Organic Electronic Materials by Design: Finding a Needle Through the Haystack

Prof. Geoffrey Hutchison & Dr. Noel O'Boyle

Department of Chemistry University of Pittsburgh

School of Pharmacy University College, Cork

ACS - CINF Cheminformatics & New Materials March 22, 2010

http://hutchison.chem.pitt.edu

The Hutchison Group

Benefits of Organic Electronic Materials

So What's Our Target?

Consider charge transport:

IOI20 Possible Molecules!

Varia 1/

Organic Bulk Heterojunctions

Experimental Progress (Slow)

McGehee, et. al. *Mater. Today* (2007) 10 p.28

Heeger Efficiency Criterion

First Step.... "Diversity Library"

- Primitive level:
 Do we find *anything* which meets our target?
- Secondary: Key "structural features"
- And...
 Use these for further screening (new properties?)

Some Hits, New Targets?

55

57

S

96

ÇΝ

NÇ

58

NO₂

n

O₂N

·

100

S

Some Hits, New Targets?

Wait...What About Everything Else?

- Criteria address two steps
- Still need to understand
 - exciton diffusion
 - charge recombination
 - charge separation
 - charge transport
- Not to mention:
 - Absorption Intensity
 - Disorder, Defects
 - Charge Transport
 - Stability, Solubility
 - Synthetic Accesibility

incident

charges at electrodes

Cheminformatics Pipeline for Organic PV

- Combinatorial problem:
 - I50+ monomers
 - I-3 in each co-polymer
 - Symmetry & sequence
- Generate a LARGE database
 - Filter for electronics
 - Filter for photonics
 - Filter for chemistry
- Compute & analyze

Implementation Details

- Monomers as SMILES
- Pick a dimer (catenate strings)
- Enumerate possible oligomers
- **Open Babel**: Generate 3D coords
- Open Babel: Conformer Search
- Gaussian: Geometry Optimization
- Gaussian: Excitation Energies
- cclib: Extract Data

Closing the Loop

Standard Computational Chemistry

Genetic Algorithm "Needle-Finding"

Target Function for Genetic Algorithm?

Efficiency

Distance to Maximum

Green: Exhaustive Search **Red**: Genetic Algorithm

Predicted Efficiency

Performance of GA

- Test on tetramers vs.
 exhaustive search
- Explored ~4% of total space
- Found on average:
 - 7.2 of top 10 candidates
 - 58.7 of top 109 candidates
- New strategy for hexamers & octamers
 - GA followed by local search
 - Pick top monomers

Future Directions

- Allow more elements in monomer database
- Allow GA to mutate monomers
- Add screening steps
 - Solubility
 - Synthetic accessibility
 - Crystal packing
 - Conductivity?

Sequences exist in synthetic polymers too...

Courtesy Prof. Tara Meyer, U. Pittsburgh

Take-Home Messages

- Use cheminformatics tools!
 - Generate diversity libraries for organic electronics
 - Build workflows for property prediction
 - Genetic algorithms for finding novel targets
- We've developed efficient screening for organic photovoltaics
- Next step: new monomers & sequence

Visual Analysis? CINF Talk: Tomorrow @4:20 PM