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(n + 1)-dimensional gated fluorescence signals induced by n impulsive pulses are calculated using a
superoperator formalism. The signals are given by a time-and-frequency convolution of a bare signal, expressed
in terms of multipoint dipole correlation functions, with a gating spectrogram. Different groups of quantum
pathways can be separated by their variation with the phases of the pulses (phase cycling), as is commonly done
in nuclear magnetic resonance. Comparison is made with heterodyne-detected coherent signals.
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I. INTRODUCTION

Coherent multidimensional signals are usually detected by
interference with a reference (local oscillator) beam [1-3].
This heterodyne-detection mode provides both the amplitude
and the phase of the signal field. Various groups of Liouville
space pathways of the molecular density matrix that contribute
to the signal may be separated by simply looking at signals
generated in different phase-matching directions. A different,
incoherent fluorescence detection is, however, the method
of choice for single-molecule spectroscopy, since it is more
sensitive and background-free [4-6]. Fluorescence is virtually
isotropic in space; nevertheless, the groups of pathways may
be separated by their dependence on the phases of the pulses.
This phase-cycling protocol is common in nuclear magnetic
resonance [7-10], where the signal is isotropic as well, since
the sample is much smaller than the wavelength.

Coherent wave-mixing spectroscopies detect a macroscopic
electric field generated by a collection of molecules driven
in phase by the external laser pulses. Fluorescence is an
incoherent technique: it does not generate a macroscopic
field (the average field vanishes), but produces photons that
can be detected. Fluorescence signals do not carry phase
information but this can be retrieved by time-and-frequency
gating [2,11-15].

Both coherent and incoherent signals can be recorded vs
several parameters of the incoming pulses, thus producing
multidimensional signals. Fluorescence induced by multiple
phase-controlled pulses and no gating have been carried out in
bulk samples by several groups [16-21]. The technique was
recently extended to single molecules [22]. Single-molecule
spectroscopy typically resolves slow fluctuation timescales
(milliseconds and longer) [4,23]. Gated fluorescence signals
offer a powerful femtosecond window for ultrafast molecule
events, thus combining high spatial and temporal resolution.

In this paper, we use an intuitive diagrammatic representa-
tion for incoherent signals to derive closed microscopic corre-
lation function expressions for multidimensional spectroscopy
with gated fluorescence detection. The driving laser pulses are
treated as classical, but a quantum description of the detected
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optical field is used. An application is made to a three-band
exciton model system. Bulk signals can be calculated by a
slight modification of the single-molecule results.

II. INCOHERENT SIGNALS GENERATED IN RESPONSE
TO SEQUENCES OF IMPULSIVE PULSES

Our description of incoherent signals starts with the
light-matter Hamiltonian in the rotating-wave approximation
[24,25]:

H=Hy+ H',
H = —E'(r=0,0)V — E(r =0,n)V*,

ey
@

where the field operator E f(r,t) + E(r,t) and the dipole
operator V! 4 V have been partitioned into their negative and
positive frequency parts. The molecule is located at position
r = 0. To describe the fluorescence signal, E(r,t) is taken
as a field operator for the spontaneous emitted modes and a
classical function for the other modes, which represent the
incoming laser pulses.

We shall calculate the fluorescence detected using a gate,
whose input is located at r ¢, which consists of a time gate F;
centered at time £y followed by a frequency gate F; centered
at frequency wy [2,12—-14]. The temporal gate first transforms
the signal field as

E(rg,t") = F,(',10)E(rg.t). 3)
By applying the spectral gate centered at wy, we obtain the
time-and-frequency-gated field E, (o') = Fy(0'; wg) E (o),
with E(w) = f_oooo E(t)e!® dt. Note that the signal depends on
the order of gating operations. Applying the spectral gate first
will result in a different signal that can be calculated similarly,
as shown in Appendix C. Combining the two gates, the gated
field E;, is finally related to the original (bare) signal field by

Em("DJ)=/ dt| Fs(t — t1,w0)Fi(t1,t0)E(rg.t1), (4)

o0

where rp is the position of the photon detector. To simplify
the notation the propagation between rs and rp is included
inside the spectral gate function.
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The gated fluorescence signal is given by [11,26,27]

o0
S(wo,to;T) = f dt"(E}\(r p.t")Ess(rp.t"),

—0Q

&)

where the angular brackets in the correlation function are
defined as (- - -) = tr(- - - p). Here I' denotes a set of parameters
that characterizes the incoming laser pulses. These will be
specified later. The signal will be displayed vs these parameters
as well as the gating parameters wy and fy. We further
define the bare signal (which is not generally an experimental
observable)

