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Abstract
We give an iterative algorithm for phase estimation of a parameter θ , which
is within a logarithmic factor of the Heisenberg limit. Unlike other methods,
we do not need any entanglement or an extra rotation gate which can perform
arbitrary rotations with almost perfect accuracy: only a single copy of the
unitary channel and basic measurements are needed. Simulations show that
the algorithm is successful. We also look at iterative phase estimation when
depolarizing noise is present. It is seen that the algorithm is still successful
provided the number of iterative stages is below a certain threshold.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

Phase estimation is of fundamental importance to quantum information and quantum
computation. It is related to some very important problems such as estimating eigenvalues
[1–4], the factoring and search algorithms [5, section 5.3], precision measurement of length
and optical properties, and clock synchronization [6].

Suppose that we have a unitary matrix Uθ depending on an unknown parameter θ and that
one of its eigenvectors |u〉 is completely known; furthermore Uθ acts on |u〉 in the following
way: Uθ |u〉 = ei2πθ |u〉, where θ ∈ [0, 1). The task of phase estimation is to estimate the
eigenvalue ei2πθ and consequently θ , as accurately as possible. In this paper, we investigate
phase estimation of a unitary matrix with known eigenvectors, which acts on a two-dimensional
Hilbert space. In particular, we look at unitary matrices of the form

Uθ =
(

1 0
0 ei2πθ

)
, (1)

where θ ∈ [0, 1). We will think of θ as being a point on a circle of unit circumference, and
confidence intervals for θ as arcs on a circle of unit circumference, known as confidence arcs.
We define the distance between an angle θ and an estimate θ̂ as

|θ̂ − θ |1 = min((θ̂ − θ)mod 1, (θ − θ̂ )mod 1). (2)
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It is important to recognize that the angle θ is an angle on the circle, and so in this paper all
arithmetic is modulo 1.

We now introduce the basic notions of quantum states and positive operator valued
measures (POVMs). A quantum state is represented by a density matrix ρ and satisfies
tr{ρ} = 1, ρ = ρ† and ρ � 0. In this paper, we will mainly be dealing with pure states. Any
state which can be written as ρ = |ψ〉〈ψ | is said to be a pure state; we will often refer to a
pure state by its state vector |ψ〉. Given a quantum state ρ, we can measure it using a POVM
M = {Mm}, obtaining outcome m with probability given by the Born rule

p(m) = tr{ρMm}. (3)

A POVM M = {Mm} satisfies Mm = M
†
m, Mm � 0 and

∑
m Mm = I.

We shall quantify performance of phase estimation schemes in terms of the expected
fidelity 〈F(Uθ̂ , Uθ )〉 between Uθ̂ and Uθ . We use the cost function

1 − 〈F(Uθ̂ , Uθ )〉 = 1 −
〈∣∣ tr

{
U−1

θ̂
Uθ

}∣∣2〉
4

(4)

and look at its asymptotic scaling with n—the number of times that Uθ is used.
For a simple phase estimation approach where Uθ is used once on n identical copies of

some input state (see section 2.1), we get 1 − 〈F 〉 = O(1/n). This is known as the standard
quantum limit [6]. However, it has been shown that when n copies of the channel are available
[7–9], we can get 1 − 〈F 〉 = O(1/n2). This rate at which 1 − 〈F 〉 approaches zero is known
as the Heisenberg limit [10] and cannot be beaten [8].

In this paper, we are interested in iterative phase estimation, when we have only a single
copy of Uθ , similar to that of Kitaev [11], for which 1−〈F 〉 = O((log n/n)2). This is within a
logarithmic factor of the Heisenberg limit. Note that there are other iterative phase estimation
procedures with 1 − 〈F 〉 = O(1/n2), but they require an extra rotation gate capable of doing
arbitrary rotations to high precision (see section 2.5).

In section 2, a selection of different phase estimation schemes are described. In section 3,
problems with some of the previous methods are explained. Section 4 contains our algorithm
for phase estimation and a theoretical evaluation of its performance. In section 5, simulations
are performed to check that our algorithm works. Section 6 looks at the performance of our
phase estimation algorithm in the presence of depolarizing noise.

2. Phase estimation methods

2.1. Simple approach

A very simple method is to let Uθ act on the input state |ψx〉 = 1/
√

2(|0〉 + |1〉); the
output state is |ψθ 〉 = 1/

√
2(|0〉 + ei2πθ |1〉). If we measure in x that is we use the

POVM Mx = {M1 = |ψx〉〈ψx |,M0 = I − M1}, then we get outcome 1 with probability
px(1; θ) = (1 + cos(2πθ))/2 and outcome 0 with probability px(0; θ) = 1 − px(1; θ). If
we perform N measurements, we get an estimate cos(2πθ̂) = 2Nx=1/N − 1 of cos(2πθ),
where Nx=1 is the number of times we obtain the outcome 1. If we measure in y, that is, use the
POVM My = {M1 = |ψy〉〈ψy |,M0 = I − M1}, where |ψy〉 = 1/

