl acetate Fruits 

3 Benzaldehyde Nuts 

4 Butanoic acid or Butyric acid Cheese 

5 2,3 Dimethyl pyrazine Nuts 

6 Ethyl Butyrate Fruits 

7 Ethyl Propionate Fruits 

8 Heptanal Citrus, Fatty 

9 Heptanol Fatty 

10 Hexenal Fatty 

11 Hexanoic acid or Caproic acid Sweat 

12 Hexanol Fatty 

13 Methyl Salicylate Minty 

14 Octanol Fatty 

15 Pentanoic acid or Valeric acid Sweat 

16 Propyl Butyrate  Fruits 

17 Iso-Valeric acid Sweat 

 
 
Sweat and Cheese descriptors overlap similar to the IR-generated odor maps. Minty 
smelling Methyl salicylate and Menthol produced distinct odor maps. 
Hierarchical cluster analysis of the seventeen chemicals, shown in Table 1, present in 
both the NIST-IR dataset and the rat OB image dataset reveal similar groupings, as 
shown in Figures 6.5a and 6.5b. In both cases, four distinct clusters can be identified 
that correspond to the following four smell descriptors: Fruits, Cheese or Sweat, Fat or 
Citrus and Nuts. Interestingly, methyl salicylate, which smells Minty, is grouped with 
the nuts category in both cases. Hexanoic acid, which is a fatty acid that smells like 
Sweat, is grouped under Fat or Citrus smell descriptor using the rat OB images and in 
the Sweat cluster using IR odor maps. 

These results suggest that convergence mapping, combined with IR absorption 
spectra, may be an appropriate method to capture perceptual characteristics of certain 
classes of odorants.  

6.6   Discussion 

What molecular features contribute to the overall percept of smell still remains an open 
question in olfaction. Three theories have been proposed in an attempt to relate 
molecular properties of an odorant with its overall quality: vibrational, steric, and 
odotope theories (Dyson 1938; Moncrieff 1949; Shepherd 1987). The vibrational 
theory first proposed by Dyson (1938), revisited first by Beck and Miles (1947) and 
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later by Wright (1982) and Turin (1996) (Lefingwell 2002), suggests that vibrations 
due to stretching and bending of odor molecules are the determinants of odor identity 
and quality4. On the other hand, the steric theory initially put forth by Moncrieff (1949) 
and later extended by Amoore (1970) (Lefingwell 2002) proposes that odor quality is 
determined by the shape and size of the odorant molecules. More recently, the odotope 
or weak shape theory was proposed by Shepherd (1987). According to this theory, 
odor quality is determined by various molecular features of an odorant (commonly 
referred to as odotopes), such as carbon chain length or different functional groups.  
It is important to note that IR absorption spectroscopy is in fact the basis of the 
vibrational theory of olfactory reception. This theory has been found to be limited in 
terms of explaining structure-odor relationships (Rossiter 1996). First, enantiomers, 
molecules that form non-superimposable mirror images of each other, have identical 
IR absorption spectrum, yet they can smell differently. e.g., the S- and R- enantiomers 
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Fig. 6.5. Dendrograms (complete-linkage) revealing similar clusters a) from OB odor maps b) 
from artificial odor maps formed from their IR absorption spectra. The seventeen common 
chemicals found in both databases used in this study are listed in Table 6.1.   

                                                           
4 Readers are referred to (Keller and Vosshall 2004) where using psychophysical tests the au-

thors have found that vibrational theory alone cannot explain the overall smell of an odorants. 
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Fig. 6.5. (continued) 

of carvone have smells of caraway and spearmint, respectively. Second, isotopic 
substitution affects the IR spectrum but does not change the perceived smell. Hence it 
is important to realize that, in the general case, it will not be possible to predict the 
organoleptic properties of chemicals from their IR absorption spectrum alone. 
Nevertheless, IR spectroscopy has been successfully employed in the food and 
beverage industry for determining their chemical composition (fat, fiber, moisture, 
carbohydrates etc.,), demonstrating that this method might be well suited for process 
monitoring and control in these applications (Li-Chen et al. 2002; Anderson et al. 
2002; Osborne and Fearn 1988). 

The neuromorphic scheme employed an affinity space to cluster sensor features 
with similar selectivity. Conventional statistical pattern recognition approaches for 
clustering operate in the feature space, where each input dimension corresponds to a 
particular feature (or sensor). Figure 6.6a shows a hypothetical example where multiple 
samples from two odorants (A, B) have been sampled with a two-sensor array (S1, S2). 
Samples that belong to the same (odor) class cluster together in feature space, as shown 
in Fig. 6.6. a. In contrast to feature space, each dimension in affinity space corresponds 
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Fig. 6.6. Clustering in feature space and in affinity space.  (a) Samples of the same class pro-
duce similar response across sensor array, and therefore cluster together in feature space.  (b) 
Features that produce similar response to different odors (classes) cluster together in the affinity 
(class) space.   

to a particular (odor) class.  Features that provide similar information regarding the 
different classes cluster together in the affinity space.  As an example, in Fig. 6.6. b all 
features of type S1 provide high response to class B and low response to class A; as a 
result they can be clustered together.  In contrast, all features of type S2 provide high 
response to class A and low response to class B, therefore form a separate cluster. This 
basic principle underlies the proposed chemotopic convergence model. A more 
detailed treatment on the novelty of this approach and its formulation as a 
dimensionality reduction technique can be obtained from Perera et al. (2006)5. 

6.7   Summary 

We have presented a neuromorphic approach for correlating instrumental/sensor data 
of odorants with their organoleptic properties. This approach comprised of two 
complementing components: (1) a model of early olfactory processing, which provides 
odor images that are qualitatively similar to those observed in the OB of animals, and 
(2) an instrument (IR spectroscopy) that provides high-dimensional data and captures 
some information consistent with the odotope theory. Our results show that artificial 
odor maps of chemicals generated from their IR absorption spectra form clusters that 
match those obtained by clustering the rat OB images of the same set of chemicals. 
More interestingly, each of these clusters uniquely identified a specific smell 
descriptor: Fruits, Cheese or Sweat, Fat or Citrus and Nuts.  Though encouraging, our 
results are preliminary at best, as our analysis is limited to those odorants that are 
common among the NIST and Leon Lab’s databases. Further investigations are 
required to study the relationships among the three representations of an odorant: 

                                                           
5 A related approach to evaluate contribution of a single element in a sensor array has been 

independently proposed by Niebling and Muller (1995). 
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stereo-chemical molecular features (Pelosi and Persaud 2000), olfactory bulb images 
(Johnson and Leon 2000), and organoleptic descriptors (Dravnieks 1985). However, as 
rightly pointed out by Sell (2006), the complexity of the problem might make such 
relationships hard to uncover.  
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