SB(ll,w/;F)Z/ dT(ET(rD’tl_i_T)E(rD’tl))e—iw’rdT.
0

(6)
We shall also introduce the gating spectrogram [12,14]:
W (wo,t0; @', 11)
o0 o0 .,
= dt”/ dre'”TFX (1" — 1y — t,0)
2z —00 —00 ]
x F(ty + T3t0) Fs (1" — t1;00) Fi (113 10). (M

It can be also recast in the form

o0
W(a)O»tO;w,,tl):/ —— | Fi(@,00)*Wi(11,0 — o' 10),
oo (2m)
®)
where
o0 .
Wi = [ FOwbn -+ ©)

By combining Eqs. (4)—(9) we get the final expression for the
signal:

S(wo,to; T)
o o0
Z/ dl]/ da)/W(a)(),to;a)/,t])SB(l‘],a),;F)—I—C.C.
(10)

The gating spectrogram thus connects the observed S and
the bare Sp signals and controls the temporal and spectral
resolution of the measurement.

To connect the bare signal S with the molecular properties,
we use the solution of the wave equation with a point-dipole
source V located at the origin r = 0 (see Appendix B) [28]:

E(rg,1) = AVu(0,1 — |rgl/c). (1)

The prefactor A is given by Eq. (B6). To simplify the
expressions, we will omit in the following the time retardation,
assuming that the time scale at the detector is adjusted
accordingly [#; on the left-hand side of Eq. (12), and following
should read #; + |rg|/c]. Substituting Eq. (11) in Eq. (6), we
obtain for the bare signal

00
SB(II,(,()/; I = |A|2/0 d‘Cé'_le(V;_rI(ll + T)VH(II».

12)

The subscript H indicates that these operators are in the
Heisenberg picture, that is, that they evolve with the full
Hamiltonian, Eq. (2).

PHYSICAL REVIEW A 00, 003800 (2011)

We shall adopt a superoperator notation, which allows to de-
rive compact expressions in Liouville space and clearly reveals
the relevant pathways [1,29-31]. For any operator A we define
the “left” and “right” superoperators AL X = AX, A X = XA
by their action on any other operator X. We further introduce
the two linear combinations A} = %(AL + Ag), A_=A; —
Apg. These definitions imply that A, X = %(AX + XA) and
A_X = AX — X A. Using the superoperator representation of
the interaction picture [30,31], we get

Sp(ty,@';T)

o0
= |A|2/ dze—’wfa§+,a§tr[TV,i(r1 +T)Vi(t)
0

i [ ,
xexp(— r—l/ dle_(T1)>,00i|- (13)
0
The operators V are in the interaction picture defined as
V(t) = exp(i Hot /h)V exp(—i Hot /h), (14)

and here we used the formal expression for the density matrix:

p(t) = T exp (—;l—/ HL(r)dt) 00-
0

Here T is the time-ordering operator, which rearranges the
super operators to its right in order of increasing time from
right to left. We are using partial derivatives, since the entire
expression inside the trace can be viewed as a function of the
variables #; + 7 and #; [cf. Eq. (12)].

Equation (13) is the key formal result of this paper. Together
with Eq. (10) we have thus recasted the gated signal in terms
of the underlying microscopic molecular dynamics.

We next consider two limiting cases for the detection. For
an ideal frequency gating, when no time gating is applied, we
can set F;(¢',t9) = 1 and obtain

s)

W (wo.t0; ',11)
1 oo o0
=— [ a / dre'”
2 —00 —00
XF:(IN—I] —T,wo)Fs(Z‘N—tl;wo). (16)
Assuming Fy(t;wp) = e ®7e~74(t) with y — oo, we ob-
tain the ideal spectral gate:

W(wo,t;0',11) = 8(0" — wp).

A7)

Substituting Eq. (17) in Eq. (10) gives the spectral resolved
signal:

o0
Ss(a)o;F):/ dt; Sg(ty,wo;T) + c.c. (18)

[o¢]
Combining with Eq. (12), we finally obtain
Ss(wo; ')

= |A|2/ dn/ dte‘iw°r8,21+r8,2]tr|:TV,1(t1 +1)
—00 0

X VL(ll)eXP< - Fl_z/ dr HL(TI)),OO] +cc (19
0

Assuming that the density matrix at time ¢, is diagonal, that
the coherent pulses and the gate are well separated, and that
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there are no photons in the system at 1, we get the following
for the matter density matrix p,:

pe(t) =Y Py(tn)In)(nl, (20)