√
2(|0〉 + i|1〉), we observe

outcome 1 with probability py(1; θ) = (1 + sin(2πθ))/2 and outcome 0 with probability
py(0; θ) = 1 − py(1; θ). Performing N measurements, we get an estimate of sin(2πθ); from
estimates of cos(2πθ) and sin(2πθ) we are able to estimate θ .
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2.2. Kitaev

As far as we are aware, Kitaev [11] gave the first l-stage iterative phase estimation procedure.
(The number of stages l is chosen before hand and will depend on the precision desired and
experimental limitations.) At the kth stage of Kitaev’s procedure, Uθ acts 2k−1 times on
a qubit, which is then measured. We perform some multiple of log(l/ε) measurements of
(2k−1θ)mod 1. This ensures that we can ‘localize each of the numbers (2k−1θ)mod 1 in one of
the 8 intervals [(s − 1)/8, (s + 1)/8] (s = 0, . . . , 7) with error probability � ε/ l.’ Using this
information, an algorithm—which is not given—gives us an estimate θ̂ satisfying

Pr

((
θ̂ − 1

2l+2
, θ̂ +

1

2l+2

)
� θ

)
� 1 − ε. (5)

2.3. Rudolph and Grover

Rudolph and Grover [12] looked at the problem of transmitting a reference frame from Alice
to Bob, which is linked to estimation of an unknown U ∈ SU(2), parametrized by three
parameters α, θ, φ. The scheme of Rudolph and Grover involves estimating the parameters
α, θ, φ individually using the following l-stage iterative procedure. We set θ ∈ [0, 1) to have
an infinite binary expansion θ = w1w2 . . . wl . . . . At the kth stage a qubit is sent back and
forth between Alice and Bob in such a way that, when Bob finally measures it, he obtains
outcome 1 with probability pk(1; θ) = (1 + cos(2kπθ))/2.

This is repeated a minimum of N = 32 log2(2l/ε) times [12], which ensures that Bob’s
estimate p̂k(1; θ) of pk(1; θ) satisfies

Pr

((
p̂k − 1

4
, p̂k +

1

4

)
� pk

)
� 1 − ε

l
. (6)

It is assumed that if |p̂k − pk| � 1/4, then Bob can estimate the kth bit of θ correctly. If this
is so, then from (6), the probability that Bob estimates the kth bit of θ correctly is at least
1 − ε/ l, and the probability that he estimates all of the binary digits of θ correctly is at least
1 − ε. After l stages, we get an estimate θ̂ = ŵ1ŵ2 . . . ŵl , satisfying

Pr

((
θ̂ − 1

2l
, θ̂ +

1

2l

)
� θ

)
� 1 − ε. (7)

A similar scheme is then used to estimate the parameters α and φ. The method of Rudolph
and Grover has been used in [6] for the problem of clock synchronization.

2.4. Zhengfeng et al

Zhengfeng et al [13] highlighted two errors with the method of Rudolph and Grover: (i)
knowing |θ̂ − θ |1 � 1/2m does not imply that we know the first m bits of the binary expansion
of θ—consider θ = 0.49, θ̂ = 0.5 and m = 1; (ii) the method is problematic (in the sense
explained in section 3) for θ close to 1/2.

Zhengfeng et al gave the following l-stage procedure. In the first stage, we let Uθ act on
|ψx〉 and measure in x; we obtain outcome 1 with probability p(1; θ) = (1 + cos(2πθ))/2.
The state Uθ |ψx〉 is measured some multiple of log(l/ε) times (N), which gives an estimate θ̂

satisfying

Pr

((
θ̂ − 1

12
, θ̂ +

1

12

)
� θ

)
� 1 − ε

l
. (8)
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Having obtained an estimate θ̂

(1) if θ̂ ∈ [0, 5/12), define r1 = 2 and ν1 = 0,
(2) if θ̂ ∈ [5/12, 7/12), define r1 = 3 and ν1 = 1,
(3) if θ̂ ∈ [7/12, 1), define r1 = 2 and ν1 = 1.

At the kth stage, we apply Uθ r1r2 . . . rk−1 times. After measuring U
r1r2...rk−1
θ |ψx〉 N times,

we estimate (r1r2 . . . rk−1θ)mod 1 and obtain rk and νk in a similar way to that in which we
obtained r1 and ν1. After l stages, we have (r1, . . . , rl, ν1, . . . , νl). Our final estimate of θ is

θ̂ =
l∑

i=1

νi∏i
k=1 rk

. (9)

2.5. Dobšı́ček et al

A popular iterative estimation method is to take θ to have a binary expansion of length l
plus some small remainder, that is, θ = w1w2 . . . wl + 
. The binary digits w1, . . . , wl are
measured one at a time with a single measurement. This has been done in [14–17]. (Higgins
et al [17] were the first to give, and carry out experimentally, a method of this form which
achieves the Heisenberg limit.) We review the method as described by Dobšı́ček et al [15].

At the kth stage, we let U 2l−k+1

θ act on one of two qubits; the other qubit is acted on by a
Z-rotation gate eiαkσz before being measured—where α0 = 0 and αk for k = 2, . . . , l depends
on the results from the previous k − 1 stages. From this measurement, we get an estimate
ŵl+1−k of the (l + 1 − k)th binary digit. After l stages, we get an estimate θ̂ = ŵ1ŵ2 . . . ŵl of
θ which satisfies

Pr

((
θ̂ − 1

2l+1
, θ̂ +

1

2l+1

)
� θ

)
� 0.81. (10)

We can increase the probability that our final interval contains θ to 1 − ε by either (a)
increasing the number of rounds to l′ = l + log(2 + 1/(2ε)) or (b) using O(log2(1/ε)) extra
measurements of the first few binary digits [15]. The method of Dobšı́ček et al has recently
been carried out on experimental data in [18].

The method of Dobšı́ček et al [15] has been analysed when there are internal static
imperfections and residual couplings between qubits [19]. It was shown that this type of noise
is detrimental to the performance of Dobšı́ček’s method; however, solutions were found to
overcome this problem in [19].

3. Problems

There is nothing wrong with Kitaev’s method of iterative estimation. However, he does not
give an algorithm for (i) choosing which of the intervals contains (2k−1θ)mod 1 with probability
1 − ε/ l and (ii) reconstructing θ given confidence intervals for (2k−1θ)mod 1. As we will see in
this section, there are gaps in the methods of Rudolph and Grover, and Zhengfeng et al for (i).

There are two main gaps in Rudolph and Grover’s method, which we now explain.
Firstly, pk(1; θ) = (1 + cos(2kπθ))/2 is a multimodal function of θ . For example, θ = 3/4
and θ ′ = 1/4 give the same value of p1(1; θ), even though they differ in the first binary digit.
To overcome this, we need an estimate of sin(2πθ) as well. This however is a trivial point
and is easily overcome.

Secondly, if θ = 1/2 ± δ, where δ is small, we require a large number of measurements
to determine the first bit of θ correctly with high probability. If we do make a mistake then

4
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for our final estimate θ̂ , we will have |θ̂ − θ |1 � δ. This problem, which occurs for θ close to
1/2, was pointed out by Zhengfeng et al.

A similar problem also occurs for θ = 0 ± δ. Because of this, we will encounter
difficulties in estimating the kth bit of θ whenever (2k−1θ)mod 1 ≈ 0, (2k−1θ)mod 1 ≈ 1 or
(2k−1θ)mod 1 ≈ 1/2. However, it may also be possible to overcome this issue using extra
rotation gates in these cases.

There are also gaps with the method of Zhengfeng et al [13]. Firstly, like Rudolph
and Grover, they overlook the fact that p1(1; θ) = (1 + cos(2πθ))/2 is bimodal. Secondly,
the accuracy of their final estimate relies on the assumption that if |θ̂ − θ |1 � 1/12 and
θ̂ ∈ [0, 5/12), then θ ∈ [0, 1/2). This is not true, as we could have θ = −1/12 	∈ [0, 1/2).
Similarly, they assume that if |θ̂ − θ |1 � 1/12 and θ̂ ∈ [7/12, 1), then θ ∈ [1/2, 1), which
again is not true, as we could have θ = 1/12 	∈ [1/2, 1). Again we will get problems at the
kth stage if (r1 . . . rk−1θ)mod 1 ≈ 0 or (r1 . . . rk−1θ)mod 1 ≈ 1.

4. Our approach

This section contains our method for phase estimation. Firstly, we describe the method for
going from confidence arcs for θ, (2θ)mod 1, (4θ)mod 1, . . . , (2l−1θ)mod 1, of length 1/3 and
coverage probability at least 1 − ε/ l, to a confidence arc for θ of length 1/(2l−1 × 3) and
coverage probability at least 1 − ε. Secondly, we describe how to get a confidence arc for
(2k−1θ)mod 1, of length 1/3 and coverage probability 1 − ε/ l. Thirdly, we use Hoeffding’s
inequality to calculate the number of measurements needed at each stage. Finally, we show
that 1 − 〈F(Uθ̂ , Uθ )〉 = O((log n/n)2).

4.1. The iterative phase estimation algorithm

In this section, we introduce our method for computing a confidence arc for θ of length
1/(2l−1 × 3) and coverage probability 1 − ε. First we give an intuitive approach using
examples. For computational simplicity, we look at confidence arcs of length 0.3 and coverage
probability 1. Lk and Jk will denote confidence arcs for (2k−1θ)mod 1 and 2k−1θ, respectively,
of length 0.3 and coverage probability 1. ( In our more general algorithm Lk and Jk will have
length 1/3 and coverage probability at least 1 − ε/ l.) For the examples, we choose l = 3.