Py(n) = tr [In)mlTeXP (—;l—/ | dﬁHi(r])) /Oo], 21
0

if the molecule can be described by a nuch of levels n.
Equation (19) then becomes

S.@uiT) =B Y ol [ dnP1)8@n ~ 0m). (2)

m<n >

where the sum runs over molecule states with ¢, < &, and

. 3y 12h .
B = 372 A1>3eg/h, With Wnm = €m — &n. D = 2Vl 5

-3
the radiative decay rate from state m to n [24]. et
The signal in this limit can be alternatively derived by
summing over the temporal derivative of the photon number
n; of all modes with frequency wy and integrating over time:

Sy(wo; T) o Z /oo an; (1) dt. (23)

i,wi =w(

We next turn to the second limiting case of ideal tem-
poral gating. Here, we assume no frequency gating and set
Fy(t,m0) = 8(7):

1
W(wo,to; ' ,11) = ZF,*(tl;fo)Fz(fl;tol (24)

Taking a short time filter with | F,(¢;,1))|> = 8(t; — ty) we get
the ideal temporal gate:

, 1
W(wo,to; w',t1) = =—58(t; — to). (25)
21

Substitution of this in Eq. (12) gives the temporally resolved
signal:

1 oo
Si(wo,t;T) = —/ do'Sp(t,@';T) +cc.  (26)
27 J_ o
Inserting Eq. (13) gives
Si(wo,1;T)
_ AR g [T areor gz, o] v
=5 w | Te 0 tr R+ 1)
—00

i o0

x Vi (t)exp <—;l / dt Hl(rl)) p0i| +cc. (27)
0
The integrations can now be carried out and this finally gives

S,(t;T) = |A]*02 a%r[Tv;(t)vL(t + 1)

t+t vt
+c.c. (28)

i [ ,
XCXP(—E/ dTlH_(Tl)>,00]
0 =0

In order to simplify this formula further, we again assume that
the matter density matrix is given by Egs. (20) and (21) and
the signal finally becomes

S,(t;T) =Y BT, P(t), (29)

r,= Z @i U - (30)

m<n
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The spectrum in this limit can be alternatively derived by
summing over the temporal derivative of the photon number
n; of all modes with frequency wy:

S(#;T) Zw,-a,ni(r). 31)

i,w;

III. FLUORESCENCE OF A THREE-BAND MODEL
SYSTEM IN RESPONSE TO FOUR
IMPULSIVE PULSES

We now apply the formal expressions derived earlier to the
three-band model system shown in Fig. 1 subjected to four
temporally well-separated excitation pulses:

E@) = El(t)eiw|l+i<ﬂ1 + Eo(t — tl)eiwgr-q—i(pz
+E3(t —1 — tz)eiw3r+i‘p3
+E(t—t —th— )T L ce. (32)

The pulse envelopes E;(¢) are temporally well separated,
and we assume impulsive fields E;(¢) = E;§(¢). Furthermore,
hereafter we treat the four excitation pulses as classical.
This generic model can represent, for example, excitons in
molecular aggregates or semiconductors.

The density matrix Eq. (15) calculated to the fourth order
in the fields has 2* = 16 pathways:

.\ 4
p® = (%’) H' G(t)H G(t)H G(t)H py,  (33)

with the interaction picture operators H’ (t) =

exp(; Hot)H' exp(—+ Hot) and G(t) = 6(1) exp(— i Ho_1).

6(t) is the Heaviside step function that ensures causality.
When recast in Hilbert space, Eq. (33) reads

4
—i
p® = <7) [H' (1) + t, + 13),

[H'(t1 + 1),[H'(t1),[H, po 1. (34)

Equation (34) can be divided into 16 groups of terms
with respective phases ¢; £ ¢, &= ¢3 = ¢4. Each of these
groups can be measured using phase-cycling protocol, which

f

9

FIG. 1. The three-band model system used to calculate the
fluorescence signal.
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combines experiments with different phases [7-10] (Fig. 2). rotating- wave approximation, the density matrix correspond-

Hereafter we select the phase ¢ = @1 + @2 — @3 — @4; signals ing to the phase shown in Fig. 3 has four contributions labeled

with other phases can be calculated similarly. Within the @1)—-(@v):

Pyt + 1+ 13) = (Z pi(g1.8)181) (g2l + ) piilez.es)lea)(es + Y piiiler.es)lea)(es| + Y p,-v(fl,fz)|f1><fz|>.