4.1.1. Example. Suppose that after doing some measurements of Uθ |ψx〉, U 2
θ |ψx〉 and

U 4
θ |ψx〉, we find

L1 = [0.6, 0.9] � θ (11)

L2 = [0.3, 0.6] � (2θ)mod 1 (12)

L3 = [0.8, 1.1] � (4θ)mod 1. (13)

It follows from (11) that

2L1 = [1.2, 1.8] � 2θ. (14)

Using (12) and (14), it follows that

J2 = [1.3, 1.6] � 2θ. (15)

From (15) we know that

2J2 = [2.6, 3.2] � 4θ. (16)

5
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Figure 1. Situation 1.

Figure 2. Situation 2.

Using (13) and (16), we get

J3 = [2.8, 3.1] � 4θ. (17)

Using confidence arcs (11), (12) and (13) for θ, (2θ)mod 1 and (4θ)mod 1, respectively,
of length 0.3 and coverage probability 1, we have derived a confidence arc (17) for 4θ of
length 0.3 and coverage probability 1. From this, we get a confidence arc for θ of length
0.3/23−1 = 0.075 and coverage probability 1, namely

(1/4)J3 = [0.7, 0.775] � θ.

Remember that we are looking at confidence arcs on a circle. On the circle the arc
[1.2, 1.8] is equivalent to the arc [0.2, 0.8], as is [2.2, 2.8], [3.2, 3.8], . . . . Similarly [2.6, 3.2]
is equivalent to [0.6, 1.2].

We define the symbol ⊂1 to mean that a confidence arc on the circle, is a subset of
another confidence arc on the circle. Similarly, we define ∈1 to mean that a point is contained
within an arc on the circle, e.g. 0.3 ∈1 [1.2, 1.8]. The previous example was rather simple in
that [0.3, 0.6] ⊂1 [1.2, 1.8] and [0.8, 1.1] ⊂1 [2.6, 3.2]. In general, we cannot assume that
Lk+1 ⊂1 2Jk .

4.1.2. General algorithm. Our confidence arcs are now of length 1/3 rather than 0.3. Let us
put

Lk = [x(k), x(k) + 1/3], x(k) ∈ [0, 1),

Jk = [z(k), z(k) + 1/3].

As in section 4.1.1 we use 2Jk and Lk+1 to find a confidence arc Jk+1. We insist that Jk+1 ⊂ 2Jk .
For this, we require that z(k + 1) ∈ [2z(k), 2z(k) + 1/3]. Assuming that Jk � 2k−1θ and
Lk+1 � (2kθ)mod 1, then there are three possibilities. For each possibility we give a figure, with
a small vertical line representing the choice of the lower bound for Jk+1 (figures 1– 3). (Note
that J1 = L1.)

(i) The simplest possibility is that Lk+1 ⊂1 2Jk . This occurs when (x(k + 1) − 2z(k))mod 1 ∈
[0, 1/3). We choose Jk+1 to have lower boundary z(k+1) = 2z(k)+(x(k+1)−2z(k))mod 1.

(ii) Another possibility is that x(k + 1) 	∈1 2Jk but x(k + 1) + 1/3 ∈1 2Jk . This occurs when
(x(k + 1) − 2z(k))mod 1 ∈ [2/3, 1). In this case, we take the lower boundary of Jk+1 to be
z(k + 1) = 2z(k).

6
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Figure 3. Situation 3.

(iii) The final possibility is that x(k + 1) ∈1 2Jk but x(k + 1) + 1/3 	∈1 2Jk . This occurs when
(x(k + 1) − 2z(k))mod 1 ∈ [1/3, 2/3). In this case, we take the lower boundary of Jk+1 to
be z(k + 1) = 2z(k) + 1/3.

Using this iterative scheme, we end up with the confidence arc Jl = [z(l), z(l) + 1/3] for
2l−1θ with coverage probability 1. This immediately gives us a confidence arc for θ of length
1/(2l−1 × 3), namely (1/2l−1)Jl = [z(l)/2l−1, (z(l) + 1/3)/2l−1]. We take the middle of this
interval modulo 1 as our estimate θ̂ of θ , i.e. ((z(l) + 1/6)/2l−1)mod 1.

The final confidence arc for θ of length 1/(2l−1 × 3) contains θ if Lk � (2k−1θ)mod 1, for
every k = 1, . . . , l. If each Lk has coverage probability at least 1 − ε/ l, the probability that
every Lk contains (2k−1θ)mod 1 is at least 1 − ε.

4.2. Finding Lk

Here we give the details of calculating the confidence arcs Lk for (2k−1θ)mod 1 of length 1/3
and coverage probability at least 1 − ε/ l. First we show how a confidence arc of length 1/3 is
computed, then we show how to make the coverage probability at least 1 − ε/ l. We shall look
at finding a confidence arc for θ . The analysis is exactly the same as for (2k−1θ)mod 1 except
in the latter case where we let Uθ act 2k−1 times on the same |ψx〉.

We let Uθ act on |ψx〉 and measure in x. We obtain outcome 1 with probability
px(1; θ) = (1 + cos(2πθ))/2. We measure Uθ |ψx〉 a total of N times and obtain outcome
1 Nx=1 times. We then have an estimate 2Nx=1/N − 1 of cos(2πθ).

We let Uθ act on |ψx〉 and measure in y. We obtain outcome 1 with probability
py(1; θ) = (1 + sin(2πθ))/2. We measure Uθ |ψx〉 in y a total of N times and obtain outcome
1 Ny=1 times. We then have an estimate 2Ny=1/N − 1 of sin(2πθ). We get an estimate

θ̂ = 1

2π

(
atan2

(
2Ny=1

N
− 1,

2Nx=1

N
− 1

))
mod 2π

of θ . We can construct L1 as

L1 =
((

θ̂ − 1

6

)
mod 1

,

(
θ̂ − 1

6

)
mod 1

+
1

3

)
.

More generally, given an estimate (2k−1θ̂k)mod 1 of (2k−1θ)mod 1, we get the confidence arc

Lk = (
x(k), x(k) + 1

3

)
,

x(k) = (
(2k−1θ̂k)mod 1 − 1

6

)
mod 1

.

It is shown in the appendix that if∣∣∣∣Nx=1

N
− px(1; θ)

∣∣∣∣ � 0.306 (18)

and ∣∣∣∣Ny=1

N
− py(1; θ)

∣∣∣∣ � 0.306, (19)

7
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then L1 � θ . It follows that if

Pr

(∣∣∣∣Nx=1

N
− px(1; θ)

∣∣∣∣ � 0.306

)
�

√
1 − ε

l
(20)

and

Pr

(∣∣∣∣Ny=1

N
− py(1; θ)

∣∣∣∣ � 0.306

)
�

√
1 − ε

l
, (21)

then

Pr (L1 � θ) � 1 − ε

l
. (22)

An analogous result holds for Lk, k = 2, . . . , l. It is shown below that if N = 5.34 log(4l/ε)

then (20) and (21) hold.

4.3. Number of measurements needed

The Hoeffding inequality [20] will be used.

Theorem 1. Given independent random variables X1, . . . , Xn with ai � Xi � bi , then the
following inequality holds for the sum Sn = ∑n

i=1 Xi:

Pr (|Sn − E[Sn]| � nt) � 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (23)

The observed measurement outcomes from a single measurement in x are independent
random variables Xi with 0 � Xi � 1, and for which Sn = Nx=1 and E[Sn] = npx(1; θ).
Using (23), it is straightforward to show that

Pr

(∣∣∣∣Nx=1

N
− px(1; θ)

∣∣∣∣ � t

)
� 2 exp(−2Nt2). (24)

From (24), it can be shown that (20) holds if

N = 5.34 ln

(
4l

ε

)
(25)

measurements in x are performed at each stage. The analysis is exactly the same for
measurements in y, and so a total number of

Ntot = 10.68 ln

(
4l

ε

)
(26)

measurements are required at each stage. This ensures that (20) and (21) hold, and
consequently (22) holds.

4.4. The behaviour of the fidelity

We now see how 1 − 〈F(Uθ̂ , Uθ )〉 scales with the number of times Uθ is used. As in [12], we
look at the worst-case value of 1 − 〈F(Uθ̂ , Uθ )〉. That is, if the final confidence arc does not
contain θ then θ̂ = (θ + 1/2)mod 1, and if it does then θ lies on the boundary of the confidence
arc, i.e. |θ̂ − θ |1 = 1/(2l × 3). This gives

1 − 〈F(Uθ̂ , Uθ )〉 � 1 −
(

(1 − ε)
1 + cos(2π/(2l × 3))

2
+ ε × 0

)

≈ ε +
π2

22l × 9
− επ2

22l × 9
.

8
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If we choose ε = 1/22l , then 1 − 〈F(Uθ̂ , Uθ )〉 = O(1/22l ). This requires a total of

Ntot = 10.68 ln(4l × 22l ) (27)

measurements at each stage. The number of times Uθ is used is n = Ntot(2l − 1), and so
1/2l ≈ Ntot/n. The number of measurements, (27), made at each stage is O(l); noting that
log n is also O(l), it follows that

1 − 〈F(Uθ̂ , Uθ )〉 = O

((
log n

n

)2
)

. (28)

5. Simulations

The analysis in section 4.4 concentrated on optimizing the worst-case asymptotic scaling of
1−〈F 〉 with respect to n. The cost function 1−〈F 〉 is very sensitive to outliers. A large number
of measurements, (27), were chosen so that the probability that the final interval did not cover
θ was 1/22l . This ensured that 1−〈F 〉 was within a logarithmic factor of the Heisenberg limit.
Rather than choosing Ntot large to remove the large contribution of outliers, an experimenter
may be happy enough if the probability that θ is contained by his final confidence arc is greater
than some value. This approach does not sacrifice precision, but rather an unnecessarily large
coverage probability.