8182 ee3 ees fifz

To simplify the expressions we assume impulsive pulse E;(t) = E;5(¢). We then get

4
pi(g1,82) = (7’) tr[]g2) (g11VLG(t3) VLG (82) V) G(11)V] pol E,,

4
pii(ez,e3) = — (#) tr[|e3><62|VRG(t3)VLG(t2)VZG(tl)VZPO]Eq&a

4
i N
piii(e2,e3) = — (7) tr[|e3><62|VRGfl;(IS)VLG(IZ)VLIG(tl)VLTPO]Eqba

.\ 4
—i
i, o) = (7) all L) f1lVRG (1) VRG (1) V] G V] pol Eg,
where we have defined the auxiliary parameter:

E¢ — ei<ﬂ1+i<ﬂ2—i<p3—i<ﬂ4 E, EZE;kEZei(wz—wz—am)tl—i(w3+w4)tz—iw4lz

Equations (36)—(39) can be transformed to Hilbert space:

N\ 4
pi(g1.82) = (71) (g1lV({t + 0+ 16)V(H +0)Vie)VI0)olg2) Eg,

.\ 4
—1
pii(er,e3) = — (7> (2| V(ty + 1) V) VI0)po V(1 + 12 + 13)]e3) Ey,

—7 4

pii(er,e3) = — (71) (2l V(ty + 12 + 1) VI VI0)po V(11 + 12)le3) Ey,
N\ 4

ev(f1, 2) = (# (AIVIEDVI0)poV(ty + 1)Vt + 1+ 13)] o) Eg.

We now expand Egs. (36)—(39) in eigenstates and use the approach of [32] to incorporate the finite pulse envelopes:

1
pi(81,82) = TF Z P()»gl ngez Vezfvfel VelglEl(welgl - wl)EZ(a)fel - wz)E;(wfez - w3)EI(w62gz - w4)

erea, f
X exp ( = [ Weyg)13 = Ver13 — 1W gty — Vg Ty — iWeyg 11 — Vengltl)’
1
W@fﬂ=—%'2:%&WﬁWan%mE&%&—wﬂ&@Wr%@EﬁWa—wﬂﬁ@%m—M)
g.enf
X €Xp ( - iwfzgl 13— Ve,g1 13 — iwf!s'lt2 —Vial — iwelgltl - yelgltl)’
1
pii(e2,€3) = =3 Y PosVersVie Ves Ve E1 (@ — 01) Ex(@fe, = 02) E3 (0o, — 3) Ef (@e, — @4)
e, f.81
X €Xp ( - iwf63t3 — Vsest3 — iwfgl b —Vigla — ia)elgltl - yelgltl)’
1
piv(f1,f2) = I"F Z Po.g Ve Verg Ve Ver y En (welgl - wl)Ez(wflel - wZ)Egk(wezgl - CU?’)EZ< (wfzez - 0)4)
€1,€2,81
X exp ( - iwf]ezt3 —Yhels — iwflgltz —Vhaale — iwe]gltl - ye]gltl)'

Here, we have defined Py, = P,(t = 0).
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FIG. 2. Experimental
measurement.

setup for the gated fluorescence

We used for the example of Egs. (45)—(48) the coherent
limit, where the Green function matrix elements in the system
eigenstate basis v read

Gy (1) = 0(1) exp(—iwyt = yivl), (49)

where w,, is the frequency and y,, is the dephasing rate of
the vV’ transition. More complex relaxation models may be
used together with the equations before and the following
equations [1,33]. For example, G can depend on a set
of collective bath coordinates Q that satisfy a Markovian
dynamics (master equation, Fokker-Planck equation, etc.). We
then have G(Q, Q’,t) and the correlation functions are given
by path integrals over the trajectories of Q. G can describe
how states shift due to solvent reorganization [1].

Assuming fast dephasing, p® becomes diagonal and we
have }°  pi(e2,e2) = =3, pi(g1.81) and ), pii(e2,e2) =
— Zfl ow(f1, f1) we then get

(4)—<Zpue2|€2 (ea] — Z 1g1|gl gl|>
(ZPlvf,m f1|+ZPW,|e1 e1|) (50)

S
Pi g = pi(g1,81),
Py, 1, = piv(f1, /1)

It is clear from Eq. (50) that tr(o¥)=0. This follows
immediately from Eq. (33) since this is given by the trace
of a commutator. In fact, the trace of all p™, n =1,2,...
must vanish so that the trace of p© is conserved.