In this section, we give a table of simulated results, for different numbers of iterative
stages, and different numbers of measurements at each stage. From this table we show how
to calculate a confidence interval for the coverage probability. An experimenter who wants a
confidence arc for θ of certain length and coverage probability could look at the table and find
the number of measurements needed to achieve this.

Simulations are performed with the computer package MAPLE. A value for the parameter
θ ∈ [0, 1) is given by a random variable with a uniform distribution. Measurement results can
be simulated, since the number of times outcome 1 is observed has a binomial distribution.
For example, at the kth iterative stage, measuring in x, Nx=1 ∼ Bin(N, (1 + cos(2kπθ))/2).
From the simulated results of measurements in x and y for stages 1, . . . , l, an estimate of θ is
obtained using the iterative algorithm given in section 4.1. We can then test whether our final
confidence arc contains θ . This is done for 100 000 randomly chosen θ , and the number of
times that θ is contained by the final confidence arc recorded.

For most recent iterative schemes the total number of iterations is reasonably small: 6
in [17] and 7 in [18]. We look at simulations with the number of iterations varying between
6 and 9. Table 1 gives the number of times the final confidence arc contains the true value
of θ .

Using the above simulations the coverage probability can be estimated, i.e. the probability
that, using the iterative algorithm, the known true value θ is contained in our final confidence
interval.

Suppose the true (unknown) coverage probability is p. For the ith trial put

Wi = 1 if interval covers θ

= 0 if not.

Then W1, . . . ,WM are independent identically distributed Bernoulli random variables, i.e.
Wi ∼ Bin(1, p). Thus

W1 + · · · + WM ∼ Bin(M, p).

9
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Table 1. Numbers of trials out of 100 000 with |θ̂ − θ | � 1/(2l × 3).

Number of iterative stages (l)

Ntot 6 7 8 9

20 99 792 99 729 99 747 99 712
30 99 993 99 987 99 982 99 978
40 99 999 100 000 99 998 99 999
50 100 000 100 000 99 999 100 000

If m out of M intervals cover θ then p is estimated by m/M . An approximate 95% confidence
interval for p is

m

M
± 1.96

√
m/M (1 − m/M)

M
.

The longest confidence interval (0.000 66) is that for using nine iterative stages and a total
of 20 measurements at each stage. Using the half-length of this confidence interval, we can
compute a confidence interval from the results given in table 1 with coverage probability at
least 95%:

m

100 000
± 0.000 33.

If an experimenter is content with a confidence arc of length no smaller than 1/(29 × 3) =
1/1536 and estimated coverage probability no greater than 99.6% then he need perform no
more than 20 measurements at each stage. If the experimenter wanted to use even less
measurements he could produce his own table of simulated results possibly even varying the
number of measurements performed at each stage.

6. The noisy case

It is known that when even a small amount of noise is present, the performance of phase
estimation schemes is greatly reduced [21, 22]. This section investigates the performance of
the iterative estimation algorithm when depolarizing noise is present. The channel

ρ0 �→ (1 − r)Uθρ0U
†
θ +

r

2
I2, 0 < r < 1, (29)

is considered, where Uθ is the same as before, (1), and ρ0 = |ψx〉〈ψx |. (The channel (29)
is identical to Uθρ0U

†
θ undergoing phase damping with λ = r(2 − r) [5, p 383].) Ji et al

[13] gave the very interesting result that if r > 0, then the optimal asymptotic rate at which
1 − 〈F(Uθ̂ , Uθ )〉 approaches zero is given by the standard quantum limit.

The whole point of using an iterative scheme is that the distinguishability of θ from
cos(n2πθ), with n � 1, is considerably greater than from cos(2πθ). One measure of
distinguishability is the Fisher information. Given a family of probability distributions with
density functions p(x; θ), the Fisher information is defined as

FM
θ ≡

∫
p(x; θ)

(
∂ ln p(x; θ)

∂θ

)2

dx (30)

=
∫

1

p(x; θ)

(
∂p(x; θ)

∂θ

)2

dx. (31)

10
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Intuitively the Fisher information tells us the amount of ‘information’ about a parameter
contained in a probability distribution. The Symmetric Logarithmic Derivative (SLD) quantum
information Hθ tells us the maximal attainable Fisher information obtained from measuring a
state depending on an unknown parameter [23], i.e.

FM
θ � Hθ. (32)

The SLD quantum information is defined in terms of the SLD quantum score λθ as

Hθ = tr{λθρθλθ },
where λθ is any self-adjoint solution of the matrix equation

dρθ

dθ
= 1

2
(ρθλθ + λθρθ ).

To measure distinguishability, per use of the channel, the quantity FM
θ

/
m will be used, where

m is the number of times Uθ acts on the same input state.
If there is no noise, and the experimenter lets Uθ act m times on the input state and

measures in x, then outcome 1 is observed with probability px(1; θ) = (1 + cos(m2πθ))/2
and 0 with probability px(0; θ) = 1−px(1; θ). The Fisher information from this measurement
is F

Mx

θ = 4π2m2, which is equal to the SLD quantum information. Measuring in y

gives the same Fisher information. Thus, F
Mx

θ

/
m = F

My

θ

/
m = 4π2m. At the kth stage

of the iterative procedure, we let Uθ act m = 2k−1 times on the input state, and so
F

Mx

θ

/
m = F

My

θ

/
m = π22k+1. Thus, FM

θ

/
m (where M is an arbitrary measurement in x

or y) increases exponentially with k.
In the noisy case, letting Uθ act m times on the output state and measuring in x,

outcome 1 is observed with probability px(1; θ) = (1 + (1 − r)m cos(m2πθ))/2 and 0 with
probability px(0; θ) = 1 − px(1; θ). Measuring in y, outcome 1 is observed with probability
py(1; θ) = (1 + (1 − r)m sin(m2πθ))/2 and 0 with probability py(0; θ) = 1 − py(1; θ). This
gives

F
Mx

θ = 4π2m2(1 − r)2m sin2(2mπθ)

1 − (1 − r)2m cos2(2mπθ)

F
My

θ = 4π2m2(1 − r)2m cos2(2mπθ)

1 − (1 − r)2m sin2(2mπθ)

Hθ = 4π2m2(1 − r)2m.

Note that

F
Mx

θ + F
My

θ ≈ Hθ.

Thus, measuring both in x and y, the average Fisher information from a single measurement
M is approximately Hθ/2.

The maximal value of FM
θ

/
m, taken over m, will occur close to the maximal value of

Hθ/m. When r > 0, Hθ/m, and hence FM
θ

/
m, do not increase indefinitely with m. Instead it

reaches its maximum at

m = − 1

2 log(1 − r)
, (33)

after which it decreases. When r is small, this maximum is obtained at

m ≈ 1

2r
. (34)

The number of stages that can be performed, for small r, such that Hθ/m, and hence FM
θ

/
m,

increases at each stage is approximately l ≈ − log2 r . A consequence of this is that estimation

11
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Figure 4. Hθ/m at the kth iterative stage, with r = 2−5.

(This figure is in colour only in the electronic version)

Table 2. Numbers of trials out of 100 000 with |θ̂ − θ |1 � 1/(2l × 3), with Ntot = 30.

Number of iterative stages (l)

r 4 5 6 7 8 9

2−4 98 290 88 340 60 423 32 445 16 059 8 042
2−5 99 804 98 408 88 537 61 293 32 756 16 460
2−6 99 967 99 807 98 430 88 708 61 148 32 595
2−7 99 985 99 955 99 802 98 476 88 895 61 699
2−8 99 988 99 977 99 962 99 812 98 467 88 864

close to the Heisenberg limit is not possible, asymptotically, when there is any depolarizing
noise. This gives an alternative insight into the result of Ji et al [13].

Figure 4 gives Hθ/m at the kth iterative stage when r = 2−5. It can be seen that Hθ/m

increases up to k = 5, decreases slightly near k = 6 and falls rapidly for k > 6. Other figures
not included here give similar information, showing Hθ/m increasing up to k = − log2 r , and
decreasing rapidly for k > − log2 r .

Table 2 contains the results of simulations, for magnitudes of noise r = 2−4, 2−5, . . . , 2−8

and total number of iterative stages l = 4, . . . , 9. Consider the diagonal of table 2, from
r = 2−4, l = 4 to r = 2−8, l = 8. This corresponds to the experimenter performing
l = − log2 r iterative stages, which involves going up to the iterative stage at which FM

θ /m is
maximized. Similarly, the diagonal from r = 2−4, l = 5 to r = 2−8, l = 9 corresponds to the
experimenter performing l = − log2 r+1 iterative stages, etc. It is interesting to note that when
l > − log2 r , there is a significant decrease in the number of confidence intervals containing
θ . If the experimenter performs l = − log2 r iterative stages then the final confidence interval
contains θ approximately 98% of the time; for l = − log2 r + 1 iterative stages, the coverage

12
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probability decreases to approximately 89%. For l = − log2 r +2 iterative stages, the coverage
probability is approximately 61%—a considerable drop in performance. Simulations using
more measurements at each stage have given similar results.

It is interesting to see that the drop off in performance, in terms of the coverage probability,
occurs at the same point as the drop in performance as measured by Hθ/m, and consequently
Fθ/m, as seen in figure 4.

We suggest, more generally, that for the channel (29) the optimum number of iterative
stages, where at the kth stage Uθ is used 2k−1 times, is l = �− log2 r�.

A related question was considered in [24], where the ‘stopping point’, was N the number
of entangled photons to be included in the NOON input states. Rubin and Kaushik found that
the optimal precision in measurement occurred for N = 1.279/L, where L is the magnitude
of loss (analogous to the point, n′ = 1/(2r), at which FM

θ

/
m is maximized).