Pji e, = pii(ez,e2),
(51
Pii e, = piii(er,er),

| 2
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92 €2
SITE Vv RZE SV
t3 €9 es3
RZE SV f <o -3
to !
(25 7aVaVaVa® o P2 AN
11 €1 €1
P1 A P1 ]
g1 g1 g1 g1
(1) (iii)
© f
€2 €N -0y €N -0y
t3 €2
- (P3N <N -3
tg / f
P2 AN Y2bXaVaVaVa® =
t1 €1 €1
1NN ("2 RaA%%e o
9 g1 9 g1
(i) (iv)

FIG. 3. The density matrix of the system shown in Fig. 1 driven
by four impulsive pulses. We have selected the contributions with
phase ¢ = ¢1 + ¢2 — ¢35 — ¢4 [Eq. (35)].

If we do not resolve the fluorescence into states, the signal
is given by the total excited-state population given by the
sum of three terms pj, i, and piy. If we distinguish the
states—through either their temporal [Eq. (29)] or spectral
fluorescence profile [Eq. (22)]—we can separate the P, and
P contributions.

Substituting Eq. (33) in Eq. (13), we obtain for the bare
time-and-frequency-resolved fluorescence signal

SB(w/,t/,la,lle)
|A? -
=T {a,zﬂa% [ VIG(t)V,G(t)H G(t3)
0

X H’_G(tz)H/_G(tl)HLpo]} exp(—iw't)dr. (52)

This includes all contributions £¢; &£ ¢, £ @3 & @4. Substi-
tuting in Eq. (10) yields a five-dimensional signal (we now
denote t = 1)

S(w,14,13,12,11)

o0 o0
=Re/ dt// do' S t' 13,0, W(w,ts; @', t"). (53)

Translating the superoperators into Hilbert space, the bare
signal reads

A o0
Sp(w',t',13,0,1)) = h_‘lE"’/ exp(—iw’ r)8, 420 ,tr{VJf(tl +t+n++0)VE+0+5+0[H 46 +1),
0

[H'(t) + 1),[H'(t:),[H'(0), po]11}d 7. (54
We shall now select the contribution with phase ¢ = ¢; + ¢» — @3 — @4 and obtain for the gated fluorescence [Eq. (10)]
[e.¢] oo o0 [e.¢]
SotontiD) = [ “an [ aoWennolwsim v+ [ an [ dowiennd msimein. 69
—00 —00 —00 —00
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92 g2 g2 92 €3 €3
NN NN 2aVaVa® o
T [ € NN €N € NN
ta €3 €2 fa
' SRV VVNEGYEEN S SaaY << N0y
€2
tg €3 €2
. -(P3 NN f S aYAVAA —(103 <N -3
to I fi
4 P2 AN P2 AN P2 AN
t1 el €1 €1
O1 AN @1 NN 1N
91 g1 g1 g1 0 g1
(iia) (iiia) (iva)
92 g2 g2 g2 €3 €3
€N B, SV Vp €N
7—1 AVAVAVAS o AVAVAVRS o aavava® o
2} €3 €2 f2
S WV VUV Y S SaVavary [ <N NPy
€2
t3 e3 €2
-p3 <€A~ f <A -3 < -3
to f fi
P2 "] (P2 AN P2
t1 el €1 €1
p1 "N " Raavavae o P1Anr
9 g1 g1 g1 g1 g1
(iib) (iiib) (ivb)

FIG. 4. Multidimensional fluorescence signal of the model system of Fig. 1 induced by four impulsive pulses with phase ¢ = ¢; + ¢, —

$3 — P4.

Here the contributions Sy and Sg represent the bare signal Sp (see diagrams of Fig. 4). We have three contributions to S
[pathways with (a)] and three contributions to Sf; [pathways with (b)]:

Siiia(@, 14,13,12,11) =

oo
Siiin(@,ta,13,12,11) = T E¢,/ dt exp(—i'1)d?
0

Sivb(@,1a,13,12,11) =

S:; = Siia + Siiia + Sivaa (56)
Sg = Siib + Siiib + Sivb, 57
/ |2 * .7 NAa2 2 i i T
Sia(@,14,13,12, 1) = h_4E¢/ drexp(—iwt)d, . 0; tu[VrxG(T)VLG (1) VRG(53)VLG(12)V G(t1)V pol, (58)
0
, |A|? OO . f
Siin(@',14,13,12,11) = h_4E¢/ dt exp(—ie/ 1), 0, t[VL.G(DVRGE)VRG (1) V.GV GtV pol, (59)
0
|A]? oo .
— Eo f dt exp(—i@ 1)} L UTVAGOVLGt) VLG (1) VrG() V[ GtV pol.  (60)
0
|A]? f
e O [V G(D)ViG(t)VLG(t3) VR G (1) V] G(11) V] pol., (61)
) |A|2 o0 . .
Siva(0',t4,13,10,1) = _h_4E¢ / dt exp(—iw T)aéﬂai tr[V;'zG(T)VLG(M)VRG(@)VRG(tZ)VLTG(tl)VITpO]’ (62)
0
A2 S , ,
—h—4E¢ / dt exp(—iw't)d} 0} tr[VLG(r)V;G(l4)VRG(f3)VRG(fz)VZG(tl)VZPO]' (63)
0

In Appendix D we expand these expressions in the system
states. Again we make use of the approach developed in [32],
which allows us to include finite pulse envelopes (temporally
well separated but not impulsive pulses). The total fluorescence
from state e is given by pj; and pjy; and the fluorescence from
f is given by pjy.

The corresponding coherent heterodyne-detected signal
generated at ¢4 = @] + ¢ — @3 is depicted in Fig. 5.

For completeness, we derive this signal in Appendix A
[Eq. (A8)].

IV. DISCUSSION

Coherent heterodyne-detected signals generated by # fields
(including the local oscillator) constitute an (n — 1)D phase-
sensitive spectroscopy obtained by varying the n — 1 delay
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g €2
-(p 4 NN -4 €N
t3 €2 €2
-3 € NN f < N -3
to !
P2 "N (hWaVaVaVa®
tl €1 €1
@1 A @1 "o
g g g g

® (ii)

FIG. 5. Coherent signal with phase ¢4 = ¢; + @2 — @3, Eq. (A8).

periods. The total incoherent fluorescence signal induced
by n pulses is also (n — 1)D. Additional (either spectral
or temporal) resolution of the final emitting state makes
it nD and allows to separate some groups of pathways.
Time-and-frequency gating turns the technique into (n + 1)D.
Equations (D1) through (D6) give the fluorescence signal with
phase ¢ = 1 + @2 — 3 —psandn = 4.

The superoperator formalism allows the derivation of exact
compact formal expressions for all possible signals. Each
technique depends on a different combination of pathways.
Coherent signals [Eq. (A1)] depend on any number of V_
operators but the last interaction must be V; (in fact, due to
invariance of the trace the last V, can be replaced by Vg or
V., without affecting the result). Fluorescence, in contrast,
contains several V_ followed by two operators corresponding
to the detected photons: one V; and the other V. Coherent
signals are given by causal response functions. Fluorescence
is noncausal since in this technique at least one field mode
is correlated with the material system and the signal is a
combination of response and spontaneous fluctuations [29,34].

With small modifications the results of this article also apply
to signals from bulk samples. The field produced at distance z
by a sheet of identical emitting dipoles with 1 dipoles per unit
area is [28]

E(r.1) = —ﬁVy(O,t —z/0). (64)

Equation (12) now reads
o0
Sp(t,0;T) = |As|2f dre™ ™ (Vji(t + DV (), (65)
0
with Ag = —n/(2epc). All our results apply except that the
prefactor A is modified and only a first instead of a second

time derivative is applied to the last two interactions. In the
frequency domain we have for a single-point dipole source,

1 elw/alr
E(rw)=—-——ow V(0,w), (66)
goc? Am|r|
compared with the bulk formula for a sheet:
T
E(r,w) = —iwo——2¢ /v (0,w). (67)
2&0C

S(”)

N3 -
son(Tns -+ 1) = (%) tr{H'(th + 62+ +t)[H @t + -+ ty_1), ... .,[H'(t1 + )[H'(t1),[V(0), p1111}.
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The extra i factor implies a 7 /2 phase shift between the two
fields.

In our calculations (Fig. 4), we assumed that the gating
is temporally well separated from the excitation pulses. The
V. and V§ operators are therefore the last. We note, however,
that Eq. (13) is more general and can also describe Raman
processes, where other time ordering contributes. In each
diagram either V; or Vi must be the last but the other one
can be at any time; fluorescence is generated by pathways,
where the V, and Vg are temporally well separated from
the excitation pulses. Otherwise we have additional Raman
pathways.

Finally, we would like to point out the possible extension to
a different incoherent technique: time-resolved photoelectron
spectroscopy, where electrons rather than photons are detected.
Phase-sensitive photoelectron detection has been reported
[35-37]. Multidimensional photoelectron spectroscopy can be
calculated by combining the present results with the formalism
of [38,39]. This will be an interesting topic for future
study.
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APPENDIX A: THE COHERENT HETERODYNE SIGNAL

Starting with Eq. (15), the density matrix to the nth order
is given:

p" =H'_ (Z n) Glty—1) -+ G()H'—(11)
i=l1

x G(t))H'_(0)p©. (A1)
The coherent n-D signal is given by
S\
Sty ... 1) = (%) tu[H, G(t,)H. --- G(t)
x H . G(t;)H  pol. (A2)

Compared to Eq. (13), we see that we have only one V,
operator, where we have in the incoherent case a VL and
Vr operator. Since each V_ represents a commutator this
constitutes 2" possible pathways. This can be seen by recasting
Eq. (A2) in Hilbert space:

(A3)
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The third-order coherent signal has the form

3
i
Scon(13,12,11) = (7) tr[H; G(t)H.G(t) H. G (1)) V_pol,

N3
Scoh(13,12,11) = (%) tr{H'(t1 + 1, + 63)[H'(t; + t)[H'(11),[H'(0), po111}.