7. Discussion

After completing this work, we were made aware of similar work already done by Higgins
et al [25]. In [25], it was shown that the logarithmic factor can be removed, thus achieving
the Heisenberg limit. Also, an experimental demonstration was given. However, an explicit
algorithm which allows experimenters to implement this method was not given. Furthermore,
the problem of noise was not dealt with.

8. Conclusion

In this paper, we have shown that there are gaps in the iterative phase estimation schemes of
[12, 13].

We have shown how to compute confidence arcs for θ, (2θ)mod 1,

(4θ)mod 1, . . . , (2l−1θ)mod 1, of length 1/3 and coverage probability at least 1 − ε/ l.
The main contribution of this paper has been to give an explicit algorithm which uses
these confidence arcs to obtain a confidence arc for θ of length 1/(2l−1 × 3) and coverage
probability 1 − ε. Choosing ε = 1/22l gives 1 − 〈F(Uθ̂ , Uθ )〉 = O((log n/n)2), i.e. within a
logarithmic factor of the Heisenberg limit. The advantage of our scheme is that unlike other
iterative phase estimation methods, such as [15, 17], it does not require an extra rotation gate
capable of doing arbitrary rotations with almost perfect accuracy. Thus, our scheme has a
simpler experimental setup and less potential for error.

Using computer simulations we have shown that the algorithm is successful. We have
suggested the use of tables of simulated results to help choose the number of resources needed
for desired levels of precision and coverage probability.

We have analysed our estimation scheme in the presence of depolarizing noise with
magnitude r. We have shown that the iterative algorithm is still successful in this case
provided that no more than l = − log2 r iterative stages are performed.

Acknowledgments

Thanks go to Peter Jupp for his supervision and many helpful comments. This work was
supported by an EPSRC Doctoral training grant. Thanks also to the referees for helpful
suggestions, including result (A.3).

13



J. Phys. A: Math. Theor. 43 (2010) 015301 C J O’Loan

Appendix

Put x = cos(2πθ), y = sin(2πθ), x0 = 2Nx=1/N − 1, y0 = 2Ny=1/N − 1, φ(x, y) =
atan2(y, x) and φ̂(x0, y0) = atan2(y0, x0). Define


φ̂ = min((φ̂ − φ)mod2π , (φ − φ̂)mod2π ).

Given α ∈ [0, 1/
√

2] and

|x − x0| � α, (A.1)

|y − y0| � α, (A.2)

then (x0, y0) lies in a square with sides of length 2α centred around (x, y). From simple
geometry, it is obvious that the maximum value of 
φ̂ occurs when (x0, y0) is one of the four
corners of the square. For this case, consider the triangle given by the points (0, 0), (x, y) and
(x0, y0). The angle at point (0, 0) is 
φ̂, and is opposite a side of length

√
2α. The angle at

point (x0, y0) is opposite to a side of length 1. It follows from the sine rule and monoticity of
arcsin on [0, 1] that


φ̂ � arcsin(
√

2α). (A.3)

For the iterative algorithm, it is required that 
φ̂ � π/3, which holds if α = 0.612. Then
(A.1) and (A.2) are equivalent to (18) and (19).

References

[1] Wei L F and Nori F 2004 Quantum phase estimation algorithms with delays: effects of dynamical phases
J. Phys. A: Math. Gen. 37 4607–17

[2] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Simulated quantum computation of molecular
energies Science 309 1704–7

[3] Wang X B, You J Q and Nori F 2008 Simulated quantum computation of molecular energies Phys. Rev.
A 77 062339

[4] Wang H F, Wu L A, Liu Y X and Nori F 2009 Measurement-based quantum phase estimation algorithm for
finding eigenvalues of non-Hermitian matrices Phys. Rev. A (at press) (arXiv:0906.2538)

[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[6] de Burgh M and Bartlett S D 2005 Quantum methods for clock synchronization: beating the standard quantum
limit without entanglement Phys. Rev. A 72 042301

[7] Hayashi M 2006 Parallel treatment of estimation of SU(2) and phase estimation Phys. Lett. A 354 183–9
[8] Kahn J 2007 Fast rate estimation of a unitary operation in SU(d) Phys. Rev. A 75 022326
[9] Imai H and Fujiwara A 2007 Geometry of optimal estimation scheme for SU(d) channels J. Phys. A: Math.

Theor. 40 4391–400
[10] Giovannetti V, Lloyd S and Maccone L 2004 Quantum-enhanced measurements: beating the standard quantum

limit Science 306 1330–6
[11] Kitaev A Y 1996 Quantum measurements and the Abelian stabilizer problem Electron. Colloquium Comput.

Complexity 3 (3) 1–20
[12] Rudolph T and Grover L 2003 Quantum communication complexity of establishing a shared reference frame

Phys. Rev. Lett. 91 217905
[13] Ji Z, Wang G, Duan R, Feng Y and Ying M 2008 Parameter estimation of quantum channels IEEE Trans. Inf.

Theory 54 5172–85
[14] Childs A M, Preskill J and Renes J 2000 Quantum information and precision measurement J. Mod. Opt. 47 (2)

155–76
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