This is the analog to Eq. (52).

PHYSICAL REVIEW A 00, 003800 (2011)

(A4)

(A5)

Again we focus on the signal with phase ¢4 = ¢; + ¢, — @3. Other signals can be collected similarly for our model. In the
rotating-wave approximation this has the two contributions (Fig. 5)

. 3 .
—l1 —1 . .
Seon(f3:12,11) = (—h ) t[VLG(6:)VLG(t)VG(t1)V, pol Ey — (—h ) [V, G(13)VrG 1)V, G(11) V] pol E.

3
(A6)

These can be recast using ordinary (Hilbert space) correlation functions:

3 3
Seon(t3,12,11) = (%) a[V(t + 102+ 1)V + )V VI0)pol Ey — (7’) tr[V(ty + 02)V(t1 + 12 + 13)VI(t)VI(0)00] Ey

(A7)

Expanding Eq. (A6) in system states, using the coherent limit Eq. (49), and using the approach of [32] to include the finite field

envelopes finally gives

.\ 3
—1 . .
Scoh(t3’t2stl) = <_) Z PO,ngez Vezf erl elgEl(welg)EZ(wfel)E (wez f)E (wgez) exp ( - lwezgt3 - yezgt3 - lwfgt2

h

g.er.ex, f

s ot =)~ (1) Ve Vo Vi Ve Fr o) o) E o) i)

g.e1.e2,f

X exp ( —iWfe,l3 —

APPENDIX B: THE FIELD GREEN’S FUNCTION

Unlike in the rest of the paper, all operators in this appendix
are given in the Heisenberg picture. The electric field obeys
the usual homogeneous wave equation derived from Maxwell
equations:

? 1
VxV x E(r.0) — S E(r.0) = > —Vyu(r.w). (Bl)
c goc
Here V is the molecular dipole moment and ¢ is the vacuum
permittivity. Since Eq. (B1) is linear it applies also for a
quantum field, where the electric field and V become operators
[24,39]. If we restrict ourselves to the transverse part in far
field, this equation simplifies to

2
1
VZE(r,o) + —E(r w) = -0’ —Vu(r.w). (B2)
&oC

This equation can be solved using a Green function. For
simplicity, we assume the Green function for an infinite space
and ignore the polarization.

The Green function solution of Eq. (B2) for a single-point

dipole molecule at r = 0 is [28,40]
1 el

E(r,w)=——ow Vu(0,w). (B3)
soc Am|r|
In the time domain, this gives
1
E(r,t)= 8 Vu(0,t — |r|/c). (B4)

cz4||

Viests — iwpgly — Yygly —

(A8)

ia)elgtl - Vmgtl)-

The electric field which enters the gate at position r¢ is given
by

E(rg,t) = AVy(0,t — |rgl/c), (B3)
1 1

= B6

soc? 4w |rg| (B6)

To simplify the expressions, we will omit in the following the
time retardation, assuming that the time scale at the detector
is adjusted accordingly. We now write Vy(0,t — |r¢|/c) =
07V (0.1 — |rgl/c).

The detector geometry may affect the signal, depending if
an angle is used with a lens or if it enters in parallel. These
details will affect the prefactor A and are not considered here.

APPENDIX C: GATING SPECTROGRAM FOR
FREQUENCY GATE FOLLOWED BY TEMPORAL GATE

When the frequency gate is applied first, the gating
spectrogram can be calculated similar to Eq. (7) and has the
form [13]

W(wo,to; ', 11) = |

X Fs*(f// — 1 — T,w0)F(t"; 19)
X Fy(t" — t1; wp).

[e ] o0 .
/ /
dt” / dte'“TFX(t";10)
-0

(ChH

For the signal Eq. (10) holds in this case as well but the gating
spectrogram is now given by

1
W(wo,to; @' ,1y) = —/
2w J_

oo

dt"|F(t"; 1) PWy(t" — t1,0'; )
> (C2)
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with

Wi(t,0's wp) = /

—00

APPENDIX D: SUM OVER STATE EXPRESSION

PHYSICAL REVIEW A 00, 003800 (2011)

FOR THE FLUORESCENCE SIGNAL WITH PHASE

o0 d=01+0:— 03— ¢4

dte' T FX(t — t,w0) Fi(t; wp).

(C3) model system of Fig. 1 in the coherent limit Eq. (49):

Siia(@,14,13,12,11) =

S{‘;b(a)/ytﬁht:‘;’tz’tl) =

Siiia(@, 14, 13,12,11) =

S{‘;ib(a)/yt49t3st25t|) =

Siva(@' 14, 13,12,11) =

S;\:/b(a)/vt49t39t21t1) =

2
|A]
ei,e2,e3,1.81.82
i

_(a)/ + a)g2€3) + iygzes

x E§ (Cl)fez - a)3)EI (w€381 - a)4) Veies Vesgr Veres Ver t Ve Verg

X exp (—ia)emm — j/gze3t4) exp (—iwezglt3 = Yerg 13 — ia)fgltz — Yfal2 — ia)elg]tl — )/glglll),

Al? . .
|h_l Z PO,gl (_lwezgz - yezgz)z[_lwgzes - (J/(’zez - yezgz)]zEl (welgl - wl)E2(wf€1 - w2)

ei,e,e3, f,81,82

—i
X E; (a)fez - 0)3)E4T (CUE}gl - CU4) Vg1€3 V€382 ngﬁz Vg2foe] V€1g| (_a)/ +o ) — l]/
€282 €282

X exp (—ia)emm — j/gze3l‘4) exp (—ia)ezg] 13 = Ve,g 13 — ia)fgltz — Yfal2 — ia)glg]tl — )/g]glll),

Al? .
|h_l Z Poygl (_iwg2€3 - ygzes)z[_lwezgz - (]/ezeg - yg2€3)]2E1 (welgl - wl)E2(wf€1 - wz)

er,e2,e3, f,81,82

i
X E; (we3g1 - (1)3)E4T (wf€2 - CU4) Vg1€3 V€3g2 ngez VEszfel Ve1g| —(C()/ + o ) + l]/
82€3 82€3

X exp (—iw32€3l4 — j/gze3l‘4) exp (—iwfg3l‘3 = Yfesl3 — ia)fgltz — Yfal2 — ia)g]gltl — Velgltl)v

Al? . .
|71_J Z Poygl (_lwezgz - yezgz)z[_lwg2€3 - (Vezeg - yezgz)]zEl (welgl - wl)E2(wf€1 - wz)

er,e2,e3, f,81,82
—i

(_w/ + w€282) - iyezgz

x E3 (wezgl - a)3)EZ (wfez - a)4) Veies Vesgs Vares Ver f Vie, Verg

X exp (—iw3263l4 — j/gze3l‘4) exp (—iwf63t3 — Yfesl3 — ia)fgltz — Yfal2 — ia)g]gltl — Velgltl)v

Al? . .
_| J Z Po.g, (_lw€3.f2 - Ve,wfz)z[_lwflez - (yflf2 - yeafz)]zEl(we]gl - a)l)EZ(wflel
ere2,e3, /1, f2.81

i

_(a)/ + we3f2) + iyf-’sfz

XESF ((’06’281 - (’03)EZ (a)fzez - 0)4) Veiex Ves £y Vises Ves fi Ve, Verg,

X exp (—iwf]f2l4 — yf]f2l4) exp (_iwf]gzt3 — Vf1e2t3 — iwf]gllz —Yha h — ia)e]gltl — )/g]gltl),
|AJ? . 20 . 2
— i Z PO,gl(_lwfm - Vflez) [—la)e3f2 - (Vflfz - me)] El(welgl - a)l)Ez(wflel
er,ex,e3, f1, f2.81
—i

(—a)’ + wflﬁz) - iyf1€3

X E; (wezgl - w3)EZ (wfzez - w4) Vglez Vez.fz Vf2€3 Vesfl Vf1€1 Velgl

X exp (—ia)flfzt4 — yf|f2t4) exp (—l'a)f]eZtg, — Yfiel3 — ia)flgllz —Yhagl2 — iwe1g|tl — Ve,g.tl)-
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h_4 Z PO,gl (_ia)gzes - y82€3)2[_iw€282 - (Vezeg - ygzes)]zEl (welgl - wl)E2(a)f€1 - 602)

Below we expand Eqgs. (58)—(63) in eigenstates using the

(D)

D2)

(D3)

(D4)

— )

(D5)

— w)

(D6)